EDelphl

M-A-G-A-Z-1-N"-E
Issue 1 April 1995

H ere is your sample on-line copy of the launch issue of The Delphi Magazine! We hope you
enjoy it and find it really useful in your Delphi development. The Delphi Magazine is
published 6 times a year; each copy comes with a free disk containing all the code from that
issue, plus shareware tools and libraries too. We airmail direct to readers in any country in the
world; local distributors are also in place in certain countries (call for details).

This on-line document is largely identical to the printed paper copy, except that the ads have
been taken out, there’s no snazzy cover and we’ve amended this contents page. Because there
are no adverts some pages are missing — we have taken out the blank pages but kept the
original page numbering from the paper version, to maintain continuity.

We hope that, having read this free issue, you will decide to subscribe to The Delphi Magazine;
the subscription form is on page 41. You can contact us as follows:

The Delphi Magazine, iTec, 41 Recreation Road
Shortlands, BROMLEY, Kent BR2 ODY, United Kingdom

Tel/Fax: 0181 460 0650 (International: +44 181 460 0650)
Email: 70630.717@compuserve.com

Ccontents

News 4
The Delphi Idiom by Steve Teixeira 8
Optimised Display Updating by Mike Scott 10
Under Construction: Build Your Own Components by Bob Swart 13
Moving Up: Borland Pascal by Dave Jewell 20
Introducing Client/Server by Sundar Rajan 24
Delphi Internals: Using And Writing DLLs by Dave Jewell 27
Book Review: ‘Inside Windows 95’ by Adrian King reviewed by Bob Swart 29
Using The Borland Visual Solutions Pack by Jeroen Pluimers 30
Animation Made Easy by Xavier Pacheco 33
The Delphi Clinic 35
Tips & Tricks 38
Review: The Chief’s Installer Pro reviewed by Bob Swart 40

How To Subscribe don’t miss this page! 41

Don’t forget the Subscription Form on Page 41!

elcome to the firstissue of

The Delphi Magazine.
We’ve sent you this first issue
completely free of charge so
you can see for yourself how
good it is and reach straight for
your credit card or cheque book
to subscribe! Our next issue will
be out in late May, then we
move into our regular bi-
monthly cycle: July, September,
etc, 6 issues a year in total (as
well as this free sample).

From Issue 2 onwards, each
magazine will come with a free
disk containing all the source
and other files from that issue,
plus shareware and public
domain libraries and tools. The
files from this issue will be on
the disk with Issue 2.

Welcome, too, to what is
surely a revolution in
Windows software develop-
ment — Delphi itself. I've been
using Delphi since summer of
lastyear and for me it is the most
exciting new software product
for 5 years or more.

OK, there are other ‘visual’
development environments out
there, but not linked to a
language with low-level grunt,
elegance and ease of learning,
with a world-beating true
compiler at its back. Personally,
I never thought | would enjoy
Windows programming in the
way | have enjoyed DOS
programming. With Delphi, it
truly is enjoyable.

ack to The Delphi Magazine.

What kind of publication is
it? Our aim is to provide solid,
practical, technical help to
Delphi developers — the people
at the sharp end! Quite simply,
we want to help you write
better Delphi applications more
quickly and more enjoyably.

So, in each issue you will find
in-depth articles on specific
topics — for example in this issue
Mike Scott shows how to do

From The Editor...

faster screen updates and Xavier
Pacheco tells us how easy sprite
animation is in Delphi.

There will be articles which
discuss technologies and new
developments, for example
Sundar Rajan’s introduction
to Client/Server, but always
with a practical rather than a
‘philosophical’ leaning!

We have regular columns: Bob
Swart’s Under Construction
leads us gently into the fascinat-
ing area of Delphi components,
and Dave Jewell’'s Delphi
Internals looks ‘under the hood’
of Delphi.

We’ve got The Delphi Clinic,
which provides the opportunity
for you to have your queries and
problems answered by our team
of contributors. In the Tips &
Tricks column you can share your
successes with us all! And of
course there’s product and book
reviews and news too.

We are very much aware that
readers will have come from
different programming back-
grounds: some will have been
long-time Borland Pascal affi-
cionados and have come
through the Beta tests, others
will have switched from another
language such as Visual Basic.

So, initially, we aim to provide
a mix of material for the begin-
ning and more experienced
developer. Over time, you will
find there may be fewer begin-
ner articles and more at an
intermediate or advanced level.

But, we’'d like very much to
hear from you about what you
want to see in the magazine. As
we get your feedback and your
support (by subscribing!), we
can make the magazine better
and bigger. If we are not getting
the mix right, tell us!

Enough of me, time for you to
settle down in acomfortable
chair and enjoy a good read...

Chris Frizelle, Editor

April 1995

The Delphi Magazine

News

Mobius Components

Mobius is a British company (well,
Scottish really!) which has several
sets of native Delphi Components
in development. We’ve seen demos
of them all and they are certainly
impressive. We will be reviewing
each product in detail just as soon
as we can (hopefully in the next
issue), but to give you a taster
here’s a rundown:

0O Mobius Business Builder

A suite of standard tables, forms,
reports and experts to use as build-
ing blocks in business applications.
The table classes have standard
business rules built into them, so
they all ‘know’ how to work with
each other and link automatically.
Included classes are customer,
sales & purchase orders, despatch
notes, sales and purchasing in-
voices, statements, job costings,
inventory, payments and depart-
ments/staff.

0O Mobius WinG Sprite Kit

Just about the easiest way to get
the incredible speed and power of
WinG graphics in your Windows
applications. Included are classes
for a WingG surface, WingG sprite
surface and sprites.

O Mobius Draw Kit

Provides a set of building blocks
for developing drawing and image
editing type applications with mini-
mal coding. Features include a
draw surface with undo/redo, file
handling, toolboxes, printing, etc.
A number of standard tools are
included such as line, freehand
pen, Bezier curve and so on.

By the time you read this, at least
one of these products should be
available in final release. Mobius is
also running an early experience
programme for those developers
who can’t wait to get their sticky
paws on them!

Contact Mobius Limited in the
UK at 10 Coates Gardens,
Edinburgh EH12 5LB, Tel:
+44 (0)131 467 3267. In the USA
contact Mobius Limited at PO Box
259, Hershey, PA 17033.

Don’t forget the Subscription Form on Page 41!

Borland Wins Lotus Suit

It looks like Borland has finally won
the ‘look and feel’ lawsuit brought
by Lotus over the Quattro and
Quattro Pro spreadsheets (now of
course owned by Novell). The US
Court of Appeals has reversed a
District Court ruling against
Borland.

All three judges held in favour of
Borland, concluding “Because we
hold that the Lotus menu
command hierarchy is
uncopyrightable subject matter,
we further hold that Borland did
not infringe the copyright by
copying it.”

Let’s hope that this sees the end
of these worthless lawsuits, which
make lawyers very rich and bring
no benefits to the software houses
concerned or their users.

InfoPower

Woll2Woll Software has an-
nounced version 1.0 of InfoPower:
a set of data-aware native Delphi
Components designed for those
developing database front-ends.
Included are a Super Database
Grid, Table Sort, Lookup Com-
bobox, Advanced Filtering, Incre-
mental Search, Auto-Expanding
Memo, and a Table Lookup/Locate
dialog.

The Super Database Grid can
include check boxes, comboboxes
etc, and allows multiple tables to
be displayed in the same grid. The
Lookup Combobox displays one or
more columns of data in a drop-
down listbox, with incremental
search to allow easy locating of
specific items. By using the
Advanced Filtering component,
you can limit the data displayed by
any Delphi data-aware component
to just what the user needs to see.

We look forward to bringing you
more information on InfoPower in
afuture issue. The bad news is that
InfoPower is not due to ship until
1st May. The good news, however,
is that Woll2Woll are doing an
introductory price of $149 ($50 off
the normal price). Contact
Woll2Woll by phone from inside
the USA on 1 800 WOL2WOL, or
from elsewhere on +1 408 293 9369,
or alternatively by email at
76207.2541@compuserve.com

April 1995

Delphi Developers’ Group
A number of Delphi ‘user groups’
have sprung up very quickly and
one which many of our readers will
be interested in is the British
Delphi Developers’ Group. It
provides a newsletter, regular
meetings in various locations, a
source for code libraries and tools,
technical assistance by email or
fax, a route for feedback to Bor-
land, seminars and conferences,
training and a developers list for
those seeking contract help etc.
Meetings are held every other
month and include an extended
afternoon workshop, during which
‘teasers’ or practical Delphi prob-
lems are set for the members to
resolve collectively. This is an
interesting way of learning more
about Delphi and stretching your
programming muscles! After a
refreshment break, in the evening
regular or guest speakers discuss
new developments, applications,

Delphi add-ons and utilities. The
inaugural meetings held during
March were very well attended and
seemed to be appreciated by all.

Membership costs £100 plus
VAT for one year. More details
from Joanna Pooley, Delphi
Developers’ Group, 8 High Street,
Upavon, Wiltshire SN9 6EA, United
Kingdom, Tel: +44 (0)1980 630032,
Fax: +44 (0)1980 630602, Email:
100016.355@compuserve.com

Do let us know details of any
Delphi user groups you are aware
of, anywhere in the world, so we
can include the information in
regular listings.

HighEdit Word Processing

From Heiler Software in Germany
comes the High Edit fully program-
mable word processor, available
either as aVBX or aDLL. It features
a true WYSIWYG display which
makes use of all available printer
and TrueType fonts, font attribute

Looking For Information?

One of the great things about Delphi is its ability to use VBX custom
controls (Version 1.0), as well as native Delphi components and DLL-
based controls. There are, however, a large number of companies who
market VBX and other controls and it can sometimes be difficult to get
hold of the right information from the right source — for example on
Delphi compatibility. There are two useful CompuServe fora which
have been set up for vendors of Windows components/controls:
COMPA and COMPB. Some of the companies involved are:

A&G Graphics (GO COMPA or GO SPEECH)

Aardvark Software, Inc. (GO COMPA or GO AARDVARK)

APEX Software Corporation (GO COMPA or GO APEX)

Avanti Software (GO COMPA or GO AVANTI)

Bennet Info Systems (GO COMPA or GO BTIS)

Crescent Software (GO COMPA or GO CRESCENT)

Desaware (GO COMPA or GO DESAWARE)

Foxhall Publishing (GO COMPA or GO VBZFORUM or GO FOXHALL)

ImageFX (GO COMPA or GO IMAGEFX)

London Software (GO COMPB)

Mabry Software (GO COMPA or GO MABRY)

Media Architects (GO COMPA or GO MEDARCH)

MicroHelp (GO COMPA or GO MICROHELP)

Sax Software (GO COMPA or GO SAXSOFT)

Sheridan Software Systems (GO COMPA or GO SHERIDAN)

Stylus Innovation (GO COMPA or GO STYLUS)

SuccessWare International (GO COMPB)

The Young Software Works (GO COMPB)

VideoSoft (GO COMPA or GO VIDEOSOFT)

Viewpoint Technologies (GO COMPB)

Teknowledge (GO COMPB)

VisualTools (GO COMPA or GO VISTOOLS)
Thanks to Robert Scoble of Fawcette Technical Publications for this
information.

The Delphi Magazine

Don’t forget the Subscription Form on Page 41!

control, full printing control,
margins, tabs, paragraph format-
ting, search and replace, clipboard
support, optional display of
control characters, multiple
document support, auto word-
wrap, import/export in native, RTF
or ASCII formats, graphics import
in EMF, PCX, TARGA, TIFF, GIF or
WMF formats, headers and footers
and more!

One other feature which looks
really useful is input fields, which
promise to make things like form
letters and mail-merge easier. Dear
Heiler, can we have a native Delphi
Component version please...?!

HighEdit is available in the
United Kingdom from Bits Per Sec-
ond at 14 Regent Hill, Brighton,
East Sussex BN1 3ED, Tel: +44
(0)1273 727119, Fax: +44 (0)1273
731925.

Delphi Communications

From TurboPower

As well as their Orpheus product,
containing lots of native Delphi
components (see the ad in this
issue — to be reviewed soon!),

TurboPower from Colorado, USA,
are working on Delphi components
for their acclaimed Async Profes-
sional for Windows communica-
tions library (APRO). When they
are ready, we understand the
Delphi components will be down-
loadable from CompuServe or the
TurboPower BBS for existing APRO
users (you’ll need APROto use
them). Fax supportis also dueto be
added soon.

We understand TurboPower are
also working on other exciting
Delphi projects and we’ll let you
know more just as soon as we can.
For details Tel: +1 719260 9136, Fax:
+1 719 260 7151, or email:
76004.2611@compuserve.com

Client/Server Load Testing
An important aspect of any devel-
opment cycle has to be software
testing, but how much does your
new baby get really stressed before
you ship it to the client?
Empower/CS from Performix is
designed to capture and replay the
activities of Client/Server applica-
tions running under Windows,

stressing a database server by run-
ning multiple scripts from one
driver to simulate the load of mul-
tiple PCs. In this way you can test
your application with an effective
load of hundreds or thousands of
users with just one machine.
Response times are measured and
logged for analysis. Sounds ideal
for thoroughly testing your new
Delphi C/S apps!

Contact Performix in the United
Kingdom at The Atrium Court,
Apex Plaza, Reading, Berkshire
RG1 1AX, Tel: +44 (0)1734 795016,
Fax: +44 (0)1734 795017, email:
sacha@performix.com. In the USA
Performic Inc are at: 8200 Greens-
boro Drive, Suite 1475, McLean,
Virginia 22102, Tel: +1 703 448 6606,
Fax: +1 703 893 1939.

Information Please!

If you have products or services
relevant to Delphi developers we
want to hear about them! Send
your information to us at the
address on page 42 (or by fax or
email), marked for the attention
of the Editor.

AFD postcode

From AFD Computers comes a neat DLL-based package which
all developers creating applications which capture addresses
in the United Kingdom will find useful.

These screenshots demonstrate the postcode DLL in use in
a simple Delphi example application. You just grab a Postcode
from an edit box, as shown in the top screenshot, then make
one call to the DLL, which returns the remainder of the address
as shown in the bottom screenshot, plus the STD telephone
area code as a bonus. All you then need to do isfill in the house
number in the Street field and you have a complete address
which the Royal Mail are guaranteed to like! In the example,
which took me a few minutes to knock up, the call to the DLL
is triggered by the user clicking the Get address button.

This tool is designed for developers’ use and what makes it
unique is the sensible pricing: between £75 and £15 per end-
user (ie your client’s users) for the software licence and an
annual licence fee for the Postcode data which depends on the
number of end users: for 1 user with no updates it’s £55, but
very good deals are available for site or company licences.
Competing products are usually very much more expensive
and out of the range of the small developer. The advantage for
your users is that they save time and hence money when
punching in address details.

Contact AFD Computers at 51 Meadowfoot Road, West
Kilbride KA23 9BU, United Kingdom, Tel: +44 (0)1294 823221,
Fax: +44 (0)1294 822905. An evaluation version (PCEVAL.EXE)
can be downloaded from the CompuServe MS BASIC forum or
from AFD’s bulletin board on +44 (0)1294 829327 (to 19200 bps).

April 1995

PostCode IB1 144 |

Street

Locality

Town

County

Postcode

STD code

AFD Postcode in Delphi [~]]

e

PostCode |B1 1AA |

Street

Locality I

Town
County |WestMidlands

Postcode I Bl 1aA

STD code |"121

AFD Postcode in Delphi (-]~

I Royal Mail Street

|
|
IBirmingham |
|
|
|

The Delphi Magazine

Don’t forget the Subscription Form on Page 41!

The Delphi Idiom

by Steve Teixeira

N owyou have Delphiinyour hot little hands you can understand what
the big deal has been about for the past several months! Delphi can
handle practically any application development task you throw at it —
and handle it faster and more elegantly than most any other tool. But
you probably already know that or you wouldn’t be here, right? I’'m here
to tell you what you need to know to be a Delphi programmer.

It’s Not Just For Prototyping
Like most products of its genre,
Delphi gives you a simple, produc-
tive point-and-click interface to
program creation. Unlike with
some products, though, your appli-
cation doesn’t have the silhouette
of a cow nor the speed of a sloth.
Delphi combines the advantages of
visual development with the
performance of a true compiler.

Borland didn’'t cook up the
Delphi compiler out of the blue,
though, it’s an improved version of
the compiler in Borland Pascal 7.
So, although Delphi is a new prod-
uct, it’s an evolution of one of the
oldest and most trusted PC compil-
ers.

The code generated when you
compile a program in Delphi is on
a par in terms of speed with that
generated by a C or C++ compiler.
In short, Delphi isn’t a prototyping
or “front-end” tool, butan all-round
tool. Using it only for prototyping
would be like buying a Ferrari and
never pulling it out of your drive!

It’s Pascal

If you’re new to Delphi, you should
find it easy moving up to Object
Pascal. It’s a sort of happy medium
of languages, so whether you pre-
fer the structure and verbosity of
Basic or the flexibility and power of
C++, you’ll soon feel at home.

One language feature that can
take some getting used to is Object
Pascal’'s strongly typed nature.
When you call a procedure, the
compiler will make sure that you
pass correct types, array sizes and
pointers. If you come from a C/C++
background, this will probably
annoy you at first, but I'll bet you
will soon appreciate the number of
bugs it prevents from entering

April 1995

your code. After all, wouldn’t the
ideal be to have the compiler find
all your bugs? Strict type-checking
is a step in that direction.

If you’re moving to Delphi from
Borland Pascal, nearly 100% of
your code will compile without
problem in Delphi. I've found the
best approach to porting an Object
Windows Library (OWL) applica-
tion to Delphi is to redo the User
Interface portions in Delphi’s IDE,
and hook the new Ul into your
application’s existing back-end.

Visual Component Library

Visual Component Library, or VCL,
is Delphi’s object-oriented frame-
work. In this rich library, you'll find
classes for Windows objects such
as windows, buttons, etc, and
you’ll also find classes for custom
controls such as gauge, timer and
multimedia player, along with non-
visual objects such as string lists,
database tables, and streams.

