
SPECIAL ELECTRONIC SAMPLE EDITION 1996

Subclassing Windows

Inside TApplication
Writing Your Own Experts

Using Resource Files

Optimising
Display
Updating

Delphi Internals

Included in this sample
edition are all these
articles from previous
issues...

Dave Jewell shows how to detect CPU type

Surviving Client/Server

Plus...
andThe Delphi Clinic Tips & Tricks

An introduction to SQL by Steve Troxell

Under Construction
Bob Swart on creating custom property editors

A FREE DISK IS INCLUDED
WITH EACH ISSUE, WHICH

CONTAINS ALL THE SOURCE
CODE AND EXAMPLE FILES

PLUS LOADS OF SHAREWARE
AND FREEWARE COMPONENTS

AND TOOLS AS WELL!



Contents
3 About The Delphi Magazine

4 Subscription Form
Details of how to subscribe to
The Delphi Magazine and receive
13 issues for the price of 12!

5 Subscribing From USA & Canada
How to subscribe in US dollars with
our North American Agent

6 Under Construction:
Property Editors
Bob Swart shows how to add custom
property editors to your components,
finishing up with a new image property
editor you can plug straight into Delphi
(excerpted from Issue 6 this is an
example of Bob’s monthly column)

12 Using Resource Files In Delphi
Dave Bolt uncovers the mysteries of
using bitmaps, icons and cursors;
Ken Otto chips in on creating custom
cursors and Brian Long adds a note
on using resources by number rather
than name (excerpted from Issue 5)

17 Delphi Internals: CPU Type
Build a component to identify current
and future CPU types with Dave Jewell
(excerpted from Issue 5 this is an
example of Dave’s monthly column)

20 The Delphi Clinic
Answers to your problems, with
Brian Long (excerpted from Issue 5,
this column appears each month)

23 Inside TApplication
Nick Hodges shows how to take
advantage of TApplication’s features,
with extra tips from Hallvard Vassbotn
too (excerpted from Issue 4)

28 Surviving Client/Server:
Getting Started With SQL, Part 1
Steve Troxell with the first of a 2-part
series on the basics of the SQL language
(excerpted from Issue 3 this is the first
of Steve’s monthly columns on client/
server development)

34 Writing Your Own Experts
Bob Swart shows that creating Delphi
experts isn’t that hard, as he takes us
through the steps of building a DLL
Skeleton Generator Expert (excerpted
from Issue 3)

38 Tips & Tricks
Hints and helps to make your life easier
(excerpted from Issue 3, this column
appears each month)

41 Subclassing Windows
Brian Long shows how to customise
your windows and controls using
various subclassing techniques
(excerpted from Issue 2)

46 Optimised Display Updating 
Mike Scott shows how to make
your screen refreshes really fast
(excerpted from Issue 1)

We have tried to include a varied selection of articles from past issues of The Delphi
Magazine in this electronic sample edition and hope you enjoy them all. Current issues
are 68 pages and contain more than we have been able to include in this electronic
sampler. We currently have copies of all back issues, which come complete with
their code disks containing the source and example files for these articles and a
whole lot more. To receive back issues, just tick the box ‘Please send me all available
back issues’ on the subscription form. To go to the subscription form page please
CLICK HERE FOR ANY COUNTRY      or      CLICK HERE FOR USA AND CANADA .



Published monthly, each issue includes regular columns on building
components and experts, client/server development, system-level issues,
with to solve your problems and too.

Plus there are in-depth feature articles. Topics we've covered so far
include: performance optimisation, resource files, callbacks, file handling,
screen capture, custom database logins, typecasting, moving from other
languages, custom clipboard formats, display updating and drag & drop.

And in case that isn't enough there's product and book reviews and
news. With each issue we include a containing all the source
and example files plus shareware/freeware components and tools as well.

The Delphi Clinic Tips & Tricks

free disk

Get Expert
Help With
All Your
Delphi
Projects...

Get Expert
Help With
All Your
Delphi
Projects...
DELIVERED TO
YOUR DOOR, EVERY MONTH!
DELIVERED TO
YOUR DOOR, EVERY MONTH!

For more information, call or fax us on +44 (0)181 460 0650
or email us on 70630.717@compuserve.com

The Delphi Magazine is produced by Delphi developers for Delphi
developers. We aim to provide the best technical material to help
you develop better applications more quickly.

There's more information and a subscription form overleaf.
Subscribe now and we'll send you 13 issues for the price of 12!

Issue 5, January 1996

UK £6.50

How To UseResource FilesScreen CaptureCallbacks Part 2Typecasting Part 3

Delphi 2.0 AndThe New 32-Bit BDE

Delphi 2.0 AndThe New 32-Bit BDE

RIGHT:Add spell checkingto your apps withjust two lines ofcode using Eminent
Domain's shareware

EDSSpell componenton the disk!

ABOVE:Delphi 2.0's newmulti-objectgrid , just oneof the goodthings comingour way soon...

Delphi InternalsDetect CPU type with Dave Jewell

Surviving Client/Server
TTable or TQuery? Ask Steve Troxell

Under Construction
Bob Swart on adding custom events

FULL DISKCONTENTSPAGE 64

INCLUDED ON THIS MONTH'S
DISK ARE A DATA-AWARE
OUTLINE COMPONENT,

AN EQUATION PARSER,
EASY MULTI-LANGUAGE

SUPPORT AND MUCH MORE!

NOW MONTHLY!



The Delphi Clinic
Edited by author,
consultant and
trainer Brian Long,
the Clinic answers
readers' “How do
I...” and “Why
won't it” queries
every month.

Delphi Internals
Dave Jewell helps make
sense of the system-level
issues which are so
rarely discussed in
programming books,
with practical advice on
topics such as converting
projects to 32-bit, how
to identify CPUs and
drives, disk formatting
and creating/using DLLS.

Surviving
Client/Server

Written by Steve
Troxell, this column

provides insights and
practical help on your
Client/Server projects.
Topics have included

an introduction to
SQL, choosing TTable

or TQuery, plus stored
procedures and triggers.

Under Construction
Bob Swart, known to many as “Dr.Bob”, writes
this monthly column on how to build your own
Delphi components and experts, providing
practical insights from his own development
experience into what many have found to be
an extraordinarily productive area of Delphi
development. Topics covered so far include
component building basics, encapsulating DLLs,
extending components, adding built-in help,
custom events, property editors and building
data-aware components.

Tips & Tricks
Readers' hints on getting
the best out of Delphi,
from Windows API insights
to customising the VCL.

Plus there's much more...
Of course there are also in-depth feature articles,
reviews of Delphi add-ons and books, plus an
update on news in the Delphi world, in every
issue of The Delphi Magazine. Our team of
authors are some of the most knowledgeable
and experienced Delphi developers around.
Readers from over 40 countries are already
benefiting from their insights – why not join
them? Fill in the subscription form below and
send it off today, or just telephone/email us.

Under Construction:
Property Editors
by Bob Swart

Delphi offers a Tools API,
which allows us to extend the

functionality of the Delphi IDE
itself. There are four different
Tools API interfaces: for Experts
(see Issue 3), Version Control
Systems, Component Editors and
Property Editors. They offer us
the functionality we need to add
new IDE features or enhance the
existing ones!

Property Editors
Property editors are, like Experts
and Version Control Systems, in
this sense extensions of the Delphi
IDE. That may sound very difficult
or complex, but is in fact very easy.
You can even write a property
editor without knowing it – for
enumerated types, for example.
Remember the color property of a
TForm? When you want to enter a
value, you get a drop-down list
showing all possible choices.
That’s an enumerated type prop-
erty editor, a very easy one, and we
can make one with only a few lines
of code.

As an example, I’ve picked the
Starfleet rank overview (as a
confirmed Trekkie what do you
expect!). Or, in Object Pascal, the
enumerated type which is shown in
Listing 1.

In this case, like all other enu-
merated types, we must make sure
that the user cannot make a mis-
take, by typing “commonder”
instead of “commander” for exam-
ple. We need to offer a list of limited
choices: a drop-down list. Well,
that’s exactly what the user gets
when s/he drops the TOfficer
component shown in Listing 2 onto
a form (see Figure 1).

So, we haven’t done anything
special but our first personal
property editor is up and running!
And who knows, it might even be
your second or third, now that you
think about it...

There’s actually much more to
property editors than meets the
eye and we’ve only scratched the
surface. Let’s look deeper and see
if we can do even more. To do that,
we need to check out the one Tools
API source file which defines the
behaviour of the property editors
for which you do need to write
code: DSGNINTF.PAS (in directory
\DELPHI\SOURCE\VCL). This file
contains not only the definition for
the base class TPropertyEditor, but
also numerous derived property
editors for the properties of the
VCL components of Delphi itself.
Most of these property editors are
available for our use as well, like
the TEnumProperty we used for the
TRang enumerated type in the first
example.

