Normal Linear Regression

Dependent variable: Y         

Independent variables:
A T S-Ne C P E Ax(S-Ne) AxC AxP AxE
                                                     Student t(13)    Prob.
Y          =      -3.49916 +    16.24534 * A             2.94        0.0114
                           -     0.04497 * T             1.80        0.0959
                           +     0.41983 * S-Ne          0.50        0.6274
                           +     0.38786 * C             1.78        0.0984
                           +     4.10840 * P             1.14        0.2745
                           +     3.15286 * E             1.63        0.1268
                           -     3.19722 * Ax(S-Ne)      2.52        0.0254
                           -     0.48625 * AxC           2.02        0.0648
                           -     2.55715 * AxP           0.57        0.5779
                           -     0.56229 * AxE           0.21        0.8349

Variance = 4.860685

         Observed       Fitted       Residual
  1      12.85000       9.86429       2.98571
  2       5.52000       6.02917      -0.50917
  3       6.29000       6.32853      -0.03853
  4       6.11000       4.67708       1.43292
  5       2.45000       2.95223      -0.50223
  6       3.61000       5.82370      -2.21370
  7       0.47000       2.43537      -1.96537
  8       4.56000       2.63331       1.92669
  9       6.35000       7.41442      -1.06442
 10       5.06000       7.58588      -2.52588
 11       2.76000       1.77467       0.98533
 12       4.05000       5.34414      -1.29414
 13       5.74000       5.73560       0.00440
 14       4.84000       5.60540      -0.76540
 15      11.86000       7.46871       4.39129
 16       4.45000       5.59698      -1.14698
 17       3.66000       4.43204      -0.77204
 18       4.22000       3.75133       0.46867
 19       1.16000       0.52870       0.63130
 20       5.45000       5.41144       0.03856
 21       2.02000       3.47287      -1.45287
 22       0.82000      -0.51492       1.33492
 23       1.09000      -0.11433       1.20433
 24       0.28000       1.43340      -1.15340

One-Way Analysis of Variance

Dependent variable: Y; Independent variable: A         

Category        1          2   
Mean          4.1717     4.6342
S.D.          3.5192     2.7768
Number         12         12   

                      SS          MSS     d.f.    F    Prob.
Overall effect     222.3349       9.6667   23
A                    1.2834       1.2834    1   0.13  0.7242
Residual           221.0515      10.0478   22

Analysis of Covariance

Dependent variable: Y; Block variable: A         

Covariates:
T

Block 1 with 12 observations and mean of Y =      4.1717

Total SS =    136.2322; Residual SS =     74.5963

Regression model for block 1
                                              Student t(10) Prob.       Mean
Y          =     7.30868-    0.09071*T            2.87     0.0165    34.5833

Block 2 with 12 observations and mean of Y =      4.6342

Total SS =     84.8193; Residual SS =     77.9834

Regression model for block 2
                                              Student t(10) Prob.       Mean
Y          =     5.74639-    0.03082*T            0.94     0.3712    36.0833

Regression model with parallel lines

Intercepts
a(1) =     6.29404
a(2) =     6.84859

Slopes
                                              Student t(21) Prob.       Mean
                        -    0.06137*T            2.65     0.0151    35.3333

Regression model with all blocks combined
                                              Student t(22) Prob.       Mean
Y          =     6.55932-    0.06103*T            2.68     0.0136    35.3333

Analysis of Variance Table

                                   SS         MSS   d.f.   F     Prob
Total                           222.33
a's unequal, b(i)=0              55.31       55.31   1   7.01   0.0151
a's equal, b(i)'s equal           1.84        1.84   1   0.23   0.6339
  Residual, b(i)'s equal        165.74        7.89  21
a's unequal, b(i)'s equal        13.16       13.16   1   1.73   0.2039
a's equal, b(i)'s unequal         3.67        3.67   1   0.48   0.4958
  Residual, b(i)'s unequal      152.58        7.63  20


Analysis of Covariance

Dependent variable: Y; Block variable: A         

Covariates:
TS-Ne

Block 1 with 12 observations and mean of Y =      4.1717

Total SS =    136.2322; Residual SS =     60.0609

Regression model for block 1
                                              Student t(9) Prob.       Mean
Y          =     4.01815-    0.14484*T            3.06     0.0135    34.5833
                        +    1.71610*S-Ne         1.48     0.1741     3.0083