Each VCL class usually has a set
of properties — such as color, size,
position, caption - that can be
modified in the Delphi IDE or in
your code, and a collection of
events — such as a mouse click,
keypress, or componentactivation
— for which you can specify some
additional behavior. You'll spend
most of your time in the Delphi IDE
interacting with components’
properties and events.

VCL is also remarkably platform-
independent. VCL encapsulates
even low-level Windows concepts
such as Device Contexts, bitmaps,
and timers. Itis for this reason that
the code you write in 16-bit Delphi
will recompile with little or no
changes in 32-bit Delphi when it is
released. It’s best to keep with VCL
as much as possible to give your

The Delphi Magazine

code maximum portability. You’ll
be surprised how much you can do
without calling the Windows API.

Message Handling

Although VCL’s events account for
most of your needs, directly han-
dling Windows messages is a piece
of cake with Delphi’'s new message
keyword. Simply create a method
that takes one parameter of type
TMessage (Or other message re-
cord), and use the magic word.
Let’s say, for example, you want to
write a handler for the wm_Paint
message. The code would look like:

procedure WMPaint(
var M: TWMPaint);
message wm_Paint;

TWMPaint is a record type based on
a TMessage Whose fields are defined
specifically for awm_paint message.
Delphi defines a record type like
this for every Windows message.
The record type is always the same
as the message name with a “T” in
front and without the underscore.

Windows At Your Fingertips
Unlike some similar products,
Delphi offers you the flexibility to
easily call any Windows API proce-
dure. Actually, Delphi doesn’t just
support this feature, but it makes it
a trivial task: you just call the API
procedure as if it were a procedure
defined in your program.

Delphi also allows you to call
procedures out of any other DLL,
no matter what language it’'s
writtenin. Although Windows DLLs
generally use the Pascal calling
convention for parameter passing,
Delphi supports the C calling
convention too: just use cdecl on
your function declaration.

Exception Handling And
Runtime Type Information
You can handle error conditions in
your Delphi code using C++-like
Exception handling. Exception
handling enables you to gracefully

Don’t forget the Subscription Form on Page 41!

handle specific or general error
conditions by enclosing potentially
dangerous parts of your code in a
Try..Except OF Try..Finally block.
The general structure of an excep-
tion handling block looks like this:
try
{some stuff }
except
{if an exception occurs... }
on ESomeException do
Something;
{Handle the exception }
end;
Exceptions provide a significant
advantage over general error pro-
cedures in that protection can be
placed where it’'s needed in your
code. Instead of trying to handle a
whole variety of possible error
conditions in one place, you can
tailor Try blocks to your needs. It’s
also built into the Win32 API, so
you’ll need to get used to it!
Runtime Type Information
(RTTI) is the ability to obtain
information on class instances
while your program is running.
RTTI is perhaps the single most
important feature in Object Pascal.
In VCL, most classes are passed
between functions and procedures

April 1995

as the Tobject base class (from
which all classes are derived),
which satisfies the compiler’s type-
checking, and RTTI is used inside
functions and procedures to
determine the type of and typecast
these classes.

Client/Server

Delphi comes with the Borland
Database Engine, a high-perform-
ance database-access layer that
transparently connects you to dif-
ferent data sources: Paradox,
dBASE, ODBC, or servers like
Oracle, Interbase, Sybase, and
Informix. The buzzword here is
scaleability: you can start off with
Paradox or dBASE tables and then
transparently move to Oracle or
Sybase with very little change in
your application. Back-end inde-
pendence means productivity, and
it is the wave of the future.

Component Design

Delphi was written in Delphi.
Delphi components are written in
Delphi. That's not to say that
Delphi is xenophobic — Delphi also
allows you to use VBX controls and
other Windows custom controls.

The Delphi Magazine

Simply stated, Delphi does it all,
and because of that, you can do it
all. There’s no line between the ap-
plication developer and the com-
ponent writer. All components are
extensible Object Pascal classes,
SO you can crank out a custom
component any time you need to.

Power
Because Delphi is a true compiler,
you have no limits. Need to write a
DLL? No problem, it's hardly any
different to writing a regular unit.
Callback functions? Not a problem
either. Just tag that procedure with
the export directive and you’re on
your way. How about inline assem-
bly language? Sure, Delphi’s Built-
in Assembler makes it a snap.
Whether you want to write appli-
cations, controls, or database
front-ends, Delphi is your tool. Now
that you know the score, what are
you waiting for? Go forth and hack.

Steve Teixeirais a Senior Technical
Support Engineer for Delphi at
Borland International. He can be
reached via the internet at
steixeira@wpo.borland.com or via
CompuServe at 74431,263

Don’t forget the Subscription Form on Page 41!

Optimising Display Updating

by Mike Scott

With its optimising compiler
and efficient VCL class
library, Delphi produces applica-
tions that run much faster than
those from interpreted products
such as Visual Basic. However, the
methodology employed in VCL for
screen updates has been simplified
to ease programming. The down-
side is that it can be inefficient
under certain circumstances.

In this article | will introduce you
to two techniques to optimise
screen updates which require only
a few simple additions to your
painting code. To illustrate this |
have a written a sample applica-
tion, FASTDRAW, whichis included
on the free disk you’ll receive with
Issue 2. Asabonus, | have also used
code that illustrates the use of
Windows complex regions for
painting, exception handling to
protect allocations of Windows
resources and how to copy areas
directly from and to the screen.

So to begin with, let’s go back to
first principles. When a window is
created, or revealed by moving
another window, for example, the
parts which were previously
obscured and have now been made
visible need to be painted. We call
these areas invalid regions.

Windows maintains a list of
invalid regions and respondsto the
need for updates by sending mes-
sages to the appropriate windows
to tell them to repaint themselves.
In Delphi applications, the VCL
receives this message for you and
calls the paint method of your com-
ponent or form. If you have
installed an onPaint handler this is
called too.

However, Windows supplies
extra information to help you opti-
mise the update but VCL does not
pass this on to the Paint method or
handler. Itis non-essential informa-
tion, your windows will look fine
withoutit. The problem is that they
may repaint much slower than
necessary because in many cases
only part of the window needs

April 1995

repainting. But because VCL
doesn’t tell you which part, you
just have to code your paint
method to paint everything. What
you need is that extra information.

Fortunately, the Windows API is
fairly helpful in this respect. There
is a simple function which you can
call to get a TrRect that completely
surrounds theinvalid region. Then,
all you need to do is check which
parts of your form or component
intersect that area and paint those.
It may sound complicated but it’s
not. It’s time to look at the sample.

Ellipses, Ellipses, Everywhere
The sample program simply
creates a random pattern of ellip-
ses of different colours spread out
to cover an 800 by 600 pixel form.
However, when the form first
appears it is considerably smaller
than this. The form has a toolbar
with a checkbox that switches
optimised painting on and off.
When it’'s off, the paint method
blindly paints every ellipse
whether it needs to or not. When
the form is in its initial size, for
example, only about a quarter of
the total number ellipses are
visible, but it tries to draw all of
them anyway. Of course, Windows
makes sure that the ellipses
outside the window don’t appear,
but it still does all the calculations,
which wastes a lot of time. For a
comparison see Figures 1 and 2.

| have defined a TElIlipse class,
shown in Listing 1. Notice the Rect
field. It’'s a good idea to add a rect
to classes that you are going to
display so that you can quickly
determine if they need to be drawn.
TEllipse’s Paint method simply
sets the line and fill colours and
calls Tcanvas.Ellipse.

Now let’s look at the paint -han-
dlers for the form. | "ve written two
of these, one “dumb” and the other
“smart”. When you change the op-
timised checkbox, the appropriate
handler is assigned to the form’s
OnPaint property. The “dumb”

The Delphi Magazine

paint method simply iterates
through the list of ellipses and calls
their paint methods as declared
above. The loop looks like this:

for i := 0 to
Ellipses.Count - 1 do
TENlipse(
Ellipses[i])-Paint(Canvas);

When you check optimised, the
other, “smart”, onPaint handler is
assigned. This has additional code
to optimise painting. It does this by
calling the Windows procedure
GetClipBox which gets the TRect
that encloses the invalid region.
Then it iterates through the ellip-
ses as before but uses the
IntersectRect function to check if
any part of each ellipse intersects
the invalid rect to see if it needs to
call TEllipse.Paint:

GetClipBox(Canvas_.Handle,
ClipRect);
for i := 0 to
Ellipses.Count - 1 do
with TEIlipse(Ellipses[i]) do
iT IntersectRect(ARect,
Rect, ClipRect) <> 0 then
Paint(Canvas);

When you get your disk, try
running the sample. Press the
‘Repaint all’ button with and
without optimised drawing and
note the difference in the times
displayed on the toolbar. On my
system | get a twelve-fold increase
in speed! Interestingly, the time to

Listing 1
type

TEIlipse = class(TObject)
protected

LineColor : TColor;

FillColor : TColor;
public

Rect : TRect;

constructor Create(
const ARect : TRect;
ALineColor : TColor;
AFillIColor : TColor);
procedure Paint(ACanvas :
TCanvas); virtual;
end;

10

Don’t forget the Subscription Form on Page 41!

Figure 1

[" Optimised
Repainting all the 0.72 secs
ellipses without

optimisation emE——

FastDraw Delphi Optimised Paint Demo

A

Repaint the whole form

‘ Ellipses...

| Repaint one

Figure 2

¥ Optimised
0.15% secs

Now notice the

difference in
repaint time with
optimisation!

The comparison
when only one
ellipse is repainted
(Repaint one) is even
more staggering.

repaint the form using the dumb
technique is substantially longer
when it is not maximised because
of the extra calculations which
Windows performs to clip each
ellipse to the visible region. In
contrast, the optimised method
takes less time as the form is
reduced in size.

If you maximise the running
form, there is virtually no speed
difference between dumb and
smart redraws because all the ellip-
ses have to be drawn in both cases
anyway. The good news is that the
additional code that is executed in
the optimised case is so fast that
you shouldn’t notice any increase
in the time recorded.

If you press the ‘Ellipses..
button you can change the number
of ellipses on the form. You will
really notice the difference with a
large number, say 500 or more.
Also, you should try moving the
‘Ellipses...’ dialog around and
noting how long it takes to repaint
the revealed area.

You may notice that there is no
repaint if you simply close the
dialog without moving it. In this

April 1995

case, Windows has decided to take
a copy of the background and
replace itwhen the dialog is closed.
Moving it forces a repaint and
Windows discards the noted area.

Reducing Flicker

VCL has another simplification
that can cause another type of
annoyance — flicker.

Windows provides a function to
invalidate an area of a window to
force a paint message to be sent.
VCL, however, supplies an invali-
date method but this invalidates all
of the component or form and tells
Windows to erase the background
before painting. This erase and
then paint causes excessive flicker.
A much better way is to erase only
the rect that you want to redraw.

The ellipse sample program has
an example of this. When you press
the ‘Invalidate one’ button, a single
ellipse is chosen at random and
invalidated. This causes Windows
to send a paint message and the
optimised handler only updates
the rect for that ellipse. So if you
only need to update a part of your
component or form, instead of

The Delphi Magazine

calling its Invalidate method, call
the Windows API InvalidateRect
function instead. Here is the
sample code that does this:

var InvalidRect : TRect;
begin
InvalidRect :=
TEINlipse(
TempList[Random(

TempList.Count)])-Rect;
InvalidateRect(Handle,
@InvalidRect, true);

It’s not necessary to copy Rect into
Invalidrect but | did so for clarity.
Inval idateRect takes three parame-
ters: the first is a window handle
which you can get from the form or
component’s Handle property. The
second is a pointer to a TRect, SO
remember to prefix it the ‘@ or
you’ll get ‘Error 26: type mismatch’
when you try to compile. The last
parameter is a boolean that tells
Windows whether to erase the
background or not. You should
generally set this to true. Setting it
to false can produce some unusual
effects and is not recommended
until you know what you’re doing!

Regions
As | said at the start, I'll give you a
bonus by including some region
handling code. You might notice
that | draw a thick frame around
the ellipse when you click the
‘Invalidate one’ button to attract
your attention to the area being
drawn. The code inverts the frame
and then inverts it again when the
drawing is finished which restores
the screen to its original state,
preventing the need for invalida-
tion and repainting.

| achieve this by using a region.
This is an area which can be any
shape and can include holes and
gaps. There are a number of
Windows API functions which you
use to create a complex region by
different combinations of simpler
regions. To create the frame effect,
first | create a TrRect that is the size
of the outside edge of the frame
and use CreateRectRgn tO create a
region from this. | do the same for
the inner edge and | have two
rectangular regions, one defining

11

Don’t forget the Subscription Form on Page 41!

the outer edge of the frame and the
other defining the ‘hole’ in the mid-
dle. | then use the combineRrgn func-
tion with the RGN_DIFF operator
which gives me a region which is
the difference of the two. This
effectively removes the ‘hole.’ I can
then invert the region using the
InvertRgn function. The code is in
Listing 2.

Note the use of try blocks to
protect the allocation of the region
resources which Windows will not
free automatically, even after the
program quits. If you’re not careful
when writing Windows code you
can end up with severe resource
leakage. A good habit to get into is
to automatically type a try state-
ment on the line following any allo-
cation or operation which you
have to undo or tidy up later. | then
oftentype inthe finally. . _end with
the cleanup code before | even put
in the rest of the lines. That way |
am sure it won’t be forgotten and
it's easier to follow the indentation!

| use try...Ffinally to deallocate
the two source regions because

Listing 2

function
CreateFrameRegion(const ARect :
TRect) : HRgn;
var Regionl, Region2 : HRgn;
begin
{ creates a “frame” area using
regions as an illustration -
also illustrates protecting
code with try blocks }
with ARect do begin
Regionl :=
CreateRectRgn(Left - 6,
Top - 6, Right + 6,
Bottom + 6);
try
Region2 :=
CreateRectRgn(Left, Top,
Right, Bottom);
try
Result := CreateRectRgn(
0, 0, 0, 0);
try
{ remove region 2 from
region 1 and delete
the source regions }
CombineRgn(Result,
Regionl, Region2,
RGN_DIFF);
except
DeleteObject(Result);
Raise;
end;
finally
DeleteObject(Region2);
end;
finally
DeleteObject(Regionl);
end;
end;
end;

April 1995

they must always be freed whether
there is an exception or not. | use
the try...except block to free up
Result only when there is an excep-
tion. In most cases you should call
Raise at the end of your try...
except block to pass the exception
back up the stack. On the other
hand, you don’t call Raise in a
finally block because the appro-
priate processing continues
anyway. Region functions gener-
ally make a copy of any region
passed as a parameter so remem-
ber to free up the source regions as
| have done in the example.

One very powerful use of regions
is to control the clipping area when
painting. Windows allows you to
specify your own region where
painting will be allowed. In the
above example, | could have
selected the region as the clipping
region and then inverted the whole
form with:

InvertRect(Canvas.Handle,

Rect(0, 0, Width, Height))
instead of using InvertrRgn. The
result would have been the same
because Windows would limit the
invert, or any other drawing opera-
tion, to the area defined by the
frame region. This is a very power-
ful technique which you can use to
fill or paint complex shapes.

Direct From

The Screen And Back...

You may have noticed that |
overlay a rectangular red box
containing some text along with

Listing 3

var ABitmap :
begin

TBitmap;

ABitmap := TBitmap.Create;
try
ABitmap.Width :=
DestRect.Right;
ABitmap.Height :=
DestRect .Bottom;
{ grab the pixels from
the form’s canvas }
ABitmap.Canvas .CopyRect(
DestRect, Canvas,
SourceRect);
{ ... do whatever you need
todo ... }
{ & copy pixels back again}
Canvas .CopyRect(SourceRect,
ABitmap.Canvas, DestRect);
finally
ABitmap.Free;
end;

The Delphi Magazine

the inverted frame when the ‘Invert
one’ button is pressed. When the
frame is removed, so also is the
text box but there is no time-
consuming paint. | achieve this by
creating a temporary memory
bitmap the size of the box and
using its canvas to copy the area
straight off the screen. To remove
the box, all I need to do is copy the
area back when I'm finished.

Performing this update trick is
actually very simple. You use the
canvas CopyRect method which
does all the work. All you need to
do is create a bitmap, set its width
and height and use this method to
grab the pixels from the screen.
Whenyou’re done you use CopyRect
in the reverse direction to put the
pixels back again and then just free
the bitmap. Simple! The code is in
Listing 3.

DestRect iS a TRect that defines
the area on the form on the screen.
In this case the other canvas used
in copyRect is that of the form, but
it could be any other canvas. Again,
| use try...finally to make sure
ABitmap gets freed at the end.

You can use a similar technique
to completely banish flicker alto-
gether. Instead of painting straight
onto the form’s canvas, you create
a bitmap just like the above code
fragment, set the width and height
to the width and height of the area
you’re updating on the form, paint
to the bitmap’s canvas and then
use copyRect to blast the result
straight on to the screen with no
trace of flicker at all. Because you
are not going across a bus to the
screen card with every drawing
operation, this technique is often
faster than the usual method of
writing direct to the form’s canvas.
Space does not allow a proper
example or full details. That is the
topic for another article...!

Mike Scott is a Director of Mobius
Software which specialises in
Delphi VCL component tool kits
and applications and is based in
Edinburgh, Scotland. He can be
contacted via CompuServe at
100140,2420 (on the internet it’s
100140.2420@compuserve.com), or
telephone +44 (0)131-467 3267

12

Don’t forget the Subscription Form on Page 41!

Under Construction:
Build Your Own Components

by Bob Swart

hile Delphi is a great tool for Client/Server and Rapid Application
Building, I think the most important feature of Delphi is the ability
to write components and add them to the component palette of the
environment itself. | strongly believe that a Delphi Component is The
Object of the ’90s. In fact, | believe so strongly in Delphi Components,
I've asked the Editor to let me devote a regular column to Component

Building: Under Construction!