Existing Property Editors
Before we actually take a look at a
property editor from the inside,
let’s first examine what kinds of

property editors already exist in
Delphi. To do that, start a new
project, add uses DsgnIntf; to the
implementation section, compile,
open the browser and search for
TPropertyEditor – see Figure 2.

unit Officer;
interface
uses Classes;
Type
  TRang = (cadet, midshipman, chief, ensign, junior_lieutenant, lieutenant,
    lieutenant_commander, commander, captain, commodore, admiral);
  TOfficer = class(TComponent)
  private
    FRang: TRang;
  published
    property Rang: TRang read FRang write FRang;
  end;
procedure Register;
implementation
procedure Register;
begin
  RegisterComponents(’Dr.Bob’, [TOfficer]);
end;
end.

➤ Listing 2

Type
  TRang = (cadet, midshipman, chief, ensign,
           junior_lieutenant, lieutenant,
           lieutenant_commander, commander,
           captain, commodore, admiral);

➤ Listing 1

➤ Figure 1

February 1996 The Delphi Magazine 17

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Service Not Good Enough

QThe Delphi online help and
documentation on the

subject of DDE says that a Delphi
DDE server application’s service
name, or application name, will
match that of the project without
the extension. Can this be altered
(ReportSmith does not conform to
this rule)?

AWell, ReportSmith is not
written in Delphi (perhaps it

wouldn’t be so big and slow if it
were), but that’s not the point.
Indeed this rule can be altered. The
DDE components make use of a
component called DDEMgr, of the un-
documented component type
TDDEMgr, which has a property
called AppName, used to define the
DDE service. Fortunately, DDEMgr is
declared in the interface section of
the DDEMan unit, so something like:

DDEMgr.AppName :=
  ’NewDDEServiceName’;

in your server form’s OnCreate
handler should do the trick.

Combo Woes

QThe TDBLookupCombo.OnClick
event doesn’t fire if I click on

the drop down list. However
OnClick does work in this way for
the other combo box components.
What’s wrong with it?

AThe TDBLookupCombo is not a
real combo box, but is made

up from, among other things, an
edit box and a list box. This is also
why a TDBLookupCombo on a form
with a FormStyle of fsStayOnTop
doesn’t show its drop down part at
all: the list box used by the VCL
stays behind the stay-on-top form.

Although the list box part of this
fake combo does have an OnClick
event handler, it is only used to
determine when to hide the
list box.

We can improve the situation by
extending the functionality of this
listbox’s OnClick event and causing
it to also call the TDBComboBox’s On-
Click in a new component. Listing
1 shows how. The constructor for
TNewDBLookup searches through its
own component list until it finds a
TPopupGrid (a class based on a
TDBLookupList),  then replaces its

OnClick handler with a new
method, saving the old one first.
The new handler calls the old one,
then calls the previously uncalled
OnClick handler.

Microsoft Products
And Floating Point

QI have a DLL written in a
Microsoft C compiler which

exports a function returning a
Double. When I try and call it, I don’t
get the values I expect. Is there a
compatibility problem between
Borland and Microsoft products?

AThat’s exactly what the
problem is, and it usually

shows up with functions that
return floating point values. For
example, a Visual Basic application
will have trouble getting a function
in a Delphi DLL to return a floating
point value (hereafter referred to
as a float for brevity), as will an
Excel or Microsoft C application.

Regardless of what compiler
options are used, Borland prod-
ucts cause functions to return
floats on the NDP (Numeric Data
Processor, or 80x87 co-processor)
stack.

unit Newcomb;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls, DBLookup;
type
  TNewDBLookup = class(TDBLookupCombo)
  private
    FOldGridClick: TNotifyEvent;
  protected
    procedure NewGridClick(Sender: TObject);
  public
    constructor Create(AOwner: TComponent); override;
  end;
procedure Register;
implementation

constructor TNewDBLookup.Create(AOwner: TComponent);
var  Loop: Word;
begin
  inherited Create(AOwner);
  for Loop := 0 to Pred(ComponentCount) do

    if Components[Loop] is TPopupGrid then
      with Components[Loop] as TPopupGrid do begin
        FOldGridClick := OnClick;
        OnClick := NewGridClick;
        Break;
      end;
end;
procedure TNewDBLookup.NewGridClick(Sender: TObject);
var  FOnClick: TNotifyEvent;
begin
  if Assigned(FOldGridClick) then
    FOldGridClick(Self);
  FOnClick := OnClick;
  if Assigned(FOnClick) then
    FOnClick(Self);
end;
procedure Register;
begin
  RegisterComponents(’Samples’, [TNewDBLookup]);
end;
end.

➤ Listing 1

56 The Delphi Magazine Issue 6

Delphi incorporates some very
useful database components

that make developing database
applications a breeze. And because
Delphi ships with a local version of
Borland’s InterBase database
server, a great number of applica-
tion developers now have an easy,
inexpensive means of exploring the
world of Client/Server technology
right at their fingertips. For these
reasons, many fledgling Delphi
programmers may be introduced
to Structured Query Language
(SQL) for the first time. This article
is intended to introduce you to the
principal SQL data access
statements: SELECT, INSERT,
UPDATE and DELETE. These are the
workhorses of SQL and by the end
of this article you’ll be able to
effectively use SQL to accomplish a
wide variety of tasks. We’ll
continue to expand our knowledge
of SQL in the next issue.

All of the examples in this article
use the sample InterBase database
EMPLOYEE.GDB that ships with
Delphi. You may find it helpful to
connect to this database through
the Windows Interactive SQL
(ISQL) program that ships with
Delphi and try the examples as you
read about them. It’s also handy to
be able to experiment as ideas
come to you while reading the text.
This database is located in the
\IBLOCAL\EXAMPLES directory if
you installed Delphi with the
default directories. We will be
adding information in this
database so you may want to make
a copy of the EMPLOYEE.GDB file
and work with the copy only.

Using ISQL
To use Windows ISQL, start the
ISQL program from the Delphi
program group. From the File
menu, select Connect to Database.
In the Database Connect dialog box,

Surviving Client/Server:
Getting Started With SQL Part 1
by Steve Troxell

make sure you’ve selected Local
Server, enter the path and filename
for the EMPLOYEE.GDB database,
enter SYSDBA for the user name, and
enter masterkey for the password
(make sure you enter the password
in lower case). This is the default
system administrator login for
InterBase databases.

Using the ISQL program is
simple: type in the SQL statement
you want to execute in the SQL
Statement window and click the Run
button to execute the statement.
The results of your statement will
appear in the ISQL Output window.
Once you run an SQL statement, it
disappears from the SQL Statement
window. If you want to run it again
(and perhaps make small changes
to it), you can retrieve any
previous SQL statement by clicking
the Previous button.

SQL Preliminaries
Before we get started, let’s look at
a few of the ground rules for work-
ing with SQL. First, three new
terms: the familiar structures of
file, record, and field are called
table, row, and column in relational

databases. A database is a
collection of tables; in Paradox
each .DB file represents a table, in
InterBase each .GDB file represents
a database and the tables are
managed internally.

Second, let’s take a look at the
syntax of a SQL statement. A
typical SQL statement might be:

SELECT name, address
  FROM customers;

SQL itself is case-insensitive, but in
this article SQL keywords are
shown in all uppercase and table
names, column names, etc. are
shown in all lower case. SQL gener-
ally requires a semi-colon at the
end of each statement, but in
certain tools (such as ISQL) it’s
optional.

Third, you can break an SQL
statement across multiple lines by
pressing RETURN anywhere you can
legally place a space in the
statement.

Finally, you can enclose literal
strings with single quotes or
double quotes. We’ll use single
quotes here.

Introducing The Column...

Delphi users seem to have settled down into several groups: firstly
occasional programmers or first-time programmers ( attracted by

Delphi’s ease of use), secondly professional full-time developers doing
general Windows application building (enthralled by Delphi’s amazing
productivity) and thirdly those putting together Client/Server systems
(impressed by Delphi’s robustness and power). This column is aimed
at the third group, but especially those who may be dipping a toe into
the waters of Client/Server for the first time.

Steve is involved in developing a variety of Client/Server systems in
his work at TurboPower Software, using different server databases, and
we are looking forward to learning from his experience over the months.
As well as SQL – an essential part of the Client/Server developer’s skill
set – Steve plans to cover a variety of other topics and also provide lots
of  hints and helps along the way. If there are things which you need
some help with, why not drop us a line and let us know!