Block 2 with 12 observations and mean of Y =      4.6342

Total SS =     84.8193; Residual SS =     45.2174

Regression model for block 2
                                              Student t(9) Prob.       Mean
Y          =    13.02809-    0.02958*T            1.12     0.2921    36.0833
                        -    2.20022*S-Ne         2.55     0.0310     3.3300

Regression model with parallel lines

Intercepts
a(1) =     8.41621
a(2) =     9.22894

Slopes
                                              Student t(20) Prob.       Mean
                        -    0.04715*T            1.83     0.0816    35.3333
                        -    0.86893*S-Ne         1.22     0.2363     3.1692

Regression model with all blocks combined
                                              Student t(21) Prob.       Mean
Y          =     8.56754-    0.04817*T            1.90     0.0713    35.3333
                        -    0.77705*S-Ne         1.12     0.2736     3.1692

Analysis of Variance Table

                                   SS         MSS   d.f.   F     Prob
Total                           222.33
a's unequal, b(i)=0              66.81       33.40   2   4.33   0.0274
a's equal, b(i)'s equal           3.83        3.83   1   0.50   0.4893
  Residual, b(i)'s equal        154.25        7.71  20
a's unequal, b(i)'s equal        48.97       24.48   2   4.19   0.0321
a's equal, b(i)'s unequal         2.61        2.61   1   0.45   0.5128
  Residual, b(i)'s unequal      105.28        5.85  18


Analysis of Covariance

Dependent variable: Y; Block variable: A         

Covariates:
TS-NeC

Block 1 with 12 observations and mean of Y =      4.1717

Total SS =    136.2322; Residual SS =     37.4032

Regression model for block 1
                                              Student t(8) Prob.       Mean
Y          =     1.52230-    0.09756*T            2.17     0.0622    34.5833
                        +    0.99007*S-Ne         0.96     0.3635     3.0083
                        +    0.44724*C            2.20     0.0589     6.8083

Block 2 with 12 observations and mean of Y =      4.6342

Total SS =     84.8193; Residual SS =     43.2418

Regression model for block 2
                                              Student t(8) Prob.       Mean
Y          =    14.12964-    0.03673*T            1.23     0.2536    36.0833
                        -    2.34039*S-Ne         2.54     0.0350     3.3300
                        -    0.04900*C            0.60     0.5622     7.6833

Regression model with parallel lines

Intercepts
a(1) =     7.95924
a(2) =     8.72624

Slopes
                                              Student t(19) Prob.       Mean
                        -    0.04278*T            1.55     0.1379    35.3333
                        -    0.86674*S-Ne         1.19     0.2469     3.1692
                        +    0.04397*C            0.50     0.6228     7.2458

Regression model with all blocks combined
                                              Student t(20) Prob.       Mean
Y          =     8.05513-    0.04330*T            1.59     0.1272    35.3333
                        -    0.78034*S-Ne         1.11     0.2800     3.1692
                        +    0.04840*C            0.56     0.5816     7.2458

Analysis of Variance Table

                                   SS         MSS   d.f.   F     Prob
Total                           222.33
a's unequal, b(i)=0              68.81       22.94   3   2.86   0.0640
a's equal, b(i)'s equal           3.39        3.39   1   0.42   0.5233
  Residual, b(i)'s equal        152.24        8.01  19
a's unequal, b(i)'s equal        71.60       23.87   3   4.73   0.0150
a's equal, b(i)'s unequal         1.43        1.43   1   0.28   0.6020
  Residual, b(i)'s unequal       80.65        5.04  16


Analysis of Covariance

Dependent variable: Y; Block variable: A         

Covariates:
TS-NeCP

Block 1 with 12 observations and mean of Y =      4.1717

Total SS =    136.2322; Residual SS =     37.3221

Regression model for block 1
                                              Student t(7) Prob.       Mean
Y          =     1.52004-    0.10061*T            1.86     0.1050    34.5833
                        +    1.06447*S-Ne         0.85     0.4234     3.0083
                        +    0.45188*C            2.05     0.0793     6.8083
                        -    0.43950*P            0.12     0.9053     0.3362