In this column, I will show you how to create new visual (interface)
and non-visual (engine) components for Delphi. The complete source
code of all components will always be available on the accompanying
disk of The Delphi Magazine (available when you subscribe!).

Examples for components that
will be built in the coming months
include a Date component, a small
Agenda Component, a right-aligned
Edit control, Spin buttons, a
Tic-Tac-Toe game and a file
UUEncode/UUDecode component.
This time, we mainly focus on
non-visual components to get a
good grasp on the underlying
component class architecture.

OOP
Object Oriented Programming is
based on (and extends) estab-
lished ideas of Structured
Programming, and involve three
basic principles: encapsulation,
inheritance and polymorphism.
Encapsulation is the concept of
placing data and routines that
operate on that data together and
combining them to create a
structure (object) that contains
both. Inheritance is the concept of
deriving new objects from existing
objects. This is the main feature
that leads to re-use of existing
code. Finally, polymorphism is the
concept that causes different types
of objects derived from the same
parent object to be able to behave
differently when instructed to per-
form a method with the same name
but a different implementation.
Although OOP has always been
related to claims of code re-use and
faster development cycles, in
practice this has proved more

April 1995

often false than not. Two main
problems with OOP code-reuse are
determining and finding which ob-
ject(s) to use for a particular prob-
lem, and organising these objects
in ausable and accessible architec-
ture. Delphi solves these problems
by placing the re-usable objects or
components in a structured
Component Palette, where compo-
nents can be logically grouped
together by type. Furthermore,
with Delphi we are able to develop
components and applications in
the same environment.

Throughout this first column,
we’ll see that Delphi Components
truly support OOP and component
re-use!

Component Building
Delphi and Delphi Components are
built upon the Visual Component
Library (VCL) application frame-
work. VCL is already a very rich
framework, which becomes clear if
we take a look at Delphi’s Compo-
nent Palette: dozens of standard
Windows controls like edit boxes,
static lines, combo and list boxes,
but also several advanced custom
controls like grid controls, tab
controls, notebook controlsand an
outliner. The list goes on and on,
and will go on and on, since Delphi
includes the ability to include new
components in the Palette!
Creating a new component
requires writing a .PAS unit file

The Delphi Magazine

containing the source code of the
component, which will be com-
piledtoa.DCU file. Additionally, we
could include a .DCR palette
bitmap (a renamed .RES file with a
28x28 bitmap with the same name
as the component, to appear in the
component palette), a .HLP help
file and a .KWF keyword file. For
now, however, we will concentrate
on the .PAS source file.

Before we can start writing a
component ourselves, we have to
identify the relevant classes from
VCL. The following class hierarchy
shows the most important seven
classes for this task:

TObject
TPersistent
TComponent
TControl
TGraphicControl
TWinControl
TCustomControl

VCL is no longer based on the old
object model of Borland Pascal,
where Virtual Method Tables
(VMTs) are stored in the Data
Segment. Instead, VCL is based on
a new class model (with the
emphasis on class).

In this new model, all object in-
stances are automagically dynami-
cally allocated on the heap.
Automagically, because Delphi
now assumes that each class we
reference is in fact a pointer to that
class. It is no longer necessary to
explicitly declare a pointer type or
to use the dereference symbol (*).
This greatly reduces the syntax
complexity of ObjectPascal.

Every class in VCL is derived
from the Tobject root. The class
TObject contains the Create and
Destroy methods that are needed
to create and destroy instances of
classes. The class TPersistent,
derived from Tobject, contains

13

Don’t forget the Subscription Form on Page 41!

methods for reading and writing
properties to and from a form file.

TComponent is the class to derive
all components from, as it contains
the methods and properties that
allow Delphi to use TComponents as
design elements, view their proper-
ties with the Object Inspector and
place these components in the
Component Palette. If we want to
create a new non-visual compo-
nent from scratch, then TComponent
is the class we need to derive from.

Visual component classes are
derived from the Tcontrol class,
that already contains the basic
functionality for visual design com-
ponents, like position, visibility,
font and caption. Derived from
TControl are TGraphicControl and
TWinControl. The difference
between a TGraphicControl and a
TwinControl is the fact that a
TwinControl contains an actual
Window Handle, while a
TGraphicControl does not. There-
fore, derived from a TwinControl we
will find classes like the standard
Windows controls, while controls
like TBevel, TImage, TSpeedButton
and Tshape are derived from
TGraphicControl. Finally, the class
TCustomControl is much like both
TWwinControl and TGraphicControl
together.

In this first column we will
primarily focus on non-visual
components, derived from the
TComponent base class.

Properties,

Methods And Events
Components consist of encapsu-
lated properties, methods and
events. Properties are slots that
give the component user the
illusion of reading or writing the
value of a variable in the compo-
nent, while the component writer
can use properties to hide the
implementation details.

In a sense, properties are the
user interface to a component.
Methods are procedures and
functions that are encapsulated
with properties in a component.
Events are like reactions (event
handlers) to messages (events)
that occur during execution of the
component. Examples of events
are onClick and oOnEnter events.

April 1995

Both methods and events can be
made dynamic, which gives us the
polymorphic ability of component
classes.

Properties have to be read and
written, and hence contain a read
(Get) and (optional) write (Set)
method. The cet method is a func-
tion that returns the property
value, while the set method is a
procedure that takes as parameter
the new property value. The set
property method makes a great
place to include some data
validation rules. An example of a
property pay declaration is:

private
FDay: Word;
protected
function GetDay: Word;
procedure SetDay(
NewDay: Word);
published
property Day: Word
read GetDay write SetDay;

Where GetDay and SetDay are prop-
erty methods that have to be imple-
mented in the implementation
section of the unit.

The new keyword private leaves
the internal field Fbay only visible
to the current instances of the
same class. The keyword protected
ensures us that only classes
derived from the current class can
call or override the property meth-
ods GetDay and SetDay. The new
keyword published tells Delphi that
the property pay should be visible
in the Object Inspector.

First Example

Enough talk for now, let’s start with
a simple non-visual component
derived from TComponent that
encapsulates the current system
date.

This component will consist of
three properties: Day, Month and
vear, which will be read-only, since
we wouldn’t want to change the
system date this way.

Note that each component can
be placed in its own unit (which |
think is a good convention), so we
get component Datel, as shown in

Listing 1.
As we can see, we have a lot of
new things here. The class

The Delphi Magazine

TComponent from which we derive
our Tbatel from must be obtained
from the unit classes, hence the
uses Classes Statement. | used
three internal fields to hold the
values of the three properties Day,
Month and Year. The naming
convention is to give property field
names a prefix “F’ (hence Fpay,
FMonth and FYear).

| supply the three properties
with only read methods, which are
in fact the internal fields them-
selves. In general, if the read or
write method is just a reference to
an internal field itself, it's much
faster to access the field (in this
case FDay, FMonth Or FYear) itself,
rather than to call a method that
returns this internal field.

The initialisation of the Tpate1
componentis doneinthe construc-
tor create. | used the sysutils
global variable bate (SysUtils.Date,
so | also need to use the sysutils
unit) to initialise Fyear, FMonth and
Fbay with the current system date.

Finally, in order to add this little
component to the Delphi’s Compo-
nent Palette, we have to play by the
rules and register ourselves with

Listing 1

unit Datel;
interface
uses Classes, SysUtils;

Type
TDatel = class(TComponent)
private
FDay: Word;
FMonth: Word;
FYear: Word;
published
property Day: Word
read FDay;
property Month: Word
read FMonth;
property Year: Word
read FYear;
public
constructor Create(AOwner:
TComponent); override;
end {TDatel};
procedure Register;

implementation

Constructor TDatel.Create(
AOwner: TComponent);
begin
inherited Create(AOwner);
DecodeDate(SysUti Is.Date,
FYear,FMonth,FDay) ;
end {Create};
procedure Register;
begin
RegisterComponents(’Dr.Bob”,
[TDatel])
end {Register};

end.

15

Don’t forget the Subscription Form on Page 41!

Delphi using the procedure
Register, which is used by Delphi
to determine if a component is
present in a unit. If a Register
procedure is found, Delphi expects
it to register all components that
exist in the wunit, by calling
RegisterComponents, with the name
of the Component Palette (Dr.Bob
in this case) as the first argument
and as the second argument a list
of the component types that are
included in this unit (Tpate1).

Second Example

If we install the component Tpate1
in the Component Palette (using
Options|Install), and drop it on a
new form, we don’t see the proper-
ties Day, Month or Year in the
Object Inspector. Why is that?

It seems that only read/write
properties are used in the Object
Inspector — after all, if we can’t
change the value of a property,
what use would displayingits value
have? | disagree, and | would like to
find a way to view read-only
properties as well!

Of course, | could use a Setbay
method that does nothing, but it
seems an awful overhead to use
this just to view the property in the
Object Inspector.

Another quick-and-dirty way to
show the property is to define a
‘dummy’ field with the same type
as the property pay and assign this
dummy to the write property. We
can even re-use this dummy field
for Month and vear (as they are all of
the same type).

With the addition of a new
enumerated property called
DayOfweek, with values a set of
Sunday . .Saturday, this yields the
code for component pate2 shown
in Listing 2.

If we compile and install this
component in the Component
Palette and try to view the proper-
ties with the Object Inspector
they're visible!

At first, it seems we can actually
change the values of Day, Month,
Year and DayOfweek, but as soon as
we leave the field in the Object
Inspector, the old value pops back.
Note that bummy itself is not publish-
ed and hence not visible in the
Object Inspector.

April 1995

Third Example

As small and elegant as it seems, a
read-only Tbate component that
only contains the current date is
not very useful. It's time to make it
a read/write component.

If we do this, we face the problem
of updates on one property that
may have impact on other proper-
ties as well. What if we change the
Day property value? Surely, the
Dayofweek will change, too. The
same with Month Or Year.

Therefore, we keep Dayofweek as
a read-only property, and re-
calculate the values of bay, Month,
Year and DayOfweek immediately
after receiving a new value of either
Day, Month OF Year. Furthermore, the
current date is stored in aninternal
(private, hence invisible) field
called FinternalDate. The compo-
nent bate3 is shown in Listing 3.

Now, if we check out the compo-
nentin the Object Inspector we can
change the values of bay, Month and
Year while the value of bayofweek is
immediately updated along the
way, as shown in Figure 1.

The component Tbate3 is small,
but illustrates that even small

components can still be very
powerful.

It isn't over, however. In fact,
component building is only limited
by your own imagination. What
else would we need? | would like a

Figure 1
TDate3 Properties

||.|ﬁh‘
Walentine: TDate3 |E

Listing 2

unit Date2;

interface

uses Classes, SysUtils;
Type

TDayOfWeek = (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);
TDate2 = class(TComponent)

private

FDay: Word;

FMonth: Word;

FYear: Word;

FDayOfWeek: TDayOfWeek;
private

DummyWord: Word;

DummyTDayOfWeek : TDayOfWeek;
published

property Day: Word read FDay write DummyWord;

property Month: Word read FMonth write DummyWord;

property Year: Word read FYear write DummyWord;

property DayOfWeek: TDayOfWeek read FDayOfWeek write DummyTDayOfWeek;

public

constructor Create(AOwner: TComponent); override;

end {TDate2};
procedure Register;
implementation

Constructor TDate2.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

DecodeDate(SysUti ls.Date, FYear,FMonth,FDay);
FDayOfWeek := TDayOfWeek(Pred(SysUtils.DayOfWeek(SysUtils.Date)));

end {Create};
procedure Register;
begin

RegisterComponents(’Dr.Bob”, [TDate2])

end {Register};
end.

The Delphi Magazine

16

Don’t forget the Subscription Form on Page 41!

property that gives me the date as
a string, in the DD/MM format. But
perhaps other people would like to
get the pateString in YY/MM/DD or
MM/DD/CCYY format. This could
be implemented by introducing
two new properties: the read-only
Datestring (but visible in the
Object Inspector, hence with a

bummyString field as well) and the
read/write property DateFormat
that contains examples like
DD/MM, MM/DD, DD/MM/YY and
so on. Depending on the value of
DateFormat, the property
DateString would use the pay, Month
and vear properties to generate the
correct value.

Listing 3

unit Date3;

interface
uses SysUtils, Classes;

Type

TDayOfWeek = (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);
TDate3 = class(TComponent)
private
FInternalDate: TDateTime;
FDay : Word ;
FMonth: Word;
FYear: Word;
protected

procedure SetDay(NewDay: Word);
procedure SetMonth(NewMonth: Word);
procedure SetYear(NewYear: Word);
function GetDayOfWeek: TDayOfWeek;

private
DummyTDayOfWeek: TDayOfWeek;

published
property Day:

Word read FDay

write SetDay;

property Month: Word read FMonth write SetMonth;
property Year: Word read FYear write SetYear;
property DayOfWeek: TDayOfWeek read GetDayOfWeek

wr ite DummyTDayOfWeek;
public

constructor Create(AOwner: TComponent); override;

end {TDate3};
procedure Register;

implementation

Constructor TDate3.Create(AOwner: TComponent);

begin
inherited Create(AOwner);
FiInternalDate := SysUtils.Date;

DecodeDate (SysUtils.Date,FYear ,FMonth, FDay) ;

end {Create};

procedure TDate3.SetDay(NewDay: Word);

begin

if (NewDay in [1..31]) then begin

{ Ok, so we could use some more date checking here. Volunteers? }

FDay := NewDay;

FiInternalDate := EncodeDate(FYear,FMonth,FDay);

end;
end {SetDay};

procedure TDate3.SetMonth(NewMonth: Word);

begin

if (NewMonth in [1..12]) then begin

FMonth := NewMonth;

FInternalDate := EncodeDate(FYear,FMonth,FDay);

end;
end {SetMonth};

procedure TDate3.SetYear (NewYear: Word);

begin
FYear := NewYear;

FiInternalDate := EncodeDate(FYear,FMonth,FDay) ;

end {SetYear};

function TDate3.GetDayOfWeek: TDayOfWeek;

begin

GetDayOfWeek := TDayOfWeek(Pred(SysuUti Is.DayOfWeek(FInternalDate)));

end {GetDayOfWeek} ;

procedure Register;
begin

RegisterComponents(’Dr .Bob”, [TDate3])

end {Register};
end.

April 1995

The Delphi Magazine

This component is not included
here, nor is it on the code disk. |
have included the bateString prop-
erty in the bate component on the
disk, but I invite you to experiment
yourself with the pate and other
components. Once you’ve started,
you’ll see that the sky is the limit!

A Real Example

Enough about dates, let's talk
about another (real world!) non-
visual example. A great way to use
non-visual components is as
converters.

Has anyone read the old book on
The C Programming Language by
K&R? (Personally, | expect a lot of
C/C++ programmers to move over
to Delphi). Remember the Fahren-
heit-to-Celsius conversion pro-
grams on page 8 of this book? This
functionality can be putin a Delphi
component very easily!

Imagine a converter component
that holds a value. You have three
(or more) properties with which to
access that value: Decimal (most
useful), Hexadecimal and Roman.

The crux is that these properties
are in fact all the same, as they all
correspond to the internal state of
the component itself. If | do a
SetDecimal Of 42, the GetHex will
automatically return 002A, as will
the GetRoman return XLII. Setting the
Roman property to VIl will likewise
yield a Decimal (and Hex) value
of 7. Instant conversions!

You never have to write them
again, and you also don’t have to
look for them, as they are always
right here on your Component
Palette, just a mouse-click away!
The code is in Listing 4.

Because the properties are all
read/write, we can test the compo-
nent using the Object Inspector
(another reason why we would
want read-only properties to be
visible in the Object Inspector:
easier testing). Setting one
property automatically updates
the other properties (see Figure 2).

One more thing about this
component. Statistically, a cet
property method will be called
more often than a set property
method (or at least | think so). This
means that the cet methods are the
first to optimise when we have a

17

Don’t forget the Subscription Form on Page 41!

component with one internal state
and several properties that return
a translation of that state.
Therefore, I've written the
procedure SetRoman using BASM
(Built-in ASseMbler) and the
GetRoman in plain ObjectPascal. Just
a minor detail, but it might be a
consideration whenever you're
planning on expanding this
component or write other state
conversion components yourself.

What’s On Your Agenda?

So, we have just built two non-
visual components: a nice Tpate
and a handy Tconvert component.
What can we do with them? Well,
we could use them to write a third
component, this time a visual one.

Derived from TMemo, a standard
VCL class, | created TAgenda. TMemo
is just a big visual edit field with
optional word wrapping and
scrollbars. The lines of a Tvemo (and
hence also our derived TAgenda)
can be easily accessed by the Lines
property, which is a component
itself. The Lines component has
two important methods: Clear to
clear all lines, and Add which takes
a string argument, and just adds a
line to the collection of lines.

The TAgenda component modifies
the TMemo component by setting the
property scrollBars to ssvertical,
meaning we always want to have a
vertical scrollbar.

Other than that, we only include
an instance of Tpbate (with the

Listing 4

unit Convert;

interface
uses SysUtils, Classes;
Type
TConvert = class(TComponent)
private
FValue: Word;
protected
function GetHex: String;
function GetRoman: String;

procedure SetHex(Const Value: String);
procedure SetRoman(Const Rom: String);

published

property Decimal: Word read FValue write FValue;

property Hex:

String read GetHex write SetHex;

property Roman: String read GetRoman write SetRoman;

public

constructor Create(AOwner: TComponent); override;

end {TConvert};
procedure Register;

implementation

constructor TConvert.Create(AOwner: TComponent);

begin
inherited Create(AOwner);
Fvalue := 0;

end {Create};

function TConvert.GetHex: String;

Const Digits: Array[0..$F] of Char = ”0123456789ABCDEF”;

begin
GetHex[0] := #4;
GetHex[1] := Digits[Hi(Fvalue) SHR 4];
GetHex[2] := Digits[Hi(FvValue) AND $F];
GetHex[3] := Digits[Lo(Fvalue) SHR 4];
GetHex[4] := Digits[Lo(FValue) AND $F];

end {GetHex};

procedure TConvert.SetHex(Const Value: String);

var code: Integer;
begin
if (value[l] <> °$”) then
Val (" $+Value,Fvalue, code)
else
Val(Value,Fvalue, code)
end {SetHex};

{ see the Issue 2 disk for source of GetRoman and SetRoman

-- too long to include here }

procedure Register;
begin

RegisterComponents(’Dr.Bob”, [TConvert])

end {Register};
end.