12 The Delphi Magazine Issue 3

OK, I lied. In the previous
Delphi Internals column I

discussed DLLs in some detail. I
faithfully promised that this
month I’d write about creating
Delphi DLLs which could be used
by applications written in other
languages. Well, I got so carried
away writing about the stuff for
the column for this issue that I
completely forgot what I did
previously. Sorry about that. I’ll
take up the DLL story again next
time round. I’ll put it down to
premature senility. Can’t you just
hear those arteries hardening?

Delphi On Delphi:
A Walk On The Inside
As most Delphi developers are
aware, the Delphi system was
actually developed using... Delphi!
If anyone ever suggests to you that
a Delphi program is likely to slow
down to a crawl when you’ve got
more than a dozen forms in your
application, then just show them
Delphi itself! Delphi actually con-
tains seventy or eighty different
forms and runs just as speedily as
any other Windows program.

Seeing, as they say, is believing,
and I thought it would be interest-
ing to have a peek inside a Delphi
application to see how the applica-
tion’s forms actually get stored. If
you’re a seasoned Windows
developer, you might expect each
form to be held as a DLG resource

Delphi Internals:
Undocumented Secrets, Part 1
by Dave Jewell

➤ Figure 1
Resource
Workshop
showing all
the form
resources
inside Delphi,
identifiable
from the
resource
names.

➤ Figure 2
Here’s the
Component
Expert  form
loaded up in
a Code Editor
window. Of
course, you
don’t get the
source code
as well, but
what do you
want out of
life...?

➤ Figure 3
Is this a Component Expert
window I see before me?
With a little additional
massaging, you can see the
Component Expert form in
all its glory. Obviously the
same principles can be
applied to any form in any
compiled Delphi executable.

30 The Delphi Magazine Issue 2

Control Arrays In Delphi
One of the (very) few features I miss from Visual Basic
when using Delphi is the ability to handle Control
Arrays. The following technique is a simple solution
and makes your code easier to use.

Say your program needs a number of tables open, for
access through a variety of units. How can you achieve
this easily and efficiently?

Create a unit called Tables, for want of a better name,
and define an array of TTable pointers for however
many tables you have defined. As shown in Listing 1,
firstly define constants for the total number of tables
and one for each table (better than a number) and the
type holding pointers to each table.

Now, we define a procedure to set up the pointers,
pointing to the table controls on the form – see the
procedure TfrmTables.InitialiseTables in Listing 1.

Tips
& Tricks

const
  MAX_TABLES = 4;  {Number of Tables}
  {Constants for the array of tables}
  TABLE_BACKUP = 1;
  TABLE_RECOVERY = 2;
  TABLE_REUSE = 3;
  TABLE_SUMMARY = 4;
type
  {for handling tables without having controls
   on-screen}
  TableData = Array[1..MAX_TABLES] of TTable;
var
  Data : TableData;

procedure TfrmTables.InitialiseTables;
var
  ptr : Integer;
begin
  {Setup the Table Pointers ready for use}
  for ptr := 1 to MAX_TABLES do begin
    {Point to the component on the form}
    case ptr of
      TABLE_BACKUP   : Data[ptr] := tblBACKUP;
      TABLE_RECOVERY : Data[ptr] := tblRECOVERY;
      TABLE_REUSE    : Data[ptr] := tblREUSE;
      TABLE_SUMMARY  : Data[ptr] := tblSUMMARY;
    end;
  end;
end;
{ ...add code to open/close tables as required... }

{ scanning through a table... }
begin
  with Data[TABLE_BACKUP] do begin
    First;
    repeat
     { Do something, assuming there is at least one
       record in the table}
      Next;
    until Data[TABLE_BACKUP].Eof;
  end;
end.

➤ Listing 1

type
  TResBitmap = class(TBitmap)
  public
    constructor Create(ID: PChar);
  end;

constructor TResBitmap.Create(ID: PChar);
var
  HResInfo: THandle;
  BMF: TBitmapFileHeader;
  MemHandle: THandle;
  Stream: TMemoryStream;
  ResPtr: PByte;
  ResSize: Longint;

begin
  inherited Create;
  BMF.bfType := $4D42;
  HResInfo := FindResource(HInstance, ID, RT_Bitmap);
  ResSize := SizeofResource(HInstance, HResInfo);
  MemHandle := LoadResource(HInstance, HResInfo);
  ResPtr := LockResource(MemHandle);
  Stream := TMemoryStream.Create;
  Stream.SetSize(ResSize + SizeOf(BMF));
  Stream.Write(BMF, SizeOf(BMF));
  Stream.Write(ResPtr^, ResSize);
  FreeResource(MemHandle);
  Stream.Seek(0, 0);
  LoadFromStream(Stream);
  Stream.Free;
end;

➤ Listing 2

Finally, you can add functions to open and close the
tables by scanning through the array, calling the Open
or Close method accordingly. This method encapsu-
lates the tables access, providing access to any unit
which uses the Table unit and allowing easy access to
the tables. The final part of Listing 1 shows an example
of scanning through a table.

So, there’s no need for long table names and your can
perform actions on all your tables with relative ease.

Contributed by Mark Mamone of Newcastle, UK
(CompuServe 100627,422)

256 Colour Bitmaps
In Issue 2 of The Delphi Magazine, Stefan Boether
showed how to read a bitmap in a resource into a
TBitmap, using LoadBitmap. However, this is only valid
for 16 colour bitmaps. Questions appear reasonably
frequently on CompuServe about how to do it for 256
colours. The problem is the palette. LoadBitmap will
work for a 256 colour image, but it will ignore the
palette that has been stored with the image.

The code in Listing 2 copies the bitmap from the
resource, using various Windows API routines, into a
memory stream and then loads the contents of the
stream into the bitmap. The only clever part is noticing
that a bitmap resource is the same as a bitmap file, but
without a TBitmapFileHeader record at the front. To
allow the stream read to work, we need to put a fake
TBitmapFileHeader record at the front of the stream.

Contributed by Brian Long (CompuServe 76004,3437)

58 The Delphi Magazine Issue 5
Copyright © iTec 1996
All trademarks acknowledgedCHECK OUR WEB PAGE AT http://ourworld.compuserve.com/homepages/DelphiMagazine

Yes! Please enter my subscription to The Delphi Magazine
Please complete and fax or post to: The Delphi Magazine, 41 Recreation Road, Shortlands,
BROMLEY, Kent  BR2 0DY, United kingdom.  Tel/Fax: +44 (0)181 460 0650. Email: CompuServe 70630,717

Name (Mr/Ms)

Position

Address

County/State

Telephone

Company

Town

Country

Email

Post/Zip code

Fax

Subscription: 13 ISSUES FOR THE PRICE OF 12, please tick one:

Please debit my VISA / MasterCard account by £                Card Number:
Expiry Date:           /             Cardholder name:                                           Signature:

United Kingdom £75 Europe £80 USA/Canada £90 Rest of the World £95

I enclose a Sterling cheque drawn on a United Kingdom bank, or a Sterling Eurocheque, for £
made payable to iTec

Please start my subscription with the current issue
Please tick here if you do NOT wish to receive information on relevant products and services from other companies

Please tick one: Please send me all available back issuesOR,

(We'll send you a receipt. Sorry, NO purchase orders! Please do not send payment in other currencies)

FAX NOW!

FAX NOW!

FL1



Subscribing To The Delphi Magazine
From The United States & Canada
If you live in the USA or Canada you can subscribe
directly with our North American Agent in US
dollars. Here’s how.

We believe the best way to stay at the cutting edge
of Delphi development is to read The Delphi
Magazine! You will receive 12 issues a year, plus an
extra free issue, with in-depth technical articles,
regular columns, Tips & Tricks, the Delphi Clinic,
news, book and product reviews. We aim to make
you more productive and help you enjoy your
Delphi development even more.

As well as all this we include a free disk with each
issue, which contains all the code and example files

from that issue, plus extra shareware and freeware
components and tools.

We think you’ll agree that this represents excel-
lent value for money and we are sure you won’t want
to miss a single issue. Your copies will be airmailed
to you direct from the publishers in England, so
you’ll be sure to get them FAST.

Simply fill out the subscription form below and
mail it as indicated. If you prefer, you can subscribe
with a credit card by CompuServe email by send-
ing the information on the form in an email message
to 70602,1215. Or, just call us with your credit card
details on (802) 244 7820.

The Delphi Magazine Subscription Request
Please complete this form and mail to:
The Delphi Magazine (USA), RR1 Box 6020, WATERBURY CENTER, Vermont 05677

Payment must be included, we’ll send a receipt to you.   Sorry, NO purchase orders!

