ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ The International Information Retrieval Guild ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Presents ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ The IIRG Technical Journal Volume I, Issue 1 ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ May 1993 ÄÄÄÄÄÄÄ / ÄÄÄÄÄÄÄ Editor: Žnuáis ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ - In This Issue of the Journal - ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ The Digital Triggering Timer ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ////// ////// /////// //////// // // // // // // // /////// // //// // // // // // // ////// * ////// * // // * ///////// * Ä]à International Information Retrieval Guild ´[- Member Sites Support Sites Rune Stone BBS [WHQ] [2o3-832-8441] Lightning Systems [414] Wired World BBS [Italy] Sycamore Elite [815] Cyberdyne Network [Germany] The Works [617] Sanitariums [817] Piper's Pit [2o3] Ware House [2o3 East] Dickinson Nightlight [713] Hawk's Nest [2o1] Hollow Tree [313] The Web [2o3 West] Abiogenesis [816] OFFICIAL DISLAIMER... All information in the IIRG Technical Journal is Member contributed material. The Publishers and Editors of THE IIRG disclaim any liability from any damages of any type that the reader or user of such information contained within this journal may encounter from the use of said information. All files are brought to you for entertainment purposes only. We also assume all information infringes no copyrights and hereby disclaim any liability or responsibility. IIRG Technical Journal is (C) 1993 by The IIRG IIRG and INTERNATIONAL INFORMATION RETRIEVAL GUILD is (C) 1982 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ The Digital Triggering Timer ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ Design and Implementation: Muther ³ ³ Technical Quality Assurance: Žnuáis ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄ¿ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ÚÄÄ¿ ³ ô Section 1: Principle ô ³ ÀÄÄÁÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÁÄÄÙ Historically the "time bomb" has utilized crude triggering devices such as the ubiquitous kitchen timer or the anachronistic mechanical alarm clock with protruding wires and failure prone mechanisms. With any luck detonation would occur as scheduled, providing no electromechanical malfunctions occurred. Although it was quite easy to isolate a moving hand with a stationary screw placed through a plastic lens, the devices were crude, even for their era. They offered only little accuracy and limited timeframes, generally 12 hours or less. There were many influencing factors that determined successful use of these mechanisms, including temperature and humidity; for example, most devices of this type could simply be frozen and rendered inoperative. By applying modern technology to the issue of triggering mechanisms, far more reliable, precise, and surprisingly inexpensive solutions were achieved. The first attempts at employing digital control to triggering mechanisms achieved large success, much to the chagrin of federal authorities. These devices were based upon the early digital chronographs which utilized a high voltage output that could easily power a small switching device such as the transistor. The 1st generation of digital alarm chronograph used a buzzer type apparatus powered by a direct current power source, typically a 1.5 volt battery. The alarm portion needed nothing but a +1.5, and a ground to produce an audible signal. This current made construction of a digital trigger easy, cheap, effective, and extremely reliable. Due to widespread availability and ease of construction of explosive devices utilizing this digital trigger, any terrorist organization could acquire and assemble this device without drawing undue attention. As can be imagined, this became the "timer of choice" for such organizations, as it was clearly far superior to the older style, and could be made small enough to easily foil conventional security measures. In response to increasing federal pressure, manufacturers were forced to change the basic design of the devices to limit usable output current such that the device would need major modifications in order to be used as a terrorist device. The major design revision consisted of altering the current output used to activate the chronograph's buzzer mechanism to levels that would be practically useless for driving anything else. In this document and associated diagrams we will illustrate how the more modern designs may still be employed for this purpose, with a little modification, and a little knowledge of electrical engineering. The device described here has been thoroughly tested and works as stated. It is based upon a common digital alarm watch, an automotive alarm sound sensor, and a standard reed relay. ÚÄÄ¿ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ÚÄÄ¿ ³ ô Section 2: Implentation ô ³ ÀÄÄÁÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÁÄÄÙ Materials List 1) 9 volt battery, alkaline preferred 2) Standard Bell wire, 22 gage, solid copper core 3) 1 SPST normally open reed relay, 5 volt operating voltage, 5 amp contact rating 4) 1 watt diode, fast switching 5) 2 DPDT toggle switches 6) Indicator beacon (optional) 7) Automotive alarm glass breakage detector (Most radio/aftermarket shops carry this for approx $35.00 U.S.) 8) 1 El Cheapo alarm watch (Our prototype incorporated a MARLBORO watch that was a summertime promotional giveaway for purchasing 2 packs. Any Kmart brand will do fine) 9) Estes igniter, or blasting cap 10) Black Kat salute for testing, or favorite nitrogen based high explosive Total of parts should not exceed $50.00 U.S. Equipment List 1) 12v DC power source, regulated 2) 1/4 drill bit 3) Small finish nail or equiv. 