POLCONIC Polar mode plot of general conics ----begin documentation---- Program: POLCONIC Author: John P. Powers (jpp@cpdvax.csc.ti.com) Date: December 1992 Given the coefficients of a general conic Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 this program sketches the conic on the graph screen. Once the program has been run, the user may store different coefficients to variables A through F and change the graph range settings on the RANGE screen. Press [GRAPH] to sketch the new conic. This program uses dot mode of the grapher to draw conics. The user may change the number of dots (N) in the graph by setting thetaStep on the RANGE screen to 360/N. This program initializes thetaStep to 9 degrees to draw forty points. Example: To plot the conic 16x^2 + 25y^2 - 160x - 200y + 400 = 0 POLCONIC [ENTER] A=?16 B=?0 C=?25 D=?-160 E=?-200 F=400 An ellipse is drawn in the first quadrant. Press [F5] (QUIT) to terminate the program. Change the coefficient of x^2 to 25 and regraph. 25->A [ENTER] [GRAPH] A circle is now drawn in the first quadrant. ----end documentation---- ----begin ascii---- \START\ \COMMENT=Polar mode graph of conics \NAME=POLCONIC \FILE=polconic.85P Pol Degree DrawDot FnOff 0\->\\@Min\:360\->\\@Max\:360/40\->\\@Step\ \(-)\17\->\xMin:17\->\xMax:1\->\xScl \(-)\10\->\yMin:10\->\yMax:1\->\yScl G=D cos \LC-theta\+E sin \LC-theta\ H=A (cos \LC-theta\)\^2\+B cos \LC-theta\ sin \LC-theta\+C(sin \LC-theta\\#\ )\^2\ r1=(\sqrt\(G\^2\/H\^2\-4F/H)-G/H)/2 Lbl AGAIN Prompt A,B,C,D,E,F DispG Menu(1,"AGAIN",AGAIN,5,"QUIT",QUIT) Lbl QUIT \STOP\ ----end ascii---- ----begin uue---- begin 644 polconic.85p M*BI423@U*BH:#`!0;VQA