Name (Mr/Ms) ___________________________________________________________________________________

Position____________________________________   Company __________________________________________

Address _________________________________________________________________________________________

___________________________________________   City/Town _________________________________________

State ______________________________________   Zip________________________________________________

Tel ________________________________________   Fax _______________________________________________

Email ___________________________________________________________________________________________   

USA & Canada Subscription US$140: 13 ISSUES FOR THE PRICE OF 12, including FREE disks*

Payment Method (please tick):

  Please debit my     Visa    Mastercard credit card (tick as appropriate) by  US$140.00

Card Number: _______________________________________    Expiration date:  Month:_____   Year:_____

Name on Card:____________________________________   Signature:_________________________________

  I enclose a check for US$140 payable to ‘The Delphi Magazine (USA)’

Sorry, we can’t accept payment by bank transfer

Would you like back issues?  Please tick one:

   Please send me all available back issues        Please start my subscription with the next issue

  Please tick here if you do not wish to receive information on relevant products and services from other companies.

*Note: for subscriptions to other countries please contact the publishers direct:
  iTec, 41 Recreation Road, Shortlands, BROMLEY, Kent  BR2 0DY, United Kingdom
  Telephone/Fax: +44 (0)181 460 0650     Email: 70630.717@compuserve.com

ABAT

Note: please send
payment only in
US dollars



Under Construction:
Property Editors
by Bob Swart

Delphi offers a Tools API,
which allows us to extend the

functionality of the Delphi IDE
itself. There are four different
Tools API interfaces: for Experts
(see Issue 3), Version Control
Systems, Component Editors and
Property Editors. They offer us
the functionality we need to add
new IDE features or enhance the
existing ones!

Property Editors
Property editors are, like Experts
and Version Control Systems, in
this sense extensions of the Delphi
IDE. That may sound very difficult
or complex, but is in fact very easy.
You can even write a property
editor without knowing it – for
enumerated types, for example.
Remember the color property of a
TForm? When you want to enter a
value, you get a drop-down list
showing all possible choices.
That’s an enumerated type prop-
erty editor, a very easy one, and we
can make one with only a few lines
of code.

As an example, I’ve picked the
Starfleet rank overview (as a
confirmed Trekkie what do you
expect!). Or, in Object Pascal, the
enumerated type which is shown in
Listing 1.

In this case, like all other enu-
merated types, we must make sure
that the user cannot make a mis-
take, by typing “commonder”
instead of “commander” for exam-
ple. We need to offer a list of limited
choices: a drop-down list. Well,
that’s exactly what the user gets
when s/he drops the TOfficer
component shown in Listing 2 onto
a form (see Figure 1).

So, we haven’t done anything
special but our first personal
property editor is up and running!
And who knows, it might even be
your second or third, now that you
think about it...

There’s actually much more to
property editors than meets the
eye and we’ve only scratched the
surface. Let’s look deeper and see
if we can do even more. To do that,
we need to check out the one Tools
API source file which defines the
behaviour of the property editors
for which you do need to write
code: DSGNINTF.PAS (in directory
\DELPHI\SOURCE\VCL). This file
contains not only the definition for
the base class TPropertyEditor, but
also numerous derived property
editors for the properties of the
VCL components of Delphi itself.
Most of these property editors are
available for our use as well, like
the TEnumProperty we used for the
TRang enumerated type in the first
example.

Existing Property Editors
Before we actually take a look at a
property editor from the inside,
let’s first examine what kinds of

property editors already exist in
Delphi. To do that, start a new
project, add uses DsgnIntf; to the
implementation section, compile,
open the browser and search for
TPropertyEditor – see Figure 2.

unit Officer;
interface
uses Classes;
Type
  TRang = (cadet, midshipman, chief, ensign, junior_lieutenant, lieutenant,
    lieutenant_commander, commander, captain, commodore, admiral);
  TOfficer = class(TComponent)
  private
    FRang: TRang;
  published
    property Rang: TRang read FRang write FRang;
  end;
procedure Register;
implementation
procedure Register;
begin
  RegisterComponents(’Dr.Bob’, [TOfficer]);
end;
end.

➤ Listing 2

Type
  TRang = (cadet, midshipman, chief, ensign,
           junior_lieutenant, lieutenant,
           lieutenant_commander, commander,
           captain, commodore, admiral);

➤ Listing 1

➤ Figure 1

February 1996 The Delphi Magazine 17



If I count correctly, there are at
least 21 property editors regis-
tered by the DSGNINTF unit. Note,
however, that there are actually
even more property editors
available, like the TPictureEditor
in \DELPHI\LIB\PICEDIT.DCU (I’ll
return to this later on...).

TPropertyEditor
What does a property editor look
like? Well, like an expert, it is
derived from a base class, from
which we need to override some
methods in order to make things
work our way. The TPropertyEditor
base class is defined as shown in
Listing 3 (I’ve left out the private
parts, as we can’t touch them
anyway).

A TPropertyEditor edits a prop-
erty of a component, or a list of
components, selected into the
Object Inspector. The property
editor is created based on the type
of the property being edited, as
determined by the types registered
by RegisterPropertyEditor. A
TPropertyEditor  is used by the
Object Inspector whenever a
property is modified.

For now, we will just focus on a
subset of the methods which can
be overridden to change the behav-
iour of the property editor (we’ll
get back to the others in a future
instalment of this column).

GetAttributes is the most impor-
tant method, as it determines the
kind of property editor and its
behaviour. There are three kinds of
property editors (other than the
default editbox-type): a dropdown
value list (we’ve seen that one
before), a sub-property list and a
dialog. GetAttributes returns a set
of type TPropertyAttributes:
➣ paValueList:  The property edi-

tor can return an enumerated
list of values for the property. If
GetValues calls Proc with values
then this attribute should be
set. This will cause the drop-
down button to appear to the
right of the property in the
Object Inspector.

➣ paSubProperties:  The property
editor has sub-properties
which will be displayed
indented and below the current
property in standard outline

format. If GetProperties will
generate property objects then
this attribute should be set.

➣ paDialog:  Indicates that the
Edit method will bring up a
dialog. This will cause the ‘...’
button to be displayed to the
right of the property in the
Object Inspector.

➣ paSortList:  The Object Inspec-
tor will sort the list returned by
GetValues (by name).

➣ paAutoUpdate:  Causes the
SetValue method to be called on
each change made to the editor
instead of after the change has
been approved (eg the Caption
property).

➤ Figure 2

Type
  TPropertyEditor = class
  protected
    function GetPropInfo: PPropInfo;
    function GetFloatValue: Extended;
    function GetFloatValueAt(Index: Integer): Extended;
    function GetMethodValue: TMethod;
    function GetMethodValueAt(Index: Integer): TMethod;
    function GetOrdValue: Longint;
    function GetOrdValueAt(Index: Integer): Longint;
    function GetStrValue: string;
    function GetStrValueAt(Index: Integer): string;
    procedure Modified;
    procedure SetFloatValue(Value: Extended);
    procedure SetMethodValue(const Value: TMethod);
    procedure SetOrdValue(Value: Longint);
    procedure SetStrValue(const Value: string);
  public
    destructor Destroy; override;
    procedure Activate; virtual;
    function AllEqual: Boolean; virtual;
    procedure Edit; virtual;
    function GetAttributes: TPropertyAttributes; virtual;
    function GetComponent(Index: Integer): TComponent;
    function GetEditLimit: Integer; virtual;
    function GetName: string; virtual;
    procedure GetProperties(Proc: TGetPropEditProc); virtual;
    function GetPropType: PTypeInfo;
    function GetValue: string; virtual;
    procedure GetValues(Proc: TGetStrProc); virtual;
    procedure Initialize; virtual;
    procedure SetValue(const Value: string); virtual;
    property Designer: TFormDesigner read FDesigner;
    property PrivateDirectory: string read GetPrivateDirectory;
    property PropCount: Integer read FPropCount;
    property Value: string read GetValue write SetValue;
  end;

➤ Listing 3

18 The Delphi Magazine Issue 6



➣ paMultiSelect:  Allows the prop-
erty to be displayed when more
than one component is se-
lected. Some properties are not
appropriate for multi-selection
(eg the Name property).

➣ paReadOnly:  The value is not
allowed to change.

GetValue returns the string value of
the property. By default this
returns (unknown). This should be
overridden to return the appropri-
ate value. GetValues is called when
paValueList is returned in
GetAttributes. It should call the
argument Proc for every value
which is acceptable for this prop-
erty. TEnumProperty will pass every
element in the enumeration, as we
can see in Figure 1.