April 1995

The Delphi Magazine

current date) and a string field
called Agenda. This last field can be
assigned a filename, of which parts
will be shown in the memo field. An
Agenda file for TAgenda consists of
lines with the following format (the
DD/MM field starts in column 1):

DD/MM This meeting is important
DD/MM Another thing to do

Only lines where the DD/MM part
equals the current date (that is
where the DD/MM equals the
TDate.DateString property) are dis-
played. The resultis a little agenda
that shows all your appointments
for today! The code is in Listing 5.

As you see, the TAgenda compo-
nent can be activated at design
time if we give the property Agenda
a valid value (ie a filename that
exists). The TAgenda memo field will
contain the current date (note the
year in Roman digits) and all lines
from the Agenda file that have the
current date at position 1. Since not
all people will use MM/DD, this is
precisely the reason why you may
want to enhance the Tpate
component we designed earlier. To
see the TAgenda component in
action, just take alook at the screen
shot on the cover!

Figure 2
TConvert Properties

Convert]: TCormwert

18

Don’t forget the Subscription Form on Page 41!

Next Time

The second Under Construction
article will be about components
encapsulating a DLL (even if you
have no source code), putting
more Windows controls than just
one in a new visual component (in
other words not just deriving a

component from an existing com-
ponent like our TAgenda), and how
to make little games with Delphi, all
resulting in a Tic-Tac-Toe game
component.

Also next time, we’ll learn how to
create .DCR files with our new
components, so we no longer have

all the same default bitmaps on the
Component Palette.

Bob Swart (email: CompuServe
100434,2072) is a freelance techni-
cal author and professional
programmer for Bolesian BV in
The Netherlands.

Listing 5
unit Agenda; begin
interface {s$1-}
uses SysUtils, Classes, StdCtrls, Date, Convert; System.Assign(f,FileName);
Type Reset(f);
TAgenda = class(TMemo) if 10Result = 0 then begin
private FConvert := TConvert.Create(self);
FAgenda: String; FConvert.Decimal := FDate.Year;
FDate: TDate; FAgenda := FileName;
protected Lines.Clear; { clear contents }
procedure SetAgenda(Const FileName: String); Lines.Add(FDate .DateString + > ”~ + FConvert.Roman);
published Lines.Add(C—-");
property Agenda: String read FAgenda write while not eof(f) do begin
SetAgenda; readln(f, Str) ;
public if System.Pos(FDate.DateString,Str) = 1 then

constructor Create(AOwner: TComponent); override;
end {TAgenda};
procedure Register;

implementation

constructor TAgenda.Create(AOwner: TComponent);

begin
inherited Create(AOwner);
ScrollBars := ssVertical; { set vertical scrollbars }
FDate := TDate.Create(self);

end {Create};

Lines.Add(Str)
end;
FConvert.Destroy;
System.Close(f)

end
{$1+}
end {SetAgenda};
procedure Register;
begin
RegisterComponents(’Dr.Bob”, [TAgendal)
end {Register};

procedure TAgenda.SetAgenda(Const FileName: string); end.
var f: System.Text;
Str: String;
FConvert: TConvert;
April 1995 The Delphi Magazine 19

Don’t forget the Subscription Form on Page 41!

Moving Up: Borland Pascal

by Dave Jewell

In this article, Dave looks at some of the issues
involved in moving to Delphi from Borland Pascal

N ot including Delphi itself,
there are four different
Windows programming languages
which might be termed
‘mainstream’ development
environments. These are C, C++,
Pascal and Visual Basic. Yes, | know
that C++ is a superset of C, but it’s
rather a dangerous over simplifica-
tion to lump C and C++ together.
I've heard it said recently that pro-
grammers can pick up C++ more
easily if they haven’t had any pre-
vious exposure to C, and from my
own experience there’s certainly
some truth in that point of view!

In the coming months, I'll be
discussing Delphi from the view-
point of a developer coming from
one of these four camps. This time
we kick off with Pascal and in the
nextissue we’ll be looking at Delphi
from the viewpoint of a Visual
Basic Developer.

Delphi For
Pascal Programmers
You might find it surprising that
I've included Pascal in the above
list. After all, Delphi is just Pascal
hiding behind a pretty user inter-
face isn't it ? Well, no — not really.

For starters, Delphi uses
Borland’s Object Pascal, an object-
oriented Pascal dialect that offers
much of the power of C++ in a far
simpler, more manageable
language. If you happen to be a
seasoned Borland Pascal devel-
oper, and know the Windows API
like the back of your hand, then
you’re in good shape for getting
into Delphi. You'll find, however,
that Borland have made a number
of changes and enhancements to
the language, making the new
Pascal dialect even more powerful
than it was previously.

If you're at all familiar with the
Borland Pascal development

April 1995

system, you should have little diffi-
culty in getting to grips with Delphi.
Beneath Delphi’s friendly visual de-
velopment environment lurks the
same compiler that you’re familiar
with. If you want to merely use
Delphi as a “straight” Pascal com-
piler, there’s nothing to stop you
doing so. You can use it to compile
and build your existing Pascal
projects. However, it goes without
saying that this approach misses
out on all the major productivity
benefits that come from using a
visual development tool and the
feature-rich component library.

This article is primarily
concerned with the language
changes that Borland incorporated
into Delphi’s particular version of
the Pascal compiler. Although
backwards-compatible with exist-
ing code, the new compiler incor-
porates a number of important
language enhancements that we’ll
be looking at here.

New Language Features

With Delphi, Borland have intro-
duced a number of new language
features, many of which relate to
the Object Browser interface.
These language features generate
additional categories of run-time
information which are read by the
Object Browser and used to fill in
the browser window with proper-
ties and events that relate to the
currently selected object.

The Class Declaration
The single most important
language enhancement in Delphi’s
Pascal implementation is the intro-
duction of the class declaration.
Let’s take a look at the class decla-
ration of the shape component,
reproduced in Listing 1.

You can see that, superficially, it
looks very much like the old-style

The Delphi Magazine

object declaration used in
previous versions of the compiler
and, in fact object declarations are
still supported. You must,
however, use the new style class
declaration when creating Delphi
components.

The declaration starts off with
the name of the new class, an
equals sign, (“="), the reserved
word class and the name of the
parent class in parentheses. Like
object declarations, a class
declaration can contain both
private and public sections.

In essence, there are now four
different levels of protection within
Delphi Pascal. In order of increas-
ing accessibility, these are:

Listing 1

TShape = class(TGraphicControl)
private
FShape: TShapeType;
FReserved: Byte;
FPen: TPen;
FBrush: TBrush;
procedure SetBrush(Value:
TBrush);
procedure SetPen(Value:
TPen);
procedure SetShape(Value:
TShapeType);
protected
procedure Paint; override;
public
constructor Create(AOwner:
TComponent); override;
destructor Destroy; override;
published
procedure StyleChanged(
Sender: TObject);
property Brush: TBrush
read FBrush write SetBrush;
property DragCursor;
property DragMode;
property Pen: TPen
read FPen write SetPen;
property Shape: TShapeType
read FShape write SetShape;
property OnDragDrop;
property OnDragOver ;
property OnEndDrag;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
end;

20

Don’t forget the Subscription Form on Page 41!

O private — Only accessible
within the defining unit.

O protected — Accessible
to derived classes

O public - Full run-time
accessibility

O published — Available to the
Object Inspector for
design-time manipulation

Property Definitions
The part that's really interesting is
the new published section. The
published part of a class declara-
tion effectively corresponds to the
Object Browser interface for that
object. This enables the Object
Browser (or anyone else who’s
interested) to retrieve information
on an object, its properties and
event handlers. There’s nothing
magical about the way that the
Object Browser does this, it sSimply
makes use of the designer interface
unit, DSGINTF. You can find the
source code to this unit in the
DSGNINTF.PAS source file.

Let’s look in detail at one of the
property declarations in the above
class definition:

property Brush: TBrush
read FBrush write SetBrush;

This defines a property called
Brush. Because the property is in
the published section of the class,
it will automatically be made
available to the Object Inspector.
Additionally, since it’s a property,
it can be manipulated just like any
normal public element of the class
— property elements are inherently
public.

In the above declaration, the
Brush property is defined as being
of type TBrush — a handle to a
Windows brush object. This is
followed by information which tells
the compiler how to access the
property.

When reading the value of the
Brush property, the compiler
simply references the private
FBrush field. However, when chang-
ing the value of the property, the
SetBrush procedure (also a private
element). This approach allows us
to protect the private elements of
a class from direct access, while at
the same time presenting a

April 1995

convenient user interface that’s
just as convenient to use as if we
had direct access to public
elements.

Doing things in this way also
allows us to perform other actions
behind the scenes. We've just seen
that the mere action of assigning to
a Shape component’s Brush
property will invoke a routine
called setBrush. Internally, the
SetBrush routine will not only store
the new brush handle, but also
typically redraw the component to
reflect the brush change.

Exception Handling

With today’s increasingly sophisti-
cated applications, exception
handling becomes less of an option
and more of a must-have feature
when designing any serious
programming language. Exception
handling allows you to localise
error handling and recovery to one
area and eliminates the need for
repetitive checking for error
conditions before and after every
operation. Let’s see how this works
in practice.

The Try-Except Block
Consider this code:

function SafeDivide(
A, B : Integer): Integer;
begin
try
{Point 1}
SafeDivide := A div B;
except
{Point 2}
on EDivByZero do
SafeDivide := 0;
end;
{Point 3}
end;

The simple routine shown above is
responsible for dividing two
integers together and returning the
result.

Pascal veterans will immediately
spot two oddities here - the
appearance of the try and except
keywords. These new keywords
are used to implement the
exception handling mechanism.

In the case we’re looking at, the
try and except statements define a
try-except block of code. Here,

The Delphi Magazine

there’s actually only one statement
(the division statement) between
these two keywords but there can
potentially be many. Statements
within this block of code execute
completely normally, starting from
Point 1, but if an exception occurs,
control is immediately transferred
to the except part of the block at
Point 2. If no exception takes place,
then once the except keyword is
reached, execution continues at
Point 3.

The net effect, of course, is that
instead of the user being presented
with a run-time error, this routine
will silently return the value zero
whenever a run-time error occurs.

In a more real-world situation,
there would typically be alot more
code between the try and except
keywords - code which would
normally be full of lots of messy
error-checking stuff.

By using an exception handling
mechanism, the error checking can
be done after the except keyword
and things become very much
neater.

This concept will perhaps be
more familiar to Microsoft BASIC
(including Visual Basic) program-
mers. BASIC provides amechanism
called oN ERR, which allows control
to be transferred to a certain point
in a routine whenever a run-time
error takes place. The try-except
mechanism is very similar in
operation.

You’'ll also have noticed the on
statement at Point 2 in the above
source code. There are a consider-
able number of different exception
types that can be tested for. In this
case, we’'re testing for a divide by
zero condition, but you can also
test for floating point math errors,
file I/0 errors, and more.

The Try-Finally Block

In addition to Try-Except blocks,
Delphi’'s Pascal language also
provides Try-Finally constructs.
These are particularly useful for
Windows programming where it’s
often necessary to perform a
certain amount of ‘clearing up’,
such as de-allocating temporary
memory buffers, deleting custom
brushes and pens, closing files and
so on. Here’s how it works:

21

Don’t forget the Subscription Form on Page 41!

procedure TForml.ButtonlClick(
Sender: TComponent);

var
pMem: Pointer;

begin
GetMem (pMem, 2048);
{---}
FreeMem (pMem, 2048);
end;

In the above example, a 2Kb block
of memory is allocated at the begin-
ning of the routine and deallocated
at the end. That’s fine, but what
would happen if an exception
(such as a floating point error)
were to occur before the FreeMem
call was executed? In this case, the
memory would remain allocated.

Of course, if the run-time error
resulted in the program’s termina-
tion, there’d be no real problem
since Windows would deallocate
the memory anyway. However, if
you were allocating large bitmaps,
pens, or brushes, these items
would remain allocated even after
the program terminated. When
programming with Delphi, the
correct approach is to use a
Try-Finally block, which looks
something like this:

procedure TForml.ButtonlClick(
Sender: TComponent);
var
pMem: Pointer;
begin
GetMem (pMem, 2048);
try
{---3
finally
FreeMem (pMem, 2048);
end;

With this approach, the state-
ment(s) following the Ffinally
keyword will be executed even if
the routine terminates with a
run-time error. This guarantees
that the allocated resource will be
freed no matter what happens.

The AS, IS And IN Keywords
The as and is keywords are used to
implement run-time type checking
and typecasting. For example, the
following statement will determine
whether an object, xobj, is of a
given type:
if xObj is TForm then

April 1995

This statement will return true if
x0bj is a Form component, or ifitis
of a type that’s descended from a
Form component.

Similarly, the as keyword can be
used to perform run-time
typecasting, like this:

with xObj as TForm do begin
{---3

end;

In this example, the xobj object is
treated as a Form component
within the block. The as keyword
will perform internal checking to
ensure that it’s valid to treat the
x0bj as if it were a Form component
(specifically, that it is a Form com-
ponent, or is derived from one). If
not valid, then a ElnvalidCast
exception will be raised.

The in keyword will be familiar
to most Pascal programmers as a
test of set membership:

if Thelnt in [1,3,5,7,9] then

However, this particular keyword
now has a new meaning within the
context of a USES clause inside
Delphi project files:

uses
Forms,
Sdimain in *SDIMAIN.PAS”
{SDI1AppForm},
About in “ABOUT.PAS”
{AboutBox};

Changes To The Language
The version of Borland Pascal on
which Delphiis based incorporates
a number of useful language en-
hancements. In most cases, these
are backwards-compatible. This
means that they won’t break any
existing code.

However, there are a few pitfalls
for the unwary so read the follow-
ing sections with care.

The Result Variable

When developing a Pascal func-
tion, it’s often useful to be able to
“look” at the return result.
Previously, it wasn’t possible to do
this, since specifying the name of
the function in an expression was
interpreted as a recursive call:

The Delphi Magazine

function GetFileHandle(
fName: PChar): Integer;
begin
GetFileHandle :=
_lopen(fName, 0);
if GetFileHandle = -1 then
MessageBox (0,
Can”’t open file”,
Error’, mb_ok);
end;

The reference to GetFileHandle in
the ifstatementwill be interpreted
by the compiler as a recursive call
which obviously isn't what'’s
wanted. The compiler will fail to
compile the code anyway, com-
plaining that no arguments have
been supplied for the (supposed)
call toGetFileHandle. In order to get
around this, most Pascal program-
mers use a local variable like this:

function GetFileHandle(
fName: PChar): Integer;
var fd: Integer;
begin
fd := _lopen (fName, 0);
if fd = -1 then
MessageBox (O,
Can”’t open file”,
Error”, mb_ok);
GetFileHandle := fd;
end;

There’s nothing wrong with this, of
course, provided that you don’t
mind the unnecessary tedium of
defining a local variable and (more
importantly) remembering to set
up the function result at the end!

The new Result variable does
away with these considerations. It
behaves as a predefined local
variable but it also happens to
correspond to the function result.
Unlike the actual function name,
you can use it anywhere in an
expression without implying a
recursive call. Here’'s how you’d
recode the above example:

function GetFileHandle(
fName: PChar): Integer;
begin
Result := _lopen (fName, 0);
if Result = -1 then
MessageBox (O,
Can”’t open file”,
Error”, mb_ok);
end;

22

Don’t forget the Subscription Form on Page 41!

This gives the best of both
worlds; concise and elegant yet
without irrelevant variables.

Note: There’s an obvious caveat
here. When porting old code to
Delphi, it’s a good idea to rename
any local or global variables named
Result oOr potential ambiguities
may arise.

Function Result Types

While on the subject of function
results, Borland have relaxed
the previous restrictions on
permissible function result types.
In the words of the on-line help
documentation:

“Functions can now return any
type, whether simple or complex,
standard or user-defined, except
old-style objects (as opposed to
classes), and files of type text or ‘file
of’. The only way to handle objects
as function results is through object
pointers.”

Open Array Construction
Sometime ago, Borland introduced
Open Array parameters, which
allow you to pass an array type as
a parameter to a function or proce-
dure. Inside the called routine, you
can use the built-in Low and High
operators to obtain the lower and
upper array bounds of the array. In
this way, you could, for example,
pass an arbitrarily large array to a
function which would then return
the average value of all the
elements of the array.

Delphi’s version of Pascal makes
this facility even more flexible, by
letting you build an array and pass
it to aroutine in a single operation:

Average := CalcAverage([5, 7,
9, 14, 234, 861);
The corresponding function

declaration would be:

function CalcAverage(Nums:
Array of Integer): Integer;

Delphi includes a new routine,
Format, Which takes a pointer to a
destination character array, a
format string, and an open array
parameter. In essence, this gives all
the power and flexibility of the C
language’s sprintf Statement,

April 1995

something that’s sure to be good
news for Pascal programmers.
Note: Since the elements of the
array are enclosed in square brack-
ets, this can look just like a set.
Take care not to confuse the two.

Case Statement Optimizations
Borland have made two changes to
the way case statements operate.
Firstly, it’s no longer possible to
have overlapping ranges in a case
statement. For example:

case Errcode of
7: Writeln(
*Disk is write protected?);
1..100: Writeln(
Unknown error?”);
end;

This code will compile fine under
previous versions of the Pascal
compiler but won’t be accepted by
Delphi since 7 obviously overlaps
with the range 1..100.

The second change concerns the
way in which the compiler
generates code for case state-
ments. Basically, if the various case
constants are sorted in ascending
order, then the compiler converts
the case statement into a number of
jumps.