4) Epoxy, non-metallic type (5 min cure is preferred) 5) 12v test lamp or volt/ohm meter 6) Soldering iron, 35 watt max, small tip 7) Solder, low flux content, small gage (silver mix is avail at radio shack) 8) Trusty Crucifix (optional) Assembly Step 1 Carefully remove the watch back. The piezo element which actually generates the audible alarm generally is either wired in place, or held by case pressure against small springlike protrusions. Step 2 Remove the piezo element by prying it out of the case back or by unsoldering. Care is not needed unless you plan to reuse the element at a later time, otherwise the piezo element can be destroyed. Step 3 Pierce two small holes through the watch case with the finishing nail heated with a lighter (plastic back) or drill a 1/4 inch hole in metal case back. The larger opening for the metal back models ensures that the wires will not become pinched and short, and also allows for the epoxy to seep in for securing at a later step. Step 4 Thread the wire through nail holes or through case back and solder to the original wire or springlike protrusions that butted up to the piezo element. Solder carefully, using as little heat as possible to avoid circuit damage, but make sure the joint is shiny and strong. There should be no lumpy solder blobs anywhere on the board. Step 5 Carefully place the back on the watch temporarily to seat the wiring. Remove the back, and inspect for insulation damage or pinching. If all is well, then a slight epoxy mixture may be applied to the board in order to hold the wiring securely to the inside of the case (not the back). The epoxy will provide needed strain relief for this part of the device. Wait until this cures before continuing. Step 6 Secure the watch back, and inspect for proper external button operation. Since we know some of you who are not careful have already epoxied the metal buttons and have rendered them inoperable, you must start again from Step 1 (this time be more careful). Those of you whose watches perform as well as they did before you started, i.e., the set buttons work ok, the date/time button is ok, the light is ok, etc., may move on to Step 7. Step 7 In this step we will determine how your glassbreak sensor works. This STEP is critical. Failure to determine startup output can result in loss of limbs. Adjust the sensitivity setting on the detector to MIN, and apply power to the unit. 99 percent of the detectors on the market have a status led. Read the instructions included with the unit to determine output polarity. Some may be switchable, some may have a polarity wire, and some only an output wire (these units generally output ground @ 100ma Max Load). In any event, while applying power, watch the status LED. NOTE IF IT LIGHTS when power is first applied. This is critical. Also eye your volt/ohmmeter. Set it to "locking" if your model supports this feature, and watch as you power up. One end should go to the positive, the other to the detector output wire (blue or gray most of the time). NOTE the meter reading. Step 8 If you were fortunate enough to buy a unit with a detachable mike, you are luckier than the poor sap who must take his apart to desolder the surface mounted mike from the pc board. Cut the mike off and solder the wires from the watch to the 2 wires which used to attach to the mike. Polarity is unimportant, but check just to be on the safe side. Once connected, and taped or heatshrinked together, the watch can be epoxied to the top of the detector. When mounting, be sure to locate the watch such that access to the inside of the detector and any external adjustment holes or knobs is not restricted. Step 9 Some units have wires inside to expand the "listening" range of the detector to match different glass manufacturers processes. This wire may be orange or purple. It is like an "expand" button is to a stereo. Do not cut this until ready for testing. Some units need it cut, some don't. Let's see what your watch outputs for a frequency first. Power your detector and set your watch to alarm test mode (usually by holding 2 buttons together at once). You should see the detector light come on at this time. If not, turn up the sensitivity to MAX, and try again. You may want to add a slight load to the output wire (such as an LED), but be sure to use a resistor in order to prevent burnout. Remember, the unit will output ground with the forward voltage being applied by the supply. Test again. If your unit lights this time, BRAVO halfway home now. If not, then the last resort is to cut the sensitivity "expand" mentioned earlier. If it works now, then you're set; if not, you're SOL. Give up now, 'cause you should have never started this project without knowing what the fuck you were doing in the first place. The sensitivity setting should be set to as MIN as possible, but still function everytime an alarm test is made. Step 10 A SPST switch must be placed inline at the output wire of the detector. Why? Refer back to the output levels read when the detector was first tested for output. When a glass detector is first powered up, the output usually engages for a brief instant... KABOOM without the switch. Look at your NOTES taken in Step 7..... did you see the ground come in for an instant? You MUST isolate the startup with a switch. Diagram 2 illustrates the proper implementation. Revisions to the switch may be made, such as a simple or time delayed relay action. However, as a safety precaution, the diagram uses a positive, less dangerous mechanical approach. The outputs should be sent to a relay, and isolated by a switch. A diode is used to prevent the relay from dragging the ground from the glassbreak sensor unit and causing a malfunction. Diagram 2 will provide you with the rest of the construction details. The 9 volt battery powers the glass detector for 30 hours, and will have sufficient voltage to fire the igniter and relay for 2 attempts, after which it should be replaced. Alternatively, two 9 volt batteries may be used, but the initial draw of the glass detector will still drain the first in the 30 hour timeframe. ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Comments and suggestions about this and future issues of the IIRG Tech Journal are welcome. Contact Žnuáis at the IIRG WHQ, the Rune Stone. -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- The IIRG Technical Journal (C) IIRG'1993 - May Odin Guide Your Way - -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-