SetValue(Value) is called to set
the value of the property. The
property editor should be able to
translate the string and call one of
the SetXxxValue methods. If the
string is not in the correct format
or not an allowed value, the prop-
erty editor should generate an
exception describing the problem.
SetValue can ignore all changes and
allow all editing of the property to
be accomplished through the Edit
method (eg the Picture property).

Edit is called when the ‘...’ button
is pressed or the property is
double-clicked. This can, for
example, bring up a dialog to allow
the editing the property in some
more meaningful fashion than by
text (eg the Font property).

TFileNameProperty
With these few basic methods we
now have enough power at our dis-
posal to write our first non-trivial
property editor: an open filename
dialog property editor for filename
properties.

We must remember that writing
components is essentially a non-
visual task and writing property
editors is no different. We have to
write a new unit by hand in the
editor (see Listing 4). We need to
specify that we want a dialog type
of property editor, so we return
[paDialog] in the GetAttributes
function. Then, we can do as we like
in the Edit procedure, which in this
case involves a TOpenDialog to let us
find any existing file.

Note that we call the GetName
function of the property editor to
get the name of the actual property
for which we want to fire up the
TOpenDialog. For a property called
FileName, this would result in the
example shown in Figure 3.

In just a few lines of code we’ve
written a TFileName property editor
which will give great support at
design time for all our components
which use a property of type
TFileName. This illustrates that
property editors have an
enormous potential for designers
of Delphi components.

TFileModeProperty
We’ve seen how we can create and
execute a simple TOpenDialog as a
property editor. But instead of just
a TOpenDialog component, we can
of course show a complete newly
designed form in our property
editor’s Edit method.

Let’s design a FileMode property
editor in which we can specify both
the file access (read-only,
write-only, read-write) and file
sharing (deny-none, deny-read,
deny-write, deny-all) values for a
file. The code for a simple form to
enable us to pick these options

➤ Figure 3

unit FileName;
interface
uses DsgnIntf;
Type
  TFileNameProperty = class(TStringProperty)
  public
    function GetAttributes: TPropertyAttributes; override;
    procedure Edit; override;
  end;

implementation
uses
  Dialogs, Forms;

function TFileNameProperty.GetAttributes: TPropertyAttributes;
begin
  Result := [paDialog]
end {GetAttributes};

procedure TFileNameProperty.Edit;
begin
  with TOpenDialog.Create(Application) do
  try
    Title := GetName; { name of property as OpenDialog caption }
    Filename := GetValue;
    Filter := ’All Files (*.*)|*.*’;
    HelpContext := 0;
    Options := Options + [ofShowHelp, ofPathMustExist, ofFileMustExist];
    if Execute then SetValue(Filename);
  finally
    Free
  end
end {Edit};
end.

➤ Listing 4

20 The Delphi Magazine Issue 6



using two TRadioGroup controls is
shown in Listing 5.

I’ve used two TRadioGroups to
hold the items we can choose from
in a list, just like a listbox or com-
bobox. I think the TRadioGroup is
probably one of the most under-
estimated components on the
palette: one RadioGroup is capable
of showing several radio buttons
which are all easily accessible.

The form is shown in action in
Figure 4, specifying a read-only
deny-none filemode.

To turn this form into a property
editor, we only need to activate it
at the right time (ie in the Edit
method of the TFileModeProperty
editor), and set and get the actual
value of the filemode property we
need. See Listing 6.

TFileInfo
To illustrate the use of this
TFileModeProperty editor, I’ve de-
signed a new component called
TFileInfo, derived from a standard
non-visual TComponent, with two
new properties: FileName and
FileMode. The first one is connected
to the TFileName property editor we
created earlier, while the second
one uses the TFileMode property
editor to interactively set the
desired FileMode. See Listing 7.

Note that this component regis-
ters its own property editors in the

unit FileMode;
interface
uses
  Forms, Buttons, StdCtrls, ExtCtrls;
Type
  TFileModeDlg = class(TForm)
    OKBtn: TBitBtn;
    CancelBtn: TBitBtn;
    HelpBtn: TBitBtn;
    Bevel1: TBevel;
    FileAccess: TRadioGroup;
    FileSharing: TRadioGroup;
    procedure OKBtnClick(Sender: TObject);
    procedure FormActivate(Sender: TObject);
  public
    FileShareMode: Word;
  end;

implementation
{$R *.DFM}

procedure TFileModeDlg.FormActivate(Sender: TObject);
begin
  FileAccess.ItemIndex := (FileShareMode MOD $10);
  FileSharing.ItemIndex := (FileShareMode SHR 4)
end;

procedure TFileModeDlg.OKBtnClick(Sender: TObject);
begin
  FileShareMode := FileAccess.ItemIndex + (FileSharing.ItemIndex SHL 4)
end;
end.

➤ Listing 5

➤ Figure 4

➤ Figure 5

Register procedure where the
component itself is registered.
Figure 5 shows the TFileInfo
component in action with the two
new property editors.

TBUUCode
While TFileInfo is but an example
component, we can easily extend
the TBUUCode components for file
UUEncoding and UUDecoding from
the last few issues, using these
property editors for the InputFile
property.

In fact, I’ve already done so and
the new source code for the
TBUUEnCode and TBUUDeCode compo-
nents is (again) included on the
subscribers’ disk with this issue.

TPictureEditor
We’ve already seen how to make
picture editors that behave like
dialogs. And this reminds me of the
most irritating property editor in
Delphi: the picture editor for
glyphs, icon, bitmaps etc.

It’s not the fact that it doesn’t
work, it’s just the fact that it isn’t
very user friendly. If I click on the
Load button I get a TOpenDialog that
gives me the option to select a
.BMP, .ICO or whatever file I wish.
However, I don’t get to see what’s
actually inside this file until I close
the TOpenDialog. Then I’m back in
the Picture Editor and if I decide
it’s not the file I really want I have
to click on the Load button again

February 1996 The Delphi Magazine 21



and start all over again. It’s
especially annoying if you have to
browse through a directory with
many TBitBtn bitmap files.

I would like a preview option, so
I can see what the image in a file
looks like while I’m browsing
through a directory! It sounds
exactly like a new property editor
to me (Note: since Borland didn’t
provide us with the source of
PICEDIT.DCU, we don’t have the
PICEDIT.DFM form either and have

to write our own picture editor
instead of enhancing the already
existing one).

TImageForm
First of all, we have to design the
actual dialog or form which will be
used by our new property editor.
Figure 6 shows my form: the area
where the image of Dr.Bob is
shown, in the lower-right corner, is
used to display the image of any file
which is currently selected in the

file listbox. Depending on your
needs, you can even stretch this
image (not recommended for little
TBitBtn bitmap images, but useful
if you have large bitmaps and only
want a preview).

Note that I’ve used the compo-
nent TDirectoryOutliner (from my
Performance Optimisation articles
in Issues 4 and 5) in this form. The
complete source code is on the
disk with this issue, but I’ve also
uploaded the .DCU version of this
property editor to the DELPHI
forum on CompuServe, so if you
don’t have a subscription yet
(shame on you!) then you can at
least get it to work.

Now that we have a form to ask
for which image to use, let’s see
how we can get this to work as a
property editor. We need to take a
look at GRAPHIC.PAS to see what
kinds of pictures, glyphs and im-
ages exist in the first place. It seems
we are limited to two descendants
of TPersistent: TPicture and
TGraphic, with descendent TBitmap
of TGraphic. For this column, let’s
just focus on .BMP files, and hence
on the TPicture and TBitmap classes
only. This means we want to offer
the new Image Property Editor for
properties of type TPicture and
TBitmap. See Listing 8.

Note that since we don’t explic-
itly want the TPictureEditor to
belong to one specific component,
we have to register it ourselves
here, and install it just like any
other custom component or expert
from the Delphi IDE’s Options |
Install Components dialog. After
rebuilding your COMPLIB.DCL
(remember to make that backup
first!), you will get the new picture
editor for each TPicture (in a
TImage) or TBitmap (for example in a
TSpeedButton or TBitBtn).

One last important thing: Delphi
already had a property editor in-
stalled for TPictures and TBitmaps,
namely the picture editor Borland
provided. Won’t we get into
trouble if we want to use our own?

No, we won’t, because it seems
that the last property editor which
has been registered for a particular
component or property type will
override the previous one. So, if
you ever install another property

unit FileProp;
interface
uses DsgnIntf;
Type
  TFileModeProperty = class(TIntegerProperty)
  public
    function GetAttributes: TPropertyAttributes; override;
    procedure Edit; override;
  end;

implementation
uses
  SysUtils, Controls, FileMode;

function TFileModeProperty.GetAttributes: TPropertyAttributes;
begin
  Result := [paDialog]
end {GetAttributes};

procedure TFileModeProperty.Edit;
begin
  with TFileModeDlg.Create(nil) do
  try
    FileShareMode := GetOrdValue;
    if ShowModal = mrOk then
      SetOrdValue(FileShareMode)
  finally
    Free
  end
end {Edit};
end.