On the other hand, a non-sorted
ordering of case constants will
result in multiple calculations
being carried out. It’'s therefore
better to sort your case constants
into ascending order if possible.
For example:

case ErrCode of
1: WriteIn(“This is case 1");
2: WriteIn(“This is case 2");
5: WriteIn(“This is case 5");
{---3

Using Your Old Code

Delphi is perfectly capable of using
your old code, integrating it into a
new-style Delphi project. If the old
code is in the form of a DLL, then
you can just call the DLL from
Delphi. Existing units can also be
easily integrated into Delphi
programs. Of course, old source
code won’t have any knowledge of
Delphi’s component library and
VCL framework, but provided that
the DLL has been well structured,

The Delphi Magazine

it should be relatively easy to move
it across.

But what about OWL, | hear you
cry? Well, admittedly, this could be
something of a problem. You can
certainly use Delphi to compile all
your existing OWL library source
code and applications if you wish
to continue using the OWL applica-
tion framework. It should go
without saying, though, that you
can’t readily mix OWL code with
the new VCL library. At the time of
writing, there’s been no commit-
ment from Borland as regards the
implementation of a 32-bit OWL
library. (Because of the differences
between the Win32 and Winl6
APIs, it’s not just a simple matter of
recompiling OWL with a 32-bit
compiler).

My personal advice would be to
bite the bullet and port your appli-
cations to VCL. Not only will you be
able to use all Delphi’s user inter-
face components, (giving your
program a much nicer user inter-
face), but you’ll also be assured of
portability to the world of 32-bits,
be it Windows/NT or Windows 95.

This is probably a good place to
pointoutthe importance of ‘decou-
pling’ the user interface of an appli-
cation from the nuts and bolts of
the program code. Whatever sort
of application you're writing,
always make a clear distinction be-
tween what the program does and
what the program displays on the
screen. If you always bear this in
mind, then you can put the essence
of your program into units or even
DLLs, completely distinct from
whatever user interface and appli-
cation framework you might be
using. If you’ve adopted this sort of
approach with your OWL applica-
tions, then you will have greatly
simplified the job of moving across
to Delphi and the VCL library.

This article is based on an extract
from Dave’s new book, “Instant
Delphi”, published by Wrox Press.
Dave Jewell is a freelance
consultant/programmer, specialis-
ing in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

23

Don’t forget the Subscription Form on Page 41!

Introducing Client/Server

by Sundar Rajan

f you are a PC based database

developer youmight well be won-
dering what all the Client/Server
hoopla is about. At first glance
Client/Server development does
not seem to be awhole lot different
from conventional PC based
application development. If you
are puzzled, you are not alone.
Client/Server is one of the most
over-used buzz-phrases in the
industry. It is also one of the most
misunderstood. This confusion
comes from many sources, the
most prominent being the applica-
tion vendors themselves. It seems
that too many products nowadays
are labeled Client/Server.

Unlike relational database
technology (with Dr Codd’s 12
rules), object orientation and the
Windows GUI (with Charles
Petzold’s treatise) there is no
single source definition of
Client/Server. However, there are
certain common traits shared
amongst commercial software
products conventionally known as
Client/Server products.

What Is A Client/Server
Application Developer?
A Client/Server developer may be
developing applications on PCs
just like a PC programmer. The
difference is this: the 4GL/3GL pro-
grammer does not actually have to
create code that runs on a server.
Why? Because the underlying
database (Paradox, dBASE, etc)
provides the database mechanism.
A Client/Server application devel-
oper is one who creates an applica-
tion whose components run on
both the client and the server. The
Client/Server architecture makes
full use of the processing power of
both the client and the server, dis-
tributing parts of the application to
both - this requires expertise on
both the client and server sides.

A simple definition of Client/
Server is that server software
accepts requests for data from

April 1995

client software and returns the
results to the client.

A client is any program that
requests processing. Due to
performance, data sharing and
hardware resource sharing consid-
erations you will find that that
clients and servers typically runon
different machines. Because the
client (typically a PC) is not
performing all the heavy database
work it can be used for manipulat-
ing the data and providing timely
and valuable information to the
end user.

A server is any program that
delivers processing. For example,
LANs usually have both file and
print servers. Another example is
the SYBASE SQL Server, which
responds to many simultaneous re-
quests to perform database work.

Client/Server computing is thus
any application system where
separate autonomous programs
request and deliver processing to
and from each other. That is, an
orchestration of various hardware,
networking and software compo-
nents to provide end users with
enriched information, on demand.

Two Main Principles

There are two traits which distin-
guish Client/Server from both
mainframe and PC computing.

O Distributed Resources

This implies that a single client
applicationis not limited to its own
resources. Let’s consider a ware-
house inventory example with the
local inventory levels stored in ta-
bles on a local SQL server, such as
an Interbase server, and company
wide information stored in tables
on an enterprise SQL server. When
the user queries the availability of
a particular product, the client
application on the user’s worksta-
tion first queries the local database
and if there is no stock left in the
local warehouse, the application
calls for additional data (inventory

The Delphi Magazine

levels) on other warehouse servers
located anywhere inthe world. The
client is not just a dumb terminal —
some data storage and processing
(eg calculating daily sales) does
need to be done by the client.

O Intelligent Communication
Client/Server software must have a
higher degree of intelligent
communication capability — the
server does not send the whole list
of inventory items when a client
queries inventory levels. Instead
the server will be smart enough to
understand the client’s requests.
The server performs the necessary
work and provides the client just
what it requested. Contrast this
with the typical file-server PC
databases such as FoxPro or
Paradox. In a file-server situation,
the whole inventory table may
come back to the client worksta-
tionacrossthe network, regardless
of how much data s involved. Such
a request could easily bog down
the network (and often does!).
Architecturally, the key differ-
ence between Client/Server and
the traditional centralized main-
frame is that with Client/Server the
client is intelligent and performs
some processing, whereas main-
frame terminals are usually dumb.

2-Schema And 3-Schema

The key to understanding Client/
Server is in realizing that it is a
logical concept. The client and
server parts may, or may not, exist
on distinct physical machines.
More precisely, Client/Server
technology is a model for the
interaction between concurrently
executing software processes.

A 2-Schema approach (Figure 1)
is generally adopted when MIS
shops first move to a Client/Server
environment. The application logic
is moved to the client and data is
put on the server. SQL is used to
obtain data from the server and
return it to the client.

24

Don’t forget the Subscription Form on Page 41!

While the traditional Client/
Server model does distribute proc-
essing, the 2-Schema architecture
provides no explicit home for
business rules. Many Client/Server
theorists have proposed a third
layer for the business rules. This
3-Schema architecture seems to be
the emerging trend, with three
separate functional components:
0O The User Interface — screens,

reportsand so on, all parts ofan
application which the business
users get their hands on, or see;

0O The Business Logic-the formal
policies and procedures
automated in the software as
logic or code;

0O Database Access — storage and
retrieval of information from
one or more database systems.

The 3-Schema architecture

provides the means by which to

distribute these three application
components across various hard-
ware and software platforms, such
as PCs, workstations, local area
networks and even mainframes.

Thus application designers and

developers can optimize for better

access to data, better performance
and better integration with other
applications.

Benefits Of Client/Server

O Client/Server gives a more effi-
cient division of labor. Both the
client and server can be dedi-
cated to the tasks for which
they are best suited: the client
for presentation of a pleasant
interface, the database server
for high-performance data proc-
essing, with security, integrity
and concurrency control.

0O Client/Server architecture
provides an opportunity for
both horizontal and vertical
scaling of resources to do the
job. For example, you can
distribute the work of process-
ing data requests, such as
queries or updates, to multiple
processors on the same
network (horizontal scaling), or
you can move the database to a
larger, more powerful computer
(vertical scaling).

0O Users can stay with the same
familiar tools they’ve grown
accustomed to on the PC.

April 1995

A 4 B

(S0l access)

Prospects | Customers Sales Orders

External Layer (Task Oriented)

Conceptual Layer

(APl [Messages)

Enterprise

Customer Services

Enterprise
Sales Order Services

SEL F AP Messages)

Internal Laye
Sales Orders

Figure 1: 2-Schema and 3-Schema approaches

Figure 2

Sybase SQL Server
performance
monitor: one
example of the
way SQL server
databases provide
the ability to
track and tune
performance

0 Increased access to Corporate
Data. Unlike traditional systems
which often used proprietary
data formats, Client/Server SQL
databases have opened up data
access. Database middleware
services such as IDAPI or ODBC
provide a single interface to
multiple SQL data sources.

0O Datais safeguarded against loss
or improper access. Database
administration is centralized,
S0 security, data integrity, con-
currency and backup/recovery
are in the control of MIS.

0O Cheaper and more powerful
PCs are providing hardware
and software solutions that are
cheaper to implement.

O Client/Server technology offers
many performance advantages:
reductions in network traffic,
memory and CPU usage.

0 Cost benefits: expensive serv-
ers with more processing
power can be shared amongst
many clients. This means that
corporations can preserve their
investment in existing client
technology and incorporate
more expensive, high-perform-
ance server computers to proc-
ess the additional workload.

The Delphi Magazine

Performance Monitor

Edit ¥iew Options Help

CRNEEN EENE

SOLServerLoc Vgl wyse

0O User participation: adding
processing power to user
workstations is also beneficial.
Traditional mainframe environ-
ments executed all application
programs on a central
computer, but Client/Server
applications migrated from
host systems enjoy the
increased capacity of these
distributed processing units.
Scalability of distributed
networks is a large potential
performance advantage for
Client/Server.

Servers have tremendous

advantages because they central-

ize data and act on that data at one
machine. This Divide and Rule
philosophy in Client/Server has
resulted in strong growth, not only
in front-end tools technology but
also in database server technol-
ogy. SQL servers these days are
remarkably different from simplis-
tic PC databases. They abound in
advanced features like built-in
recovery facilities, performance
tuning, parallel query processing
and the like. The ability to track
and tune performance (Figure 2) is

a big benefit over file-based dBASE

or Paradox databases, for example.

25

Don’t forget the Subscription Form on Page 41!

What Delphi

Brings To The Table

Jesse Berst, publisher of the
Windows Watcher newsletter,
observes that: “.for the short term,
at least, Client/Server means
Windows/Server...”

In this regard, Borland’s Delphi
tool is eminently suited for the
task. It is a highly versatile
Windows based Rapid Application
Development tool that caters to a
potentially huge audience.

With Delphi, you can drop down
to assembly language and write
device drivers and the like, or
develop sophisticated Client/
Server database applications with-
out writing hardly any code. This
breadth is unmatched in any other
Windows development tool.

Client/Server technology has
been around for a few years and
there are some powerful tools
already on the market for Windows
Client/Server development. So
what is unique about Delphi?

To understand Delphi’s unique-
ness you have to look at how MIS
departments approach develop-
ment. Typically, application de-
signers hold design sessions with
end-users and draft out a rough
data model based on these inter-
views. Then, a simple prototype of
the application is attempted with
user involvement. Once the proto-
type isapproved, the application is
constructed and deployed.

The problem with many of the
first generation tools such as
Visual Basic is that while they may
be good for prototyping, the appli-
cation performance is not very
good due to the interpreted nature
of the final application.

Also, VB is not intrinsically a
database tool: its native controls,
such as grids, are not data aware.
A true prototype cannot be
produced without writing a lot of
code - making changes would
require considerable work.

Traditionally, database applica-
tions and reports were generated
by MIS staff and might take many
months to complete. Usually, there
have been huge backlogs of
requests for specialized entry,
control and reporting systems.
Now, data modelling and report

April 1995

production is being off-loaded to
power users on the LANS.

This is where | think Delphi’s
architecture excels. With its live
data display at design time,
templates for forms development
and high code re-use because of its
object orientation, end-users can
get involved in the design and
prototyping process.

Tools such as PowerBuilder and
VB are also very good at prototyp-
ing. The problem is that
production applications lag in
performance because they are
interpreters not true compilers.

As Client/Server systems be-
come more complex performance
starts to matter significantly.
Delphi’s ability to generate true
machine code and speed of
application creation means the
same tool can be used for both
prototyping and production.

Delphi’'s OOP framework encour-
ages the creation of templates as
well as re-usable components. This
reduces the amount of code
required considerably. With
Delphi even fairly sophisticated
Client/Server applications can be
built which require little or no code
to be hand-written.

Summary
We took a quick-tour of Client/
Server and Delphi’s role in applica-
tion development. Delphi provides
an attractive framework for making
the transition to Client/Server.
While the opportunities are
immense, new skills have to be
acquired - especially in the areas
of application design, SQL server
know-how and SQL. There are
exciting times ahead for Delphi
developers willing to take on the
Client/Server challenge.

Sundar Rajan is a Consultant with
On-Line Resources Inc, a consult-
ing firm specializing in Client/
Server development based in
Longwood, Florida. He is currently
developing Client/Server applica-
tions for a large Japanese
semi-conductor manufacturer in
Northern California. Before mov-
ing to the US in 1993, Sundar
founded and operated SunSoft
(N2), a software consulting firm in
Wellington, New Zealand. He can
be reached on CompuServe at
72774,1030.

Figure 3: Client/Server inDelphi: displaying the
contents of stored procedures from a Watcom SQL 4.0
database — note the LIVE data at design time!

creste procedure sp_contacts(in action char(1) in
contact_id integer in

O
B

contact_old_id integer in cortact_last_hame char(15),in
contact_first_name chari
18)in contact_ttle char(2) in contact_strest char(30) jn

contact_city char(20),

in contact_state char(2),in contsct_zip char(3),in
contact_phone char(10),in

contact_tax char(10))

DBMemol bedin
] case action

when T then

inzert into

contact(id last_name first_name title street city state zip,

phone, fxvalues(contact_id contact_last_name contact

_first_name,

The Delphi Magazine

26

Don’t forget the Subscription Form on Page 41!

Delphi Internals:
Using And Writing DLLs

by Dave Jewell

ver the coming months, the

Delphi Internals column is
going to peer under the hood of
Delphi, examining many of
the low-level aspects of Delphi
programming. Some of the issues
we’re going to cover include
dynamic link libraries, debugging
Delphi applications, the inside
story behind exception handling,
how to interface to other program-
ming languages and much more!

If there’s anything specific that
you'd like to see covered, then
please write to me c/o The Delphi
Magazine and tell me what you're
interested in. Do bear in mind
though, that my mission in life is to
cover low-level techie program-
ming. | may not react favourably if
asked howto goabout designingan
accountancy package in Delphi!
Alternatively, you can send
email to me via the Internet at
djewell@cix.compulink.co.uk

Using DLLs With Delphi

OK, enough of the social niceties —
let’s roll up our sleeves and get
down to business. In this issue
we’re going to look at Dynamic Link
Libraries, or DLLs for short.

I’'m assuming that you’ve got no
previous experience of using
Borland Pascal, but that you are
familiar with the basic concepts
behind DLLs and that you’ve had
some exposure to Windows pro-
gramming. We’ll therefore cover
the essentials of using and creating
DLLs from a Pascal developer’s
point of view before looking in
more detail at how you would build
a DLL in Delphi.

Whenever you examine a source
file that’s been created by Delphi,
you’ll see a USES statement near the
top. This identifies which Pascal
units are required to compile the
file. AlImostinvariably, the first two
units specified in the Uses

April 1995

statement are WINTYPES and
wINPROCS. These files contain the
type definitions and routine decla-
rations needed by Pascal in order
to call the Windows API. Since the
Windows APl is implemented using
DLLs, we need actually look no fur-
ther than the routine declarations
in the winprocs unit —this tells us all
we need to know about calling a
DLL from Delphi’s Object Pascal.

Calling An

External Routine In A DLL

If you look at the WINPROCS.PAS
source code, you'll see that there
are a huge number of routine
declarations there — so many that
it’s difficult to see the wood for the
trees. In order to make things
clearer, I've written a small unit
called TInYAPI.PAS Which declares
just a single routine, SetRect. The
code for this unit is shown below.
Let’s see how it works.

unit TinyApi;
interface
uses WinTypes;
procedure SetRect(
var Rect: TRect;
X1, Y1, X2, Y2: Integer);
implementation
procedure SetRect; external
USER index 72;
end.

The interface part of the unit is
followed by a uses clause for
WINTYPES. This is then followed by
the procedure declaration for
SetRect itself. The important part,
of course, is the actual implemen-
tation of this routine in the
implementation part of the unit.
The first thing you’ll notice is that
you don’t need to repeat the list of
parameters required by the
SetRect routine. You can repeat the
parameter list if you wish, but if
you do so, then you must make

The Delphi Magazine

sure that it exactly matches the
previous definition. For example, if
you refer to the four integers as x1,
Y2, X2, Y2 in the interface declara-
tion, then the compiler won’t allow
you to refer to those same integers
as left, top, right, bottom in the
implementation part of the unit,
even if these are perfectly accept-
able names for the parameters.

The EXTERNAL keyword is more
interesting. This tells the compiler
that the actual code for the inter-
face routine isn’t in the unit being
compiled, but is somewhere else.
DOS-based Pascal developers
frequently use the EXTERNAL
keyword to link a program with
separately compiler assembler
code. However, thanks to the
magic of dynamic linking, we can
tell the compiler that the code isn’t
going to be statically linked at all.

The next part of the statement
specifies the name of the DLL
containing the setRect routine — in
this case, it’s the user DLL, one of
the core components of Windows
itself. The compiler doesn’t need to
verify this information at compile
time. It doesn’t care at this point
whether the user DLL exists, or
whether it really contains the rou-
tine we’re saying is there, all these
checks take place at run-time.