Block 2 with 12 observations and mean of Y =      4.6342

Total SS =     84.8193; Residual SS =     42.8057

Regression model for block 2
                                              Student t(7) Prob.       Mean
Y          =    14.25294-    0.03667*T            1.15     0.2861    36.0833
                        -    2.39825*S-Ne         2.38     0.0485     3.3300
                        -    0.07295*C            0.59     0.5760     7.6833
                        +    0.79021*P            0.27     0.7971     0.3179

Regression model with parallel lines

Intercepts
a(1) =     7.96614
a(2) =     8.76653

Slopes
                                              Student t(18) Prob.       Mean
                        -    0.04187*T            1.46     0.1621    35.3333
                        -    0.90525*S-Ne         1.18     0.2547     3.1692
                        +    0.02941*C            0.25     0.8033     7.2458
                        +    0.52510*P            0.20     0.8450     0.3271

Regression model with all blocks combined
                                              Student t(19) Prob.       Mean
Y          =     8.06117-    0.04281*T            1.52     0.1460    35.3333
                        -    0.79928*S-Ne         1.08     0.2941     3.1692
                        +    0.04057*C            0.36     0.7243     7.2458
                        +    0.28623*P            0.11     0.9129     0.3271

Analysis of Variance Table

                                   SS         MSS   d.f.   F     Prob
Total                           222.33
a's unequal, b(i)=0              69.14       17.29   4   2.05   0.1304
a's equal, b(i)'s equal           3.62        3.62   1   0.43   0.5209
  Residual, b(i)'s equal        151.91        8.44  18
a's unequal, b(i)'s equal        71.78       17.95   4   3.14   0.0489
a's equal, b(i)'s unequal         1.12        1.12   1   0.20   0.6653
  Residual, b(i)'s unequal       80.13        5.72  14


Analysis of Covariance

Dependent variable: Y; Block variable: A         

Covariates:
TS-NeCPE

Block 1 with 12 observations and mean of Y =      4.1717

Total SS =    136.2322; Residual SS =     25.9705

Regression model for block 1
                                              Student t(6) Prob.       Mean
Y          =    -3.40341-    0.09222*T            1.88     0.1087    34.5833
                        +    1.31606*S-Ne         1.16     0.2918     3.0083
                        +    0.33076*C            1.56     0.1698     6.8083
                        +    2.51569*P            0.68     0.5211     0.3362
                        +    2.96603*E            1.62     0.1565     1.2500

Block 2 with 12 observations and mean of Y =      4.6342

Total SS =     84.8193; Residual SS =     31.9668

Regression model for block 2
                                              Student t(6) Prob.       Mean
Y          =    11.89099-    0.03062*T            1.02     0.3460    36.0833
                        -    2.75907*S-Ne         2.84     0.0296     3.3300
                        -    0.08406*C            0.72     0.4972     7.6833
                        +    1.59889*P            0.57     0.5913     0.3179
                        +    2.72007*E            1.43     0.2037     1.1667

Regression model with parallel lines

Intercepts
a(1) =     4.65437
a(2) =     5.66757

Slopes
                                              Student t(17) Prob.       Mean
                        -    0.03212*T            1.11     0.2821    35.3333
                        -    0.91086*S-Ne         1.21     0.2419     3.1692
                        +    0.00565*C            0.05     0.9613     7.2458
                        +    1.84379*P            0.67     0.5128     0.3271
                        +    2.16799*E            1.37     0.1877     1.2083

Regression model with all blocks combined
                                              Student t(18) Prob.       Mean
Y          =     5.03436-    0.03407*T            1.19     0.2489    35.3333
                        -    0.77849*S-Ne         1.07     0.2994     3.1692
                        +    0.02143*C            0.19     0.8510     7.2458
                        +    1.44223*P            0.54     0.5990     0.3271
                        +    1.99667*E            1.29     0.2150     1.2083

Analysis of Variance Table

                                   SS         MSS   d.f.   F     Prob
Total                           222.33
a's unequal, b(i)=0              84.30       16.86   5   2.10   0.1159
a's equal, b(i)'s equal           5.70        5.70   1   0.71   0.4115
  Residual, b(i)'s equal        136.75        8.04  17
a's unequal, b(i)'s equal        78.81       15.76   5   3.26   0.0432
a's equal, b(i)'s unequal         2.13        2.13   1   0.44   0.5188
  Residual, b(i)'s unequal       57.94        4.83  12