➤ Listing 6

unit FileInfo;
interface
uses
  Classes, SysUtils;
Type
  TFileInfo = class(TComponent)
  private
    FFileName: TFileName;
    FFileMode: Word;
  published
    property FileName: TFileName read FFileName write FFileName;
    property FileMode: Word read FFileMode write FFileMode;
  end;
procedure Register;

implementation
uses
  DsgnIntf, FileProp, FileName;

procedure Register;
begin
  RegisterComponents(’Dr.Bob’, [TFileInfo]);
  RegisterPropertyEditor(TypeInfo(Word), TFileInfo, ’FileMode’,
     TFileModeProperty);
  RegisterPropertyEditor(TypeInfo(TFilename), nil, ’’, TFilenameProperty)
end;
end.

➤ Listing 7

22 The Delphi Magazine Issue 6



➤ Figure 6

unit PictEdit;
interface
uses DsgnIntf;
Type
  TPictureEditor = class(TClassProperty)
  public
    function GetAttributes: TPropertyAttributes; override;
    procedure Edit; override;
  end;
  procedure Register;

implementation
uses
  SysUtils, Controls, Graphics, TypInfo, ImageFrm;

function TPictureEditor.GetAttributes: TPropertyAttributes;
begin
  Result := [paDialog]
end {GetAttributes};

procedure TPictureEditor.Edit;
begin
  with TImageForm.Create(nil) do
  try
    ImageDrBob.Picture := TPicture(GetOrdValue);
    if ShowModal = mrOk then begin
      if (GetPropType^.Name = ’TPicture’) then
        SetOrdValue(LongInt(ImageDrBob.Picture))
      else { Bitmap }
        SetOrdValue(LongInt(ImageDrBob.Picture.Bitmap))
    end
  finally
    Free
  end
end {Edit};

procedure Register;
begin
  RegisterPropertyEditor(TypeInfo(TPicture), nil, ’’, TPictureEditor);
  RegisterPropertyEditor(TypeInfo(TBitmap), nil, ’’, TPictureEditor)
  end;
end.

➤ Listing 8

editor for TBitmaps, for example,
you will override the one we’ve just
built. 

More Property Editors
So far, we’ve only seen a few of the
possible kinds of property editors

we can write. We’ve focussed
especially on paDialog property
editors – in my view the easiest way
to customise the entry of property
values at design time. However,
there are many more kinds of
property editors and ways to write

them, so we’ll just have to come
back later to explore these in detail
in future columns. For now, I hope
I’ve given you enough to chew on
for a month!

Next Time
Next time we’ll focus on a type of
component we haven’t touched at
all so far: data-aware components.
We’ll explore how they work, learn
what makes them tick and even
develop one of our own: a data-
aware multi-media player. After
that, we’ll slowly return to the
subject of Tools APIs and Delphi
IDE Experts when we start explor-
ing the so-called Component
Editors in the April issue.

Stay tuned and make sure you’ve
always got a backup of your
COMPLIB.DCL in a save place!

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Delphi and sometimes a bit of
Pascal or C++. In his spare time, he
likes to watch video tapes of Star
Trek Voyager with his almost two
year old son Erik Mark Pascal.

February 1996 The Delphi Magazine 23



For those of us who have
previously used C and C++ to

write our Windows programs,
Delphi’s use of resource files
seems a little strange. The only real
problem is that when a project is
created in Delphi, a resource file is
also created with the same name as
the project. Delphi controls this
file. Using the Image Editor to add
bitmaps, cursors or icons to the
Delphi-controlled resource file is
doomed to failure under normal
circumstances.

However, all is not lost. In this
article I’ll work through some ex-
amples of the use of bitmaps, icons
and cursors from resources, then
finish off by outlining a method by
which the Delphi-controlled re-
source file can be manipulated
without raising any objections
from Delphi.

The Image Editor
A word of caution should be given
about the Image Editor. Apart from
my own programming errors, this
is the only part of Delphi that has
caused problems to date.

I would advise anyone using this
tool to make sure that everything
else which is open has been saved
first. I would also advise that any
work done in the Image Editor be
saved regularly and that each open
image and file be closed before
closing the editor. This will not
prevent problems totally, but will
reduce the likelihood of work being
lost.

Loading From .BMP Files
This first project loads a bitmap
from a file which is not part of a
resource file. In the project itself,
the name of the bitmap is given
explicitly. Unless a path is defined,
Delphi assumes that the bitmap is
in the same directory as the
executable file. You can of course
include the full path and file name
for the bitmap in the code, but this
would tie your application to a
specific directory structure.

Using Resource Files In Delphi
by Dave Bolt

If we create a new project, rename
UNIT1.PAS to BIT1.PAS and
PROJECT1.DPR to BITPRJ1.DPR,
then add a TImage component to
the form, we have the basic frame-
work to display an image. We can
initialise the image component by
adding code to the FormCreate
handler as in Listing 1.

Compiling and running this
project results in the bitmap being
displayed. If the bitmap is not
found when the program runs, an
EFOpenError exception is gener-
ated. This can easily be detected
and handled if required.

The object MyBitmap is our
responsibility, and must be cre-
ated before use then destroyed
afterwards by our code. A separate
copy of the bitmap is stored in the
TImage component and is automat-
ically allocated and de-allocated by
the program.

Loading From Resource Files
To load a resource from a resource
file, the file must have a different
name to the project in which it is
used. If we create a new project
exactly as above, but call the files
BIT2.PAS and BITPRJ2.DPR, we find
that after saving the project there
is a resource file called
BITPRJ2.RES in the directory
where the project was saved. In
order to access our own resource
file, it must be referenced explicitly
in the project file (.DPR) using, eg:

{$R BITS.RES}

for a file called BITS.RES (which is
on this issue’s disk along with the

other files from this article, and
contains a bitmap resource called
FIRST). You might think that the
{$R *.RES} statement included by
default in the .DPR file will pull in
your own .RES files, but this is
strangely not the case! The best
place to insert your {$R ...} state-
ment is after the existing one, after
the uses statement.

If we add the same code to the
FormCreate method as in Listing 1,
but change the LoadFromFile
command to:

MyBitmap.Handle :=
  LoadBitmap(hInstance,
  ’FIRST’);

then tidy up the display by adding
the following two lines:

Image1.Width :=
  MyBitmap.Width;
Image1.Height :=
  MyBitmap.Height;

then run the program, we should
get the same image displayed as
before. The extra lines of code
adjust the size of the TImage compo-
nent to fit the bitmap at run time.

Caution
If the bitmap which is to be loaded
is not in the resource file, the
program will still run, it just won’t
display the bitmap. This situation
can be avoided by testing to see if
the handle is zero after a call to
LoadBitmap and taking the appropri-
ate action. Failure can also occur if
there is insufficient memory to
load the bitmap.

procedure TForm1.FormCreate(Sender : TObject);
var
  MyBitmap : TBitmap;
begin
  MyBitmap := TBitmap.Create;
  MyBitmap.LoadFromFile(’FIRST.BMP’);
  Image1.Canvas.Draw(0, 0, MyBitmap);
  MyBitmap.Destroy;
end;

➤ Listing 1

January 1996 The Delphi Magazine 13



Custom Cursors
by Ken Otto

Creating custom cursors in Delphi can be a
confusing venture. Not because it is hard, but

because it is so poorly illustrated (and even wrong)
in the Delphi documentation and help files.

A cursor actually contains two 32 x 32 mono-
chrome bitmaps. One of these bitmaps is referred to
as the ‘XOR’ bitmap, and the other is known as the
‘AND’ bitmap. When you create a cursor with Delphi’s
Image Editor, you won’t need to worry about this. The
cursor also has two fields defining the ‘hot-spot’: the
point on the cursor representing its exact location.

There are 17 pre-defined cursor constants for your
Delphi application. Some of the constant values in the
Delphi Help file are incorrect. A corrected listing of
cursors and their constants is shown opposite.

To create your own cursor, first create a resource
(.RES) file. From the Delphi IDE select Tools|Image
Editor then select File|New. By default, the ‘Resource
File (RES)’ radio button will be selected. Choose OK.
A window appears, captioned ‘Untitled1.RES’. Click
New, and a window will pop up asking for the type of
resource you want to create. Choose Cursor and click
OK. You may need to maximize the window at this
point. Select a tool and begin drawing your cursor. If
you make a mistake, select Edit|Undo to erase the last
image written (this will continue to remove several
layers each time it is selected). You can enlarge the
drawing area by clicking the Zoom button. If you prefer
a grid on the drawing area, select Options|Show Grid
On Zoom. If you want the hot-spot to be the center of

the cursor, select Image|Hotspot... and place 16 in
the X and Y fields.