The final part of the
implementation Statement specifies
an ordinal value for the routine.
You should know that all routines
exported by a DLL have an associ-
ated name called the ordinal
number. When you import a DLL
routine (as we’re doing here), you
need to somehow tell Windows
which routine you're interested in.
By specifying an ordinal number,
our application will end up asking
Windows for routine number 72 in
the user library. This is called
linking by ordinal. Alternatively,
you could omit the INDEX keyword

27

Don’t forget the Subscription Form on Page 41!

and the ordinal number itself.
You’d then be linking by name. In
general, linking by name is easier
(since you don’t have to mess
about with ordinal numbers) but it
results in a slightly larger ex-
ecutable file and is fractionally
slower at run-time. If you want to
know what routines are exported
by a particular DLL, and what ordi-
nal values they have, you can use a
Microsoft utility such as EXEHDR to
dump the list of exported routines.

Import Units

And Custom DLLs

The wiINPROCS unit and the TINYAPI
unit that we looked at earlier were
examples of import units. An
import unit has only one missionin
life — its job is to take a set of DLL
routines and make those routines
available to the application in
which it is linked. For example,
when using the Flashwindow API call
inside a Delphi routine, you can
just call Frashwindow as if it were a
local routine. You don’t know, and
don’'t care, that it's actually
implemented inside the USER
library. That's what an import unit
is for: to make DLL routines more
immediately accessible.

At this point, we've only
discussed how to interface to the
standard DLLs, but naturally, you
can call custom DLLs just as easily.
These DLLs might have been
written using C, Pascal, assembler
or Delphi itself — it really doesn’t
matter. As an example, here’s a
couple of procedure declarations
used in one of my own programs,
referring to routines in a custom
DLL called TFRAME.DLL:

procedure FixLibrary; far;
external TFRAME” index 1;

procedure UpdateTopLevelWindow(
fDraw: Boolean); far;
external *TFRAME” index 2;

There are two important things to
notice about these two procedure
declarations. Firstly, you’ll see that
they include the procedure
parameters along with the EXTERNAL
keyword, DLL name and index
information. That’s because these
declarations aren’t part of an
import unit. If you want to call a

April 1995

custom DLL, you don’t have to
create an import unit if you don’t
want to. Using the approach shown
here, you can just go right ahead
and put the DLL procedure decla-
rations after the USES clause of
your main program. Alternatively,
you could put these same declara-
tions at the beginning of the imple-
mentation part of a unit — that way,
you'd be providing the unit with
access to private routines that it
needs to do its job, but you
wouldn’t be making the existence
of those routines known to any
other parts of your program.

The second point to notice is the
use of the FAR keyword. When you
declare routines in the interface
part of a unit, they're always far.
Any routine exported by a Delphi
unitis afar routine, and can only be
accessed by a far call. However,
when you’re declaring DLL rou-
tines outside of an import unit, you
must use the FAR keyword. Not do-
ing so will result in a compile error.

Avoiding The Windows API
Having just explained in some
detail how it is that Delphi calls the
Windows API, let me stress that
you shouldn’t go overboard on
using the API. In fact, if you can find
an equivalent call or method in
Delphi’s Visual Component Library
(VCL) which will do the same job,
then you should use the VCL call in
preference to calling the API
What’s the reason for this API-
phobia? In one word — portability.
Borland went to a lot of trouble
to make the VCL library as portable
as possible. The great majority of
your 16-bit Delphi applications will
be able to move effortlessly across
to 32-bit Windows/NT and
Windows 95, provided that you've
minimised the use of calls to the
Windows API. In particular, you
should avoid using API calls which
send or receive messages. This is
because, under 16-bit Windows,
Microsoft often packed more than
one quantity into the 32 bits of the
IParam field. Under Win32, how-
ever, window handles are now 32-
bits wide and many Windows
messages have therefore had to
adopt a different arrangement of
values in the wparam and IpParam

The Delphi Magazine

fields of amessage. C/C++ program-
mers get around this by using mes-
sage cracker macros which pack
and unpack the field of a message
while retaining portability between
the two different APIs. Under
Delphi, the proper approach is to
use VCL wherever possible.

Writing DLLs With Delphi
One of the many interesting things
about Delphi is its ability not only
to use DLLs but to create them.
Using Delphi, you can create a DLL
that’s used by more than one of
your programs, thus reducing the
amount of disk space required
when building a suite of programs.
Alternatively, you can use DLLs
to provide functionality to your us-
ers in bite-sized pieces. For exam-
ple, you might decide to sell an
application which views and proc-
esses graphics files. You could
build the capability to read and
write some common graphics file
formats into the application itself,
but you might also want the flexi-
bility to sell add-on packs which
operate on even more formats. By
packaging these add-on packs as
DLLs, you can easily arrange for
the main application to detect the
presence of these add-ons and use
them in a seamless fashion. Inci-
dentally, much of Windows oper-
ates in this way; device drivers,
Control Panel applets, even fonts,
are specialised forms of DLL.
When news of Delphi first began
to leak out, rumours were rife that
you could just plug Delphi compo-
nents into C/C++ applications —one
American programming journal
even enthused about this in its edi-
torial. Of course, this just isn’t
possible —a Delphi componentis at
heart an Object Pascal unit. The
Pascal compiler inside Delphi
generates DCU files whereas C/C++
development systems use .OBJ
files. It’s really a case of never the
twain shall meet. However, thanks
to the magic of DLLs, it's possible
to write a sophisticated user inter-
face using Delphi components and
call it from a C/C++ application.
Actually, you could equally well
call it from a straight Pascal
program, or even from Visual Basic
— a DLL completely breaks down

28

Don’t forget the Subscription Form on Page 41!

the language barriers and can be
used from any development
system that supports DLL calls.

The Structure Of A DLL

The remainder of this article will
demonstrate how to create a
simple DLL using Delphi. In Delphi,
or Borland Pascal, a DLL is struc-
tured somewhat as shown below:

library MyDLL;
uses WinTypes, WinProcs;
procedure MyFirstProc; export;
begin

MessageBeep (0);
end;
exports MyFirstProc index 1;
begin
end.

If you look in the project file (the
file with extension .DPR) of any
Delphiapplication, you'll see that it
starts off with the reserved word
PROGRAM. By contrast, DLLs always
begin with the reserved word
LIBRARY. This is then followed by a
USES clause for any needed units. In
this simple example (probably the
simplest DLL that it's possible to
make), there then follows a proce-

dure called MyFirstProcedure which
does nothing except sound a beep.

You'll notice the procedure dec-
laration uses the ExPORT specifier.
This tells the compiler that the pro-
cedure is going to be called from
another module — the compiler will
then generate the special prologue
and epilogue code which ensures
that the processor’s data segment
register is properly set up on entry
to the procedure. Any routines
exported from a DLL must include
the exporT specifier. All call-backs
such aswindow procedures, hooks
and enum procedures also need
this specifier.

Finally, at the end of the source
code we find an EXPORTS statement.
This lists the routines that are
actually exported from the DLL and
assigns a unique ordinal value to
each routine. This ordinal value
can then be used to call routines in
a DLL as discussed earlier. At this
point, you’re probably thinking
why do we need a separate EXPORTS
statement when we’ve already told
the compiler that myFirstProc is
exported by using the EXPORT
specifier? That’s a good question!

Remember that the ExPORT specifier
is used for all call-backs and ex-
ported routines. However, we
don’t actually want to make call-
backs and window procedures vis-
ible outside the DLL. It's the
EXPORTS statement at the end of the
library source file which tells the
compiler what is visible and what
isn’t.

If you compile this simple DLL,
you can then call it using the tech-
niques | described earlier. How-
ever all that happens when you call
the MyFirstProcedure routine is a
beep sound - big deal. In the next
installment, we’ll conclude this
discussion of DLLs by looking at
the more exciting stuff — how to
write DLLs that contain Delphi
forms and components,and howto
call those DLLs from other applica-
tions and development systems.

Dave Jewell is a freelance
consultant/programmer, specialis-
ing in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

Review: “Inside Windows 95 by Adrian King

Adrian King has worked very closely with Microsoft in
writing this book. In fact, he’s a former MS employee
and managed in 1987/8 the project that produced
Windows/386, so he knows what he’s writing about.

This book provides a lot of insight into the thinking
behind the design and implementation of Windows 95
— or at least BETA-1 (1994). The author himself warns
us that the information is based on a pre-release
version. When it was announced (as Chicago),
Microsoft wanted to release it by the end of the year —
1993. By the time the book was written, Windows 95
was expected by the end of the year — 1994. And by the
time you read this review Windows 95 is still expected
to ship at the end of the year — 1995!

The intention is to provide a technical introduction
to Windows 95, including enough detail to satisfy
power users and developers. The emphasis is on what
Windows 95 can do, how it does it, and why features
were designed and implemented in particular ways
(though there’ll be changes in the final release).

Among the topics covered are: the 32-bit protected
mode environment, the revised user interface and new
system shell, the new device-independent color and
display drivers, the new enhanced file system with long
filenames, plug and play, network support, built-in in-
ternet access utilities and so on.

April 1995

The only things not included in the book are pen
support and the multimedia support of Windows 95,
like WinG. The book contains several charts and some
example code (in C), but still the most interesting parts
are those where design choices are made and moti-
vated against possible alternatives. This makes you feel
almost part of the Windows 95 team itself.

The book does certainly not claim to cover it all, but
only to provide pre-release knowledge of Windows 95,
for people that want to prepare before it's there
(people who don’t (or do) have access to a Beta version
themselves). | think everyone should read Inside
Windows 95 — especially power users and developers.
| can recommend this book to anyone who wants to
prepare now for Windows 95 (and we all know 32-bit
Delphi will ship just shortly after Windows 95 itself)...

For more (free) information on Windows 95, you can
subscribe to Microsoft’s electronic newsletter
WinNews, by sending an e-mail message with the
contents SUBSCRIBE WINNEWS to the address
enews@microsoft.nwnet.com.

Reviewed by Bob Swart

“Inside Windows 95 by Adrian King is published by
Microsoft Press, ISBN: 1-55615-626-X, 480 pages, soft cover,
US price $24.95, UK price £21.95.

The Delphi Magazine 29

Don’t forget the Subscription Form on Page 41!

Using The Borland

Visual Solutions Pack

by Jeroen W Pluimers

elphi has enormous potential

for using components. Not
only does it have its
own sophisticated VCL-based
components, but it also supports
many of the VBX controls widely
available today.

An introduction to what VBXs
can do foryouis the Borland Visual
Solutions Pack (BVSP). Although
not expensive, it contains a
number of useful controls. Note
that when considering other VBXs
you do need to remember that
Delphi only supports Version 1.0
VBXs - if in any doubt, ask your
retailer or (perhaps even better)
the manufacturer.

Installation

Installing VBX controls in Delphi is
easy. For the sake of simplicity, I'll
assume you are using the default
directory structure. Thus, you
have a directory c:\Bvsp which
contains the BVSP files. Also, cre-
ate a subdirectory C:\BVSP\DELPHI,
where we will store the Delphi com-
ponentwrappers around the VBXs.

Let’s start installing. From the
Delphi menu bar, choose options |
Install Components. Figure 1 shows
the dialog box which is displayed,
listing the components that have
already been installed. Click the
vBX button to enter a file selection
dialog. Navigate to wherever the
VBXs are installed (usually
WINDOWS\SYSTEM) and select the VBX
file you want to install.

After selecting the file, you end
up in the dialog shown in Figure 2.
The defaults are filled in, so you
can just press OK, but you can also
change the name of the unit file or
the classnames of the controls in
the VBX. In this case, I've decided
to place the Delphi wrapper unit
files in c:\BVSP\DELPHI. Delphi
automatically generates a Pascal
source unit containing a VCL com-
ponent wrapper around the VBX.

April 1995

A VBX can contain more than
one component — just like regular
Delphi units, which can contain
more than one component as well.

Although you can install all VBX
files from the BVSP, you do not
need to do so. Some of the VBX
components duplicate functional-
ity that is already included in
Delphi. For instance, the sqQc.vBx
(containing Database Controls) is
completely covered by Delphi.
Also you do not need the
SAXTABS.VBX as the Delphi Tabs and
Notebook components give better
functionality.

A summary of the VBXs in the
BVSP which are of use to Delphi
developers is shown in Figure 4.
The column with glyphs shows
you the bitmaps which will appear
on the VBX page of the component
palette. The classname is the hint
text you see when you move the
mouse over the corresponding
glyph. The VBX filename is
included so you can easily select
the VBX files you need.

Using The BVSP VBXs

The BVSP can be split conceptually
into two categories. The firstgroup
consists of VBXs that encapsulate
alone, or in combination with
others, large parts of an applica-
tion. The second group consists of
gadgets: VBXs that perform only a
tiny part of an application, but give
it a specific look and feel.

The charting, spreadsheet and
word-processing VBXs are clearly
part of the first group. Depending
onits usage also the SaxComm VBX
can be added to it. All the other
VBXs are part of the second group.
You will often need to do a lot of
coding yourself to create a fully
functional application around
these components.

With the first group of VBXs, it is
possible to create complete work-
ing applications with almost no

The Delphi Magazine

code. For instance, using the
TxavB.vBX and only a few lines of
code, you can create a working
word-processor that can import
and export rich text format (RTF)
files, with multiple fonts etc.

Gadgets

Not all components from the
second group need much program-
ming. For instance, the animated
button can be used to quickly
create a multi-state button. The
card deck is ideal for setting up a
card game, (it’'s a pity the decks
lack animation like Solitaire and
Hearts). With a good playing strat-
egy, you could write your own
black jack game! Combined with
the clock, you can stress the player
by limiting playing time.

The dice can be easily config-
ured. With Autosize disabled and a
lot of colours on the dice sides, you
could write a program to teach
counting to children.

A combination of gauges, sliders
and spin buttons could be used to
wrap up the user interface for a
scientific program. Then the
marquee control can be used to
show floating text on the screen
(although its performance is
unfortunately not very good).

Fully Fledged Controls

This group contains the really
useful VBXs. Although most of the
controls are not the most recent
versions, you get a good impres-
sion of what is possible with them.
If you make heavy use of any of the
more complete controls, I'd
recommended you buy the full
current version.

For instance, the SAX communi-
cations control lacks certain proto-
cols (like Z-Modem) that are used
very widely nowadays. However, it
is a good starting point if you want
to see what communications could
do for your application.

30

Don’t forget the Subscription Form on Page 41!

Another useful combination is
the charting control and the
spreadsheet control. This way, you
could show a graphical repre-
sentation of the data a user enters.
Remember, though, that Delphi
itself has a more powerful ChartFx
VBX control.

Figure 3 shows a sample applica-
tion written using the BVSP. With
seven components and about 90
lines of hand-written code, | ended
up with acomplete word processor
using the RTF file format. It
supports multiple fonts and pages,
text with attributes, paragraphs,
search & replace, etc.

A large part of the code (almost
20 lines) is to make sure the
TextControl and its bars resize
within the Form. In contrast with
Delphi’s native components, the
VBX controls lack an alignment
property, so you have to do the
aligning yourself.

The rest of the code is for the
File]open and File|Save/SaveAs
logic. Only a tiny bit of code is
needed to link the menu to the
actions — one line per menu action
suffices.

The resulting application .EXE
file itself is only about 200Kb in
size. The additional files are much
larger: the BIvBXx11.DLL (See next
section) is about 80Kb and the
Tx4vB.vBX and its support files add
up to 240Kb, giving just over half a
megabyte in total.

The source for this example will
be on the free disk with Issue 2 of
The Delphi Magazine.

Distribution

When distributing an application
you need to pay special attention if
it uses VBXs. You will need to
distribute the VBX files with your
application and be careful to ship
the correct support files. Also, you
will need to include the
BIVBX11.DLL, which is the Borland
support DLL that interfaces
between 16-bit applications and
VBX files.

The reason behind the complex-
ity is twofold. First of all, VBX files
are external DLLs that in turn can
use other external files. Second,
VBXs need to have a means to
distinguish between design-time

April 1995

Figure 1 = Install Components

Installlng a Library filename:

new VBX [c:\delphitbin\complib. dcl |

into Delphi Seaiih ot
[C:ADELPHIALIB |
Inztalled units: LComponent claszes:
StdReq + Add.
VEXHReg [__I
DEReg = ™
SysReg EBE"'E
OLEReg
DDEReg]
Switch
Gauge
Eeerg _Reven |
SampHeg +

7 Hep |

‘\/ 114 | ‘x Cancel I

Figure 2 = Install ¥BX
Spemfylng_ a YBX file name:
Delphi Unit .
- Iamhrl_vhx |
file name and
Class names Unit file name:
for a new VBX It::\hvsp'\delphi\anihlt.pas | Browse. ..
Palette page:
[vex |
Clazs names:
TAniButton Edit._. I
« DK
7 Help I
= RTF editor - [nong] HH

File Edit Search Help

e o] [iz_][2 FEEE]
\F

r ¥ T ¥ ¥
0 ; |1 : |2 |3 |4 |5 - |B |T" |8

Wi o it

This is-a real RTF control AYith-RETF wou- can-havey| +
multiple fonts that can have ZuglemiEs T
like-bold,-ffafic-and-underline.

+

Figure 3
A fully functional rich text format word processor built
in Delphi using controls from the Visual Solutions Pack

1

w

The Delphi Magazine

Don’t forget the Subscription Form on Page 41!

and run-time behaviour (otherwise
anyone with a VBX could use it to
develop a new application, without
purchasing it).

The technique behind this is
called licensing. Because the VBX
standard was not well designed, it
lacked standard supportfor licens-
ing. As a result, most VBX vendors
invented their own licensing
mechanism. Mostly, they need spe-

cial design-time files — which are
called licensing files — to be present
in the Windows System directory.
Another way is to have separate
VBX files for design-time and
run-time.

KNIFE.VBX is an example of this
approach — you should be very
careful to copy KNIFERUN.VBX onto
your installation disks and rename
it to KNIFE_VvBX at installation time.

All the other installable files are
explained fully in the BVSP
documentation. The file REDIST.TXT
contains more information.