When you have finished drawing your cursor, you
will probably want to rename it from the default name
CURSOR_1: close the cursor editor window, ensure the
Cursors tab on the untitled project window is
selected, select CURSOR_1 and click the Rename button.
Make sure the new name is all capital letters. Now
save the .RES file by selecting File|Save As, taking
care not to give the file the same name as your
project. A sample is included in the CHOPDEMO.LZH
archive on the disk.

Ken Otto writes Pascal applications on the HP3000
in Sacramento, CA, USA; programming in Delphi is a
hobby he enjoys. He can be reached on CompuServe
at 73041,1336

Resources By Number
by Brian Long

When you name a resource in a resource file,
Windows lets you choose numbers instead of

names. In fact Microsoft recommends you use
numbers instead of names for efficiency. However,
the Image Editor will only store character strings as
resource identifiers.

To generate a resource file for a cursor that marks
resources by number, make a cursor resource file
(.CUR file) with the Image Editor. One is supplied on
the disk in the NUMCURS.LZH archive as file
TARGET.CUR. A text file then acts as a resource script
(a file with a .RC extension), and can look like this file,
CURSOR2.RC (see my Typecasting Part 3 article in
this issue for details of how to share constants
between the resource script and the Delphi project):
2 CURSOR TARGET.CUR

This can be compiled with the command-line
resource compiler BRCC.EXE (found in the directory
DELPHI\BIN) with the command: BRCC CURSOR2.RC

The {$R CURSOR2.RES} compiler directive will bind
in the resulting CURSOR2.RES and LoadCursor can
also be used to load up a numbered, as opposed to
named, resource. The last parameter to LoadCursor
needs to be a PChar type, but we wish to specify a
number. The parameter can be either PChar(2), ’#2’
or MakeIntResource(2). So, the OnCreate handler will
look like:

procedure TForm1.FormCreate(Sender: TObject);
begin
  Screen.Cursors[crTarget] :=
    LoadCursor(HInstance, PChar(2)
  Form1.Cursor := crTarget;
end;

The complete example project in NUMCURS.LZH on
the disk uses a ‘named’ cursor for the form and a
different ‘numbered’ cursor for a button on the form.

Brian Long... well, by now surely he needs no
introduction!

14 The Delphi Magazine Issue 5



A Simple Animation
This animation is so simple that it
only has two frames. The program
cycles through the images to
hopefully give the impression of
movement. This is the kind of thing
which makes buttons appear to be
pressed in or out in Windows
programs and to animate logos.

If we take the project in the
previous example and save it using
the names BIT3.PAS and
BITPRJ3.DPR, we have the basis for
the next step. We need to add a
timer to the form and the following
variable declarations in the public
part of the BIT3.PAS unit:

MyBitmap :
  array [0..1] of TBitmap;
BitMapNum : integer;

We also need FormCreate, Timer1
and FormDestroy handlers as in
Listing 2.

This project will now load two
images from a resource file into an
array of TBitmap objects and alter-
nately display them in the image
component. The image displayed
is updated every fifth of a second
in response to the timer. Note that
the TBitmap array is declared as
part of the TForm1 object, instead of
being local to the FormCreate
handler, and must be initialised in
FormCreate and destroyed in
FormDestroy.

procedure TForm1.FormCreate(Sender : TObject);
begin
  MyBitmap[0] := TBitmap.Create;
  MyBitmap[1] := TBitmap.Create;
  MyBitmap[0].Handle := LoadBitmap(hInstance, ’FIRST’);
  MyBitmap[1].Handle := LoadBitmap(hInstance, ’SECOND’);
  Image1.Width := MyBitmap[0].Width;
  Image1.Height := MyBitmap[0].Height;
  { Show the image component copy of the bitmap }
  Image1.Canvas.Draw(0, 0, MyBitmap[0]);
  BitMapNum := 0;
  Timer1.Interval := 200;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
  BitMapNum := (BitMapNum+1) MOD 2;
  Image1.Canvas.Draw(0, 0, MyBitmap[BitMapNum]);
end;

procedure TForm1.FormDestroy(Sender : TObject);
begin
  MyBitmap[0].Destroy;
  MyBitmap[1].Destroy;
end;

➤ Listing 2

We have now loaded bitmaps
from a bitmap file and from
resource files. The loaded data has
been copied to a TImage component
either once only (at form creation),
or repeatedly in response to an
event. Similar things can be done
with cursors.

Loading A Cursor
As they say in all the best recipes,
first create your cursor (see oppo-
site). Then, as for the bitmaps,
create a new project, name the files
CUR1.PAS and CURPRJ1.DPR, and
add the FormCreate handler which
is shown in Listing 3. Also, in the
CUR1.PAS unit file, add a {$R}
statement after the interface
keyword: {$R CURSORS.RES}.

Although Delphi will permit you
to insert this statement in a num-
ber of places in the unit, this seems
to be the place to put it to get it to
work. The {$R} statement can also
go after the default {$R} statement
in the .DPR file, as for the bitmap
projects. If the unit is to be used in
another project, this could lead to
problems remembering to include
the correct file so I prefer to add it
to the relevant unit.

procedure TForm1.FormCreate(Sender : TObject);
begin
  Screen.Cursors[1]:=LoadCursor(HInstance,’ONE’);
  Cursor:=1; { You could also reference your cursor as a constant:         }
end;         { “Cursor := crMyCursor;” just by including the statement     }
             { “const crMyCursor = 1;” before “implementation” in the unit }

➤ Listing 3

➤ Standard Cursors in Delphi

Screen.Cursors[] is an array of
cursors supplied by Delphi. The
default cursors use index numbers
from 0 for the default cursor to -17
for crSQLWait. Unless we wish to
replace any of the defaults, the best
strategy is to use cursor numbers
starting from 1 and working up.

Running the program should
give a strange cursor consisting of
an angle and a ring containing a
black quadrant. If an attempt is
made to load a cursor resource,
but there is nothing matching that
name in the resource files, the han-
dle will be zero. If a resource other
than a cursor is found, the handle
will not be zero, so take care to only
reference cursors in LoadCursor.

An Animated Cursor
We can create a new project by
saving the previous one as
CUR2.PAS and CURPRJ2.DPR. For
the animation we need a TTimer
component on the form and this
time also a TButton. Caption the
button ‘Finish’ so that there is
some point to including it, and it
helps if the size is a little larger than
normal. Also set the Cursor
property of the button to crCross.

January 1996 The Delphi Magazine 15



In the Public part of the type TForm1
declaration include:

CursorCount : Integer;

The handlers in Listing 4 are also
required.

CursorCount is used to keep track
of the next cursor to load. Having it
zero-based simplifies the arithme-
tic. The first user-defined cursor is
1 and the last is 4, so we add 1 to
CursorCount to give the cursor num-
ber to use. When this program is
run the cursor will have a rotating
quadrant as part of it. The effect
can be improved considerably by
drawing eight versions with the
quadrant moved 45 degrees from
the last position.

Compare the behaviour of the
cursor with the previous version.
As the cursor moves across the
non-client area of the form, it starts
flashing between the custom
cursor and the relevant default
cursor. This undesirable behav-
iour is brought on by the slightly
simplistic method of changing the
cursor in the timer handler. Note
also that when the cursor is over
the ‘Finish’ button it changes to the
shape set at design time. Try this
with the Button1.Enabled property
set to False.

One method of modifying the
cursor behaviour further would be
to use GetCursorPos to find the
position in terms of global co-
ordinates, then convert to client
area co-ordinates and check if the
cursor is actually in a valid region
or not.

Another method, which is dem-
onstrated in CURPRJ2A.PRJ, uses
one of the less known windows
messages WM_NCMOUSEMOVE, which is
generated in response to mouse
movement in the non-client area of
a window. This just happens to be
perfect for controlling the flashing
effect in CURPRJ2.PRJ.

We need to amend the private
and public declarations of the type
section in the unit file (now
CUR2A.PAS) as in Listing 5.