Jeroen Pluimers has been a Pascal
programmer since 1983. He lives
and works in The Netherlands and
may be contacted by email as
jeroenp@dragons.nest.nl or on
CompuServe as 100013,1443

Figure 4: Useful VBXs from the Visual Solutions Pack

Glyph VBX File Class Name Functionality
.| ANIBRT.VBX AniButton Animated button with multiple bitmaps. Different frame
states allow simulation of multistate buttons.
I_* KNIFE.VBX PicBuf Picture buffer for editing and showing bitmaps.
| -+
| ¥ MHAL200.vBX | MhlAlarm Alarm clock with alarm interval and sound.
|E ‘ MHCD200.VBX | MhCardDeck Playing card that mimics the cards used in Solitaire and
; Hearts. It supports non-animated card-backs only.
MHCL200.VBX | MhClock Digital or analogue clock showing current time, or time
offset to a specific value.
MHDC200.VBX | MhDice Playing dice with pictures showing top, left and right sides
of dice. Properties for colours and bitmaps.
MHGA200.VBX | Mhgauge Gauges that can be horizontal, vertical, circular with
pointing needles.
MHMQ200.VBX | MhMarque Label-like component with moving caption and moving
bitmaps. Attracts attention — ideal for running demos.
MHSL200.VBX | MhSlide Slider control useful for simulating audio and
industrial equipment.
P, MHSN200.VBX | MhSpin Spinbutton with embedded value component. Buttons are

either shown horizontally and vertically.

SAXCOMM.VBX| Comm

Serial communications with TTY and ANSI emulation.
Supports X-modem file transfers.

|| i “ TKCHART.VBX | Chart Chart drawing component. Both application supplied data

I and database supplied data.

.| TX4VB.VBX TextControl Rich text component for editing texts with multiple fonts.
Has hooks for the ruler, buttonbar and statusbar.

.| TX4VB.VBX TXRuler Ruler component. For showing positional information of
the TextControl.

.| TX4VB.VBX TXButtonBar Speedbar with buttons and comboboxes to change
appearance of text in the TextControl.

.| TX4VB.VBX TXStatusBar Status line showing positional information of
the TextControl.

E== VTSS.VBX Sheet Spreadsheet component. Automatically links to an
SSEdit component for editing if it is available.

| VTSS.VBX SSEdit Editor portion of the Sheet spreadsheet component.

April 1995

The Delphi Magazine

32

Don’t forget the Subscription Form on Page 41!

Animation Made Easy

by Xavier Pacheco

his article demonstrates how

you can achieve simple sprite
animation using Delphi and the
Object Pascal Language. It also
shows how Delphi simplifies
what is usually considered a
tedious process since Delphi
automatically manages device
context for you.

The example that I've created
illustrates how you would display
a background image (the universe)
and draw a sprite image (the UFO)
at different locations on the
background.

The project’s source code is
shown in Listings 1 and 2:
ANIMATE.DPR and UNIT1.PAS. These
files and the required bitmaps will
be included on the free disk which
will come with Issue 2 of The Delphi
Magazine.

This simple animation example
uses three Windows .BMP files:
BACK.BMP to serve as the main
form’s background, with AND_BMP
and or.BwP to make up the sprite
image - both are 64x32 pixel
bitmaps of a UFO.

A Tsprite class that | have
defined contains the sprite’s prop-
erties that maintain its location on
the form and the create() and
Done() methods.

TSprite.Create creates two
TBitMap classes, FAndimage and
Forimage, and reads in the two
bitmap files using the
TBitMap.LoadFromFile() method. It
then sets its properties Top, Left,
width and Height accordingly.
TSprite.Done frees the memory
used by FAndImage and FOrImage.

The main form has the variables
BackGnd1, BackGnd2 oOf type TBitMap
and sprite of type TSprite. BackGndl
is our original bitmap that we use
for our background. BackGnd2 is the
copy of BackGndli to which we
perform the BitBltQing of the
sprite image.

The reason we do all the drawing
to BackGnd2 instead of the form’s
canvas is because to achieve
animation we must call BitBl1t()

April 1995

The example
program
running, with
the spaceship
scooting across
a starry sky!

It’s in full colour
of course and
this print doesn’t
do it full justice.

Figure 1

three times: once to erase the
sprite on the form’s canvas, once
to AND FAndImage to the form’s
canvas, and once to OrR FOrlImage tO
the form’s canvas. All this drawing
to the form’s canvas results in a
horrible flicker when the image is
drawn continuously.

By performing the gruntwork on
BackGnd2, we can copy a rectangle
surrounding the old sprite location
and new sprite location from
BackGnd2 to the form’s canvas with
one BitBlt() call to eliminate
flicker. Therefore, the overhead of
maintaining a separate copy of the
form’s canvas is justified.

FAndimage (See Figure 1) effec-
tively creates a black hole where
the sprite is to be displayed on the
background and preserves the
background colors where the
sprite does not appear by using the
Bitelt() function with the SrRcAND
operation.

As you can see from the Figure 1,
the sprite is shown where the pixel
color is black. Since each black
pixel has the value 0 and each

The Delphi Magazine

Simple Animation Demn

Figure 2

white pixel has the value 1, when
performing an AND operation of
FAndlmage to the destination
background the resulting color is
preserved where FAndImage’s color
is white. Where FAndImage is black,
the result is black.

BackGround 1001 some color
Image AND 0000 black
Result 0000 black
BackGround 1001 some color
Image AND 1111 white
Result 1001 some color

(same as Destination)

Once I create this black hole, | draw
the actual image, still preserving
the background’s original colors,
by BitBIt(ing Forimage using the
SRCPAINT Operation.

Notice from Figure 2 that the
FOrlmage’s sprite contains the
actual colors while its background
is white, or all 1s. You can see from
the boolean operation below
how oring the color white to
a destination maintains the

33

Don’t forget the Subscription Form on Page 41!

destination’s color. Since we are
oring the sprite to an only-black
background (our black hole), the
sprite’s colors are maintained.

BackGround 1001 some color
Image OR 1111 white
Result 1001 some color
BackGround 0000 black
Image OR 1101 some color
Result 1101 some color

(same as FOrlmage)

All the drawing is performed in the
TForml.DrawSprite method. Here, |
use some simple logic to keep the
sprite within the form’s client area.

| then erase the old sprite from
BackGnd2, re-draw it in BackGnd2 at
the new location, and finally copy a
rectangle from BackGnd2 toO
Forml.canvas to effectively erase
and re-position the sprite on
Forml’s canvas.

TForml.MyldleEvent IS where
TForml.Drawlmage iSs called. | then
assign this method to the
Application.onldle event handler
in TForml.Create. The method
Application.onldle, as the name
implies, is executed when the
application isin 1dle.

TForml.Paint BitBlt(D)S the
original background, BackGndi, to
its canvas.

Notice the Tsprite is not a
component in and of itself, that is,
a descendant of an original Delphi
component such as Tcontrol Or
TGraphicControl.

The reason | did this was
because the form repaints itself
whenever making changes to any
child controls causing a yucky
flicker on the screen. Also, the
Tsprite object was simple enough
that | didn’t really need any data
or methods from an already
existing object.

Although this example is very
simple, it is possible to extend the
functionality of Tsprite to be more
self contained, such as maintaining
it’'s own direction, drawing itself,
and being a non-static image, that
is an image that changes as it is
moved on the background.

Also, I didn’t do anything special
in this example to create true

April 1995

bounces - something | can keep for
a later project!

Xavier Pacheco is a Consulting
Engineer at Borland International.
You can reach Xavier on
CompuServe at 76711,666 or at
xpacheco@wpo.borland.com

Listing 1 ANIMATE.DPR

program Animate;
uses
Forms,
Unitl in “UNIT1.PAS” {Forml};
{$R *_RES}
begin
Application.CreateForm(TForml,
Forml);
Application.Run;
end.

Listing 2 UNIT1.PAS
[Sorry about the small text size, it’s the only way we could get it all
in I’'m afraid, but the code will be on the disk with Issue 2. Editor]

unit Unitl;
interface

uses
SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls,
Forms, Dialogs, Menus, Stdctrls;
type
TSprite = class
private
FWidth: integer;
FHeight: integer;
FLeft: integer;
FTop: integer;
FAndImage, FOrlmage: TBitMap;
public
property Top: Integer read FTop write FTop;
property Left: Integer read FLeft write FlLeft;
property Width: Integer read FWidth
write FWidth;
property Height: Integer read FHeight
write FHeight;
constructor Create(AOwner: TComponent);
destructor Done;
end;
TForml = class(TForm)
procedure FormCreate(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure TimerlTimer(Sender: TObject);
private
BackGnd1, BackGnd2: TBitMap;
Sprite: TSprite;
GoLeft,GoRight,GoUp,GoDown: boolean;
procedure MyldleEvent(Sender: TObject;
var Done: Boolean);
procedure DrawSprite;
end;
const
BackGround = ”BACK.BMP”;

var
Forml: TForml;

implementation

{$R *.DFM}

constructor TSprite.Create(AOwner: TComponent);

begin
inherited Create;
FAndImage := TBitMap.Create;
FAndImage . LoadFromFile("AND.BMP?) ;
FOrlmage := TBitMap.Create;
FOrlImage . LoadFromFile(OR.BMP”);
Left := 0;

't := FAndImage.Height;
Width := FAndImage.Width;
end;

destructor TSprite.Done;
begin
FAndImage.Free;
FOrlimage.Free;
end;
procedure TForml.FormCreate(Sender: TObject);
begin
BackGndl := TBitMap.Create;
with BackGndl do begin
LoadFromFi le(BackGround);
Parent := nil;
end;
BackGnd2 := TBitMap.Create;
with BackGnd2 do begin
LoadFromFi le(BackGround);
Parent := nil;
end;
Sprite := TSprite.Create(self);
GoRight := true;
GoDown := true;
GoLeft := false;
GoUp := false;
Application.Onldle := MyldleEvent;
ClientWidth := BackGndl.Width;
ClientHeight := BackGndl.Height;
end;

The Delphi Magazine

procedure TForml.MyldleEvent(Sender: TObject;
var Done: Boolean);

begin
DrawSprite;
Done := false;
end;

procedure TForml.DrawSprite;
var
OldOrigin: TPoint;
TempRect: TRect;
begin
With OldOrigin do begin
X := Sprite.Left;
Y := Sprite.Top;
end;
with Sprite do begin
if GoLeft then
if Left > 0 then
Left := Left - 1
else begin
GoLeft := false;
GoRight := true;
end;
if GoDown then
if (Top + Height) < self.ClientHeight then
Top = Top + 1
else begin
GoDown := false;
GoUp := true;
end;
if GoUp then
if Top > 0 then
Top = Top - 1
else begin
GoUp := false;
GoDown := true;
end;
if GoRight then
if (Left + Width) < self.ClientWidth then
Left := Left + 1
else begin
GoRight := false;
GoLeft := true;
end;
end;
{Erase the old sprite in BackGnd2 }
with OldOrigin do
BitBlt(BackGnd2.Canvas.Handle, X, Y,
Sprite._Width, Sprite.Height,
BackGndl.Canvas.Handle, X, Y, SrcCopy);
{Draw the sprite at the new location in BackGnd2}
with Sprite do begin
BitBlt(BackGnd2.Canvas.Handle, Left, Top,
Width, Height, FANDImage.Canvas.Handle,
0, 0, SRCAND);
BitBlt(BackGnd2.Canvas.Handle, Left, Top,
Width, Height, FOrlmage.Canvas.Handle,
0, 0, SRCPAINT);
end;
{Copy a rectangle from BackGnd2 to erase and
reposition the sprite to the form’s canvas}
with OldOrigin do
BitBlt(Canvas.Handle, X-2, Y-2,
Sprite._Width+2, Sprite.Height+2,
BackGnd2.Canvas.Handle, X-2, Y-2, SrcCopy);
end;
procedure TForml.FormPaint(Sender: TObject);
begin
BitBIt(Canvas.Handle, 0, 0, ClientWidth,
ClientHeight, BackGndl.Canvas.Handle,
0, 0, SrcCopy);
end;
procedure TForml.FormDestroy(Sender: TObject);
begin
BackGndl.Free;
BackGnd2.Free;
Sprite.Free;
end;
procedure TForml.TimerlTimer(Sender: TObject);
begin
DrawSprite;
end;

end.

34

Don’t forget the Subscription Form on Page 41!

The _Delphi
Clinic

Edited by Bob Swart

Bring your problems to our panel of experts!

If there’s something puzzling you about an
aspect of Delphi, just email the Delphi Clinic
Editor, Bob Swart, at Compuserve 100434,2072
or write or fax us at The Delphi Magazine

I've just installed Delphi and
| just can’t get it to run right.
| ke€p getting errors like:

Application Error. Exception
EDatabase Error in module
FormExpt.DLL at 0007:0EAC.
Failed to initialize IDAPI.
Error code $2C09.

What’'s gone wrong?

APIease see if you’ve got SHARE
loaded in your AUTOEXEC.BAT.
The correct line there should read
(at least):

SHARE /F:4096 /L:40
Alternately, you could use:
device=vshare.386

in the [386Enh] section of the
SYSTEM.INI file. Note that Delphi
does ask Windows whether or not
share is loaded, but Windows
(incorrectly) always reports SHARE
to be loaded, even if it isn’t.

I’'m building a Delphi compo-

nent and want to be able to
tellifit’s being used in design mode
or at run time. How can | do this?

AAIthough most Delphi
components work in design
mode exactly the same way they
work in execution mode, you can
easily make your code detect
whether or notyou’re still in design
mode or execution mode. The flag
cdDesigning in the ComponentState
will give us this information, for
example:

IT csDesigning in
ComponentState then
MessageDlg(’Design Mode~”,

mtinformation, [mbOk],0)

April 1995

This very nice feature enables us
to put a lot of extra (debug) code
and information at design places
that are no longer used then we
generate a true .EXE. All with the
same codel!

Is the file type Text no longer

supported? | used it a lot in
Borland Pascal, but this code gives
me a compiler error Error 21:
Error in type:

procedure TForml.ButtonlClick(
Sender: TObject);
var myFile: Text;

AThe error message is pro-
duced because Text is also a
property of the button. To get the
Text file type, use System.Text tO
scope it to the system unit. The
same is true for close and Assign.
Alternatively, use the new Delphi
only TextFile, AssignFile and
CloseFile procedures.

| understand that identifiers

in the private section of a
clasS or object are of course
private and identifiers in the public
section are public, but what about
the componentdeclarations added
automatically by Delphi above the
private section. What access rights
do they have?

Alt seems that (unless speci-
fied otherwise) the fields,
methods and properties of objects
are all published: that is they are
both public and automatically
appear in the Object Inspector.

Published parts have run-time
type information generated for
them which is available to the
Object Inspector. You can find
more information on this subjectin
the Delphi Component Writers
Guide.

The Delphi Magazine

How do | go about working

with Microsoft Access files
in DElphi? I've heard several people
say they have had difficulties.

AYou can work with Microsoft
Access .MDB files in a Delphi
application using an ODBC driver.
Delphi actually gives you all you

need, but the process is not imme-
diately obvious! Here are the steps.

What You Need

First, check you have the ODBC
Administrator installed (file
ODBCADM.EXE in WINDOWS\SYSTEM, yOUu
also need the file obBCINST.DLL, for
installing new drivers, and
0DBC.DLL). The ODBC Administra-
tor should be shown in Control
Panel as the ODBC icon. If you
didn’t have it already, it should
have been installed when you
installed Delphi.

If you get a message to the effect
that “Your ODBC is not up-to-date.
IDAP1 needs ODBC greater then 2.0"
you have an earlier version and
should replace it with the one
included with Delphi.

Check you have an Access ODBC
driver installed in Windows. You
can do this by clicking Drivers in
the Data Sources dialog which
appears when you run the ODBC
Administrator. Delphi installs an
entry Access Files (*.mdb) Or
Access Data (*.mdb), which works
with Access 1.10 files and uses the
SIMBA.DLL driver (note that this DLL
also needs thefiles Rep110.0LL and
siMADMIN_DLL — all installed for you
by Delphi). These files are redis-
tributable with your programs as
part of the ReportSmith Runtime.

If you want to work with Access
2.0 or 2.5 files, you need to obtain
a different set of driver files from
Microsoft. The key file is
MSAJT200.DLL, also needed are

35

Don’t forget the Subscription Form on Page 41!

MSJETERR.DLL and MSJETINT.DLL. Ask
for the ODBC Desktop Drivers,
Version 2.0. The cost in the USA is
$10.25. If you have MSDN Level 2
they are on the January Develop-
ment Platform CD 4, in \0DBC\X86
with the ODBC 2.1 SDK.

There is apparently an update
for these drivers for Access 2.5files
on the MSACCESS CompuServe
forum.

Note that the Access ODBC
driver included with certain
Microsoft applications (eg MS
Office) can only be used with other
MS applications. They may appear
to work but sooner or later will
come back to bite you! The line to
watch out for (and avoid!) in the
ODBC Administrator drivers list is
Access 2.0 for MS Office (*.mdb).

You can install new ODBC driv-
ers using the ODBC Administrator
in Control Panel.

Adding An ODBC Data Source

If you've got all the files you need,

you are ready to proceed. The

example presented here uses the

Access 1.10 driver supplied with

Delphi. Using the ODBC Adminis-

trator, set up a data source for your

Access files:

O Click Add in the data sources
dialog box to display the Add
Data Source dialog, then select
Access Files (*.mdb) (Oor what-
ever the appropriate entry is for
the driver you have installed).

O In the oDBC Microsoft Access
setup dialog (Figure 1 top) enter
a name in the bata Source Name.
We'll use My Test. Enter a
description of the Data Source
in the pDescription text box.

O Click select Database to open
the select Database dialog.
Navigate to the directory where
your Access .MDB files are and
select one (Figure 1 bottom).

O We'll select a file TEST.MDB in a
directory C:\DELPROJ\ACCESS.
Click OK in the Setup dialog.

You will now have an entry in

the list of Data Sources of

My Test (Access Files *.mdb).

Click close to exit the ODBC Admin-

istrator. You can set up more Data

Sources as required, using the

same method.