The WMNCMouseMove procedure is a
message handler for the required
message. It overrides the default
message handler, but instead of
the override keyword it uses the

private
  procedure WMNCMouseMove(var AMessage : TMessage); message WM_NCMouseMove;
public
  CursorCount : integer;
  DeadArea : BOOL; { True if NonClient Area }
end;

➤ Listing 5

procedure TForm1.FormCreate(Sender : TObject);
begin
  Screen.Cursors[1] := LoadCursor(HInstance,’ONE’);
  Screen.Cursors[2] := LoadCursor(HInstance,’TWO’);
  Screen.Cursors[3] := LoadCursor(HInstance,’THREE’);
  Screen.Cursors[4] := LoadCursor(HInstance,’FOUR’);
  Cursor := 1;
  CursorCount := 0;
  Timer1.Interval := 100;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
  CursorCount := (CursorCount+1) MOD 4;
  Cursor := CursorCount+1;
end;

procedure TForm1.Button1Click(Sender : TObject);
begin
  Close;
end;

➤ Listing 4

procedure TForm1.WMNCMouseMove(var AMessage : TMessage);
begin
  DeadArea := TRUE; {Cursor is on the form but in an invalid area}
  AMessage.Result := 0; { Win API Help says return 0 if message was handled}
  inherited;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
  { Calculate the next cursor }
  CursorCount:= (CursorCount+1) MOD 4;
  { If in a valid region, Update cursor }
  if not DeadArea then Cursor := CursorCount+1;
end;

procedure TForm1.FormMouseMove(Sender : TObject; Shift : TShiftState;
  X,Y : Integer);
begin
  DeadArea := FALSE; { If this handler is called, DeadArea must be false }
  Cursor := CursorCount+1; { Update Cursor }
end;

➤ Listing 6

message keyword. (For more
information use Search All in the
Help system, and look up
‘message’). This method of over-
riding windows message handlers
can be used for any message and
also to handle additional messages
generated by our own programs.

The message handling function
is given in Listing 6, and goes in the
implementation section of the
CUR2A.PAS unit. The timer and
mouse movement handlers also
need to be amended.

Note that the WMNCMouseMove
handler will only be called if Win-
dows updates the mouse position

while the mouse cursor happens to
be on a non-client area of the form.

Icons
Looking at Delphi’s Options|
Project|Application settings we
find that Delphi supplies a default
icon. This can be replaced quite
simply by clicking the ‘Load Icon’
button and browsing around until
we find a suitable icon. After com-
piling the project and running it, it
will quite nicely change itself into
the new icon as requested. Further,
if we use Image Editor to open the
resource file that Delphi maintains
for the project and edit MAINICON,

16 The Delphi Magazine Issue 5



we find that the resource file
actually contains the requested
icon. This is the only situation
where I have found Delphi giving
the user any control over the
default resource file for a project.

If we create a new project, we can
note that the form properties in the
Object Inspector list an Icon
property, which is blank by default.
Double-clicking on the ‘...’ for that
field brings up Picture Editor,
which can be used to load another
icon, in addition to the default one
already discussed. This means that
in a multi-form project we can have
a different icon for each form.

As with the bitmaps, we can load
icons from files using the method
LoadFromFile and from resource
files using the LoadIcon function
from the Windows API. Listing 7
shows a simple example of loading
from a resource file, the project is
ICOPRJ1.DPR. Once again, I have
included an animation. After the
previous examples, this project
should be clear enough. The
animation is of course only visible
when the project is minimised. The
‘Shrink Me’ button in the middle of
the form minimizes the program.

If an icon name is supplied in
LoadIcon but the icon is not found,
the handle returned will be NUL.

Side-Stepping Delphi
At the start of this article I
mentioned that Delphi maintains a
resource file with the same name
as each project and that attempt-
ing to manipulate the contents is
generally a waste of time.

However, if you wish to alter the
resources available in the default
file, this can be done as long as the
associated project is not active
within Delphi, ie if you want to alter
CURPRJ1.RES, either close the
CURPRJ1 project, or open another
project. Delphi will then be quite
happy for you to alter the contents
of the default .RES file.

A direct result of this behaviour
is that it is possible to alter a
project resource file without
intending to, simply by forgetting
that a particular resource file is the
default for a project that has not
been worked on for some time and
adding or removing resources. If a

project suddenly starts failing to
compile because of duplicate
resource identifiers, check all the
resources included in case this has
happened. The project must be
re-compiled in order to make use of
revised resources.

Personally, I feel that there is
very little advantage in altering the
default resource file. Firstly, there
is too much to do, compared with
just adding another file reference
into either the project (.DPR) or a
unit (.PAS) file. Secondly, it makes
life difficult if you wish to copy a
unit into another project, since you
then have to manipulate the
default resource file for that pro-
ject as well. Thirdly, the work-
around is not something that
Borland have recommended. If you
contact them, they specifically tell

you not to try to modify the default
resource file.

My real reason for including the
technique here is that if like me you
have accidentally replaced a
default resource file in a project,
you are now in a position to sort it
out without deleting the whole
project and starting again.

One final comment. The names
of resources in the .RES file can in
theory be in either upper or lower
case. The feedback I have had from
various people is that upper case
throughout is needed to ensure
that everything works correctly.

Dave Bolt hails from Barnsley in
Yorkshire and can be contacted on
CompuServe as 100112,522
©Copyright 1995 D M Bolt

unit Ico1;
interface
{$R ICONS.RES}
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
  Forms, Dialogs, ExtCtrls, StdCtrls;
type
  TForm1 = class(TForm)
  Timer1 : TTimer;
  Button1 : TButton;
  procedure FormCreate(Sender : TObject);
  procedure Timer1Timer(Sender : TObject);
  procedure FormDestroy(Sender : TObject);
  procedure Button1Click(Sender : TObject);
  private
    { Private declarations }
  public
    { Public declarations }
    IconNumber:integer;
    Ico : array [0..1] of TIcon;
  end;
var  Form1 : TForm1;
implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender : TObject);
begin
  Ico[0] := TIcon.Create;
  Ico[1] := TIcon.Create;
  Ico[0].Handle := LoadIcon(HInstance, ’Icon_1’);
  Ico[1].Handle := LoadIcon(HInstance, ’Icon_2’);
  Icon := Ico[0];
  IconNumber := 0;
  Timer1.Interval := 200;
end;

procedure TForm1.FormDestroy(Sender : TObject);
begin
  Ico[0].Destroy;
  Ico[1].Destroy;
end;

procedure TForm1.Timer1Timer(Sender : TObject);
begin
  IconNumber := (IconNumber+1) MOD 2;
  Icon := Ico[IconNumber];
end;

procedure TForm1.Button1Click(Sender : TObject);
begin
  Application.Minimize;
end;
end.

➤ Listing 7

18 The Delphi Magazine Issue 5



Delphi Internals: CPU Type
Component-based CPU Type determination
by Dave Jewell

A few weeks ago, I was given the
task of writing a readership

survey program for a popular UK
magazine. Not unnaturally, I
decided to write the program in
Delphi! Much of the required infor-
mation was provided by getting the
user to answer a series of ques-
tions, but it was also important to
automatically gather some infor-
mation on the hardware which the
user was running. One item that
was of interest to the publishers
was the CPU type.

Initially, I planned to use the
GetWinFlags API routine to deter-
mine what sort of processor was in
use. However, I discovered that
this routine doesn’t even recognise
Pentium processors let alone the
Pentium Pro (P6) chip. It seemed to
me that this wasn’t adequate for
the job so I decided to look further
afield. Somewhat later, I discov-
ered a call you could make on the
built-in Windows DPMI server
which will return the CPU type.
This call is accessed by a INT $31
call. Again, this looked promising,
but as before there was no informa-
tion on how to recognise Pentium
or Pentium Pro chips.

In desperation I started trawling
the bulletin boards and eventually
found what I was looking for in the
Delphi forum on CompuServe. I
discovered some code (kindly
donated by Intel) which reliably
checks for all existing processor
types – oh joy!

Introducing The
TCPUName Component
As it stood, the code in question
was rather untidy and mainly
comprised a single large in-line
assembler routine. I spent some
time tidying this up and decided to
re-package it as a component. One
might as well do things properly!
The screenshot above shows how
the component looks from the
viewpoint of the Object Inspector.

The component has two special
properties in addition to the Name
and Tag fields. Both of these prop-
erties are read-only. If you try edit-
ing them in the Object Inspector,
they’ll immediately snap back
to whatever values they had
beforehand. More on that shortly!

The first property, CPUKind, is a
simple integer value which returns
the type of CPU we’re dealing with.
This number will generally take
one of the following values:

const
  i8086       = 1; {also 8088}
  i80286      = 2;
  i80386      = 3;
  i80486      = 4;
  iPentium    = 5;
  iPentiumPro = 6;

Although the constants defined
here only go up as far as the
Pentium Pro, you can reliably
expect that what comes after will
return a value of 7, provided that
Intel continue to consistently
implement the CPUID instruction
which is used by the TCPUName code.
CPUID, in case you haven’t encoun-
tered it before, is a special instruc-
tion which returns the type of
processor being used along with
other assorted information.
Unfortunately