April 1995

| |

0DBC Microsoft Access Setup

Data Source Hame: IM_-,I Test

0K

| Select Database._. I |

Create Database. . I

Description: !Access Test Databaze]
| Cancel |
rDatabaze
Help I
Database: c:\delprofraccessitest. mdb

Options>»

i;. Select Database

Database Mame: Directories:
|m c:\delproj\access
test. mdb = er
[= delproj
#= access
List Files of Type: Dirives:

|EI

Access Databases

! c: tanya

Figure 1
M New s
Add ODAC Debear H.W alias name:
= W _TEST
SOL Uik Drbwest ODBC_[4CCESE l |
. Allas typa)
Dinfauft OOEE Debnr ccess Faes ray B —
Detauit Data Somoe Mo EI'_E:H_ &
e 1 [ww] el [_ox][gonest || tew |
Figure 2 Figure 3

BDE Configuration Utility - D:\IDAPRIDAPLCFG
Help

File Pages

Alias Names: Parameters:

DEDEMOS

P TYPE ODBC_ACCESS
FATH

i USER MAME

ODBC DN Wy Test
OPEN MODE READMRITE
SCHEMA CACHE SIZE g
SOLORYMODE
LANGDRIVER
EQLF‘ASSTHH‘U MODE

| New Alias I

‘ Delete Alias ” Help I

Description:

Y Drivers 4 Sliases 4 System ADate § Time Ahumber f

The Delphi Magazine

Figure 4

36

Don’t forget the Subscription Form on Page 41!

Setting Up The

Borland Database Engine

Now load the Borland Database

Engine (BDE) Configuration Utility.

On the privers page click New 0DBC

Driver. Note that this adds an

Access driver to BDE and is a com-

pletely separate exercise to adding

an Access driver to Windows using
the ODBC Administrator.

O In the add obpBC Driver dialog
presented (Figure 2), enter
AccEess (or whatever you like) in
the top edit box. BDE adds obsc_
in front automatically.

O In the combobox underneath
select Access Files (*.mdb).
Select the Data Source in the
next combobox (Default Data
Source Name) — these are the
Data Sources you have set up in
the ODBC Administration
Utility. You needn’t worry
which one you select, as you
can change it later as we’ll see.
Click ok.

Onceyou’ve set up this BDE Driver,

you can use it to talk to more than

one ODBC Data Source, using a

different Alias for each ODBC Data

Source. To set up an Alias, switch

to the Aliases page and click

New Alias.

O In the Add New Alias dialog
(Figure 3), enter an Alias Name Of
your choice. We'll use My_TEST
(note that spaces are not
allowed).

O In the Alias Type combobox,
select the ODBC driver name
that you just created (in our
case 0DBC_ACCESS). Click ok.

O Ifyou have more than one ODBC
Data Source, alter the obBc DSN
Parameter (“DSN” = “Data
Source Name”) in the list of
parameters for the Alias to the
appropriate ODBC Data Source
(Figure 4), as set up in the ODBC
Administrator.

O Note that you needn’'t add
anything in the path Parameter,
as the ODBC Data Source
already has this information. If
youdo add apath, make sure it’s
correct or things won’t work!

Now save the BDE configuration by

selecting File|save on the menu

bar, then exit the Database Engine

Configuration Utility.

April 1995

In Delphi

Start a new Project and drop a

Table and DataSource onto the form

from the Data Access page of the

Component Palette. Then drop a

DBGrid onto the form from the pbata

Controls page.

O For the Table, set the
DatabaseName in the Object
Inspector to My_TEST — the Alias
you set up in the BDE Configura-
tion Utility (Figure 5). Now go
down and click the buttonin the
TableName combobox.

O You will be asked to Log In to
the Access My_TEST database.
Note that you don’t need a User
Name or Password unless they
have been specifically set up, so
just click ok.

O After apause thelist ofavailable
tables for the ODBC Data
Source pointed to by the BDE
Alias you have set up will
appear in the combobox. Select
TEST (Figure 5 again).

0O For the DataSource, set the
DataSet property in the Object
Inspector to Tablel (Figure 6).

O For the DbBGrid, set the
DataSource property in the
Object Inspector to bataSourcel
(Figure 7).

O Return to the Table and set the
Active property to True in the
Object Inspector.

The data from the TEST table will

now be displayed in the grid. And

that’s all there is to it!

One thing to beware of is that if
you create an application which
uses Access tables and then Run it
from within the Delphi IDE, you will
get an error if you attempt to

modify the data in the table(s). If
you run the compiled .EXE file
outside of Delphi (having closed
Delphi), everything will be fine.

The ODBC error messages unfor-
tunately tend to be obscure and
difficult to relate to what’s going on
in your application, but checking
the setup in the ODBC Administra-
tor and the BDE Configuration
Utility usually sorts things out.

If you want more reference infor-
mation, try the ODBC 2.0 Program-
mer’s Reference and SDK Guide
from Microsoft Press (ISBN
1-55615-658-8, US price $24.95).

As we go to press, there have
been various reports of problems
with using ODBC for getting at
Access files. Some of these reports
have been from users of Delphi
field test versions, where things
didn’twork fully. Other reports are
simply a result of users not using
the correct procedure to set up
ODBC links — which is why we’ve
included this run-down. It is possi-
ble that there may still be some
genuine difficulties remaining and
if so we’d like to hear from you!

Finally, note that if you need to
create new Access 1.10 tables you
can use the Database Desktop
included with Delphi.

Helping with the answers for the
problems in The Delphi Clinic for
this issue were Ralph Friedman
(CompuServe 100064,3102), Bob
Swart and Chris Frizelle. Thanks
everyone! Don’t forget to keep
sending in your problems and
queries to us...

Figure 5 Figure 6 Figure 7
= Object Inspector n i Object Inspector ﬂ Object Inspector
|Table'|: TTable i! IDataSource1: TDataSource |!
At Fal AutoEdit Tiue
DataSet :
_ Enatled True il efault j
DataSource |DataSource] [#]

= eaanl}I

TableMame TEST| [E3
D efault

TableType
Ta

Froperties

' Propetties AE vents /

DefaultDrawing | True

\ Properties E vents /

The Delphi Magazine

37

Don’t forget the Subscription Form on Page 41!

T&E Eﬁricks

This is your column! Here is your opportunity to
share with your fellow Delphi enthusiasts those
hard-won hints and helps that make your life
easier day by day. We have asimilar column in our
sister publication, The Pascal Magazine, and it is
one which readers constantly comment on as
being especially useful. However, we need your
input, so please do send in your Tips & Tricks to us
(preferably by email), whether large or small, on
any aspect of Delphi or related issues.

Assigning Initial Property Values

Something which can seem confusing until you get the
hang of what’s happening is assigning initial values to
properties when writing Delphi components. Consider
the tiny Delphi component shown in Listing 1. If we
compile the unit as a component and add it to the
component palette, we see that the value assigned in
the create routine is not there when we try to use the
component in Delphi.

All properties have a default value. If none is
specified in the property definition, the value is
whatever evaluates to zero. The streaming code does
not write a property to the form file if its value is its
default value. This causes the create code to be
executed whenever we set the value of Info to zero in
the Object Inspector, while the streaming code is only
executed if the value from the Object Inspector is set
to something other than zero.

Rather than try to initialise Info in the Create proce-
dure, we should have given the property an initial
(default) value when defining the TBob class using the
default keyword:

published
property Info: Integer
read FInfo write SetInfo
default 1;

Auto-deleting Code

Delphi not only automatically generates code, it is also
capable of deleting event handler code on request. If
the event handler has no code between the begin and
end statments, saving or recompiling the project will
cause the method to be removed from the source. Note
that an event handler does NOT disappear just because
you’ve removed the last reference to it. You might be
“unhooking” the handler from one button and getting
ready to create another button and reconnect the
handler to it.

Exit Windows API

The Exitwindows function has always been incorrectly
documented. Microsoft got itwrong in their documents
and everyone else followed along with this incorrect
documentation. The correct definition is:

function ExitWindows(
dwReturnCode: Longlnt;
Reserved: Word): Bool;

Actually you can define it other ways, but the important
thing is that the return code itself must be in the word
at [sp+8] (from Exitwindows’ point of view). The
definition in the API help file places the return code
at [BP+6].

The tips in this issue were contributed by Bob Swart
(email: CompuServe 100434,2072)

Listing 1

unit DRBOB;
interface
uses Classes, Controls, StdCtrls, Dialogs;
Type
TBob = class(TWinControl)
private
Finfo: Integer;
procedure Setlnfo(Value: Integer);
protected
constructor Create(AOwner: TComponent); override;
protected
StartButton: TButton;
procedure StartButtonClick(Sender: TObject);
published
property Info: Integer read FInfo write Setinfo;
end {TBob};
procedure Register;
implementation
constructor TBob.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
Info := 1; { Try to set FInfo to 1 at Design time }

April 1995

StartButton := TButton.Create(Self);
StartButton.Parent := Self;

StartButton.Visible := True;
StartButton.Caption := *Click me...”;
StartButton.OnClick := StartButtonClick;

SetBounds(Left,Top,90,36)
end {Create};
procedure TBob.StartButtonClick(Sender: TObject);
var InfoStr: String;
begin
Str(Info, InfoStr) ;
MessageDlg(InfoStr, mtinformation, [mbOk], 0)
end {StartButtonClick};
procedure TBob.Setlnfo(Value: Integer);
begin
FInfo := Value;
end {Setinfo};
procedure Register;
begin
RegisterComponents(’BOB”, [TBob]);
end {Register};
end.

The Delphi Magazine 38

Don’t forget the Subscription Form on Page 41!

Review: The Chief’s Installer Pro

Reviewed by Bob Swart

So, you’ve written your first Delphi application and
it’s just great. Now, all you have to do is write the
installation program. Or add that one missing feature
that makes your great app a killer app... Unfortunately,
you only have time to do one thing. Then it’s time to
pick up a copy of The Chief’s Installer Pro for Windows.
It will lift the burden of the install program from your
shoulders, and give you more time to concentrate on
your own application instead!

The Chief’s Installer Pro can be used to install and
optionally uninstall your Windows applications. It is
able to copy files from up to 45 floppy disks (although
| must say | haven’t tested it with more than 3). Files
compressed with compress_EXE (and the -r flag) will be
expanded automatically using LZEXPAND.DLL.

The main program INSTALL.EXE can be used quite
happily on its own. For foreign language support, you
can create a file called WINSTALL.DLL with a string table
for your non-English strings. The original English
version is also included in .RC source form. It is very
much appreciated if you send The Chief your “country
specific version” of the WINSTALL.DLL (see the
address at the bottom).

If the files you wish to install do not fit on one disk,
you can use the SeTup.EXE program which is also
supplied. seTup is just a small loader that makes sure
INSTALL .EXE and any optional support files are copied
to the TeEwpP directory, so you’re not continually
prompted for Disk 1 with INSTALL.EXE.

The actual install instructions for your program are
written in an ASCII file called winSTALL. INF. The Chief’s
Installer Pro comes with some useful example . INFfiles
and a detailed Windows Help file with information on
the syntax. It’'s quite simple and yet powerful enough
to do whatever you want, such as:

O Partial or optional installations;

0O Checking available space;

0O Writing to . In1 files;

O Creating new Program Manager groups and icons
for target files;

O A bitmap, banner and progress indicators during
the installation;

0 Messages or programs to start at the end of or
during installation.

It’s all there, and more too that we don’t have space to

discuss! The screen shots (from the install of The

Chief’s Installer Pro itself) give you a good idea of how

your own installation will look.

And then there’s the UNINSTAL .EXE, which can be used
to uninstall any program that was installed with The
Chief's Installer Pro. Note that you have to set an option
in WINSTALL. INF tOo generate an UNINSTAL.LOG file that is
needed to uninstall your application. Of course, your
application will be so good that nobody would want to
uninstall it, butit’s a very nice feature to have available!

April 1995

{Civiel™s Tnstaller Pro for Windows

Main installation screen with the
now obligatory colour fade background!

By Maknsled Pio Insiall

Display of

progress Baalalling -
information -3CH | E PRGN

during an ! SHIWLOG THT %62
installation l [1

i

The Chief’s Installer Pro is shareware. You'll find an
evaluation copy on the disk with Issue 2 of The Delphi
Magazine (this is a full version, not crippled, but if you
want to continue using it then you need to register it of
course!). If you can’t wait that long, check Library 4 of
the CompuServe WINSHARE forum. The registration
fee is only £20 or US$29 or equivalent. There are a
number of registration sites around the world which
accept local funds, or you can register on CompusServe.

Personally, | think The Chief’s Installer Pro is a very
good program, and well worth the modest registration
fee. I've already used it on two of my applications and
it enabled me to spend more time on the programs
themselves! | can recommend it to anyone who wants
their applications to be installed in a professional way
without spending the earth. As we go to press we have
learnt that it has been awarded a Gold Award by PC Plus
Magazine in their April 1995 UK edition.

The Chief’s Installer Pro is written (in Borland Pascal!)
by Dr A Olowofoyeku (aka The African Chief), who
can be reached c/o John Barton, 57 Baddeley Green
Lane, STOKE ON TRENT, Staffs ST2 7JL, United King-
dom. Email to laal2@keele.ac.uk or chief@mep.com

The Delphi Magazine 40

Subscribing To The Delphi Magazine

The best way to stay at the cutting edge of Delphi
development is to keep on reading The Delphi
Magazine! You will receive 6 issues a year, with
in-depth technical articles, regular columns, Tips &
Tricks, the Delphi Clinic, news, book and product
reviews, we aim to make you more productive and
help you enjoy your Delphi development even more.

As well as all this you will also receive a free disk
with each issue, containing all the code from that
issue, plus shareware and public domain libraries
and tools.

What'’s the catch? Well, much as we would like to,
we can’t keep sending The Delphi Magazine to you

free, so to keep up with all that’s new that’s Delphi
you need to take out a subscription! We think you’ll
agree, though, that this represents excellent value
for money and we are sure you won’t want to miss
asingle issue. We airmail all overseas copies, too, to
make sure you get it FAST.

Simply fill out the subscription form below and
send it off by post or fax as indicated. If you prefer,
you can subscribe by CompuServed email (we
strongly recommend you do not use Internet email
for security reasons). Telephone subscription
orders are welcomed on 0181 460 0650 (UK callers)
or +44 181 460 0650 (international callers).

The Delphi Magazine Subscription Request

Please complete this form and post or fax it to:

The Delphi Magazine, 41 Recreation Road, Shortlands, BROMLEY, Kent BR2 ODY, United Kingdom
Fax subscriptions to: 0181 460 0650 (UK) or +44 181 460 0650 (International)

Payment must be included, a receipt will be sent to you. Sorry, NO purchase orders! DM 1
Name (Mr/Ms)
Position Company
Address
City/Town
County/State Postcode/Zipcode
Country Email
Telephone Fax
Subscription (please tick)
J United Kingdom £25.00 U Europe £27.00 Note: varying costs reflect postage.

[J USAor Canada £32.00
Payment Method (please tick)

[] Rest of the world £34.00

£1 Sterling is approximately US $1.50.

L] Please debit my [Visa [Mastercard/Access credit card (tick as appropriate) by £

Card Number:

Expiry date: Month: Year:

Name on Card:

Signature:

Note: Your credit card will be debited by the Sterling amount shown above, converted to your local currency by your credit card company

[1 enclose a Sterling cheque, Eurocheque or bank draft drawn on a United Kingdom
bank (ie the bank’s address on the cheque/draft is in the UK), or a Eurocheque, for £

Please make your cheque payable to ITEC

Sorry, we can’t accept payment by bank transfer or Giro transfer.

About You

Note: please do not send
payment in other currencies

What operating systems/environments do you use? (please tick)

[J Windows [] DOS LJ 0s/2

[J Macintosh [J Unix [J Mainframe

Which manufacturer’s compiler(s) do you use? (please tick)

] Borland [J Microsoft [J Symantec
What languages do you use? (please tick)
LIC/IC++] Basic

[] PowerBuilder [] Assembler

] Other:

] Pascal (non-Delphi)

[Pplease tick here if you do not wish to receive information on relevant products and services from other companies.

April 1995

The Delphi Magazine

41

Don’t forget the Subscription Form on Page 41!

The Delphi Magazine

is an independent journal, published six times per
year, for developers using Borland’s Delphi product.
It is published in the United Kingdom by iTec and

is available by subscription only. All overseas copies
are sent by air for prompt delivery.

Editor: Chris J G Frizelle
Contributors:

Ralph Friedman Dave Jewell Xavier Pacheco
Jeroen Pluimers Sundar Rajan Mike Scott
Bob Swart Steve Teixeira

Caveat: Whilst we endeavour to ensure that what is
published in the magazine is correct, we cannot accept
responsibility for any errors or ommissions. If you notice
something which you feel may be incorrect, please
contact the Editor and we will publish a correction
when possible.

Submissions: Letters, comments, ideas for articles
and Tips & Tricks pieces are welcomed and should be
sent to the Editor.

Copyright: All material published in The Delphi
Magazine is Copyright © iTec unless otherwise noted
and may not be copied, distributed or republished
without written permission.

Trademarks: All trademarks used are acknowledged
as the property of their respective owners.

Contact:

The Delphi Magazine

iTec, 41 Recreation Road, Shortlands
BROMLEY, Kent BR2 ODY, United Kingdom
Tel/Fax: +44 (0)181 460 0650

Email: 70630.717@compuserve.com

Advertising:
Leigh Foster, Advertising Manager
TellFax: +44 (0)1234 241454

Production:

Design and typesetting at iTec.

Printed by GNBA Design & Print, Bawtry
United Kingdom. Tel: +44 (0)1302 710576.

If your company produces products or services
relevent to Delphi developers you should be here! We
can cater for all advertising budgets, with sizes and
specifications from one eighth page mono to full page
full colour, plus attractive discounts for series book-
ings. Call our Advertising Manager, Leigh Foster, on
01234 241454 for more information. Alternatively you
can write, fax or email us, using the contact information
below, and request a Rate Card.

April 1995 The Delphi Magazine

42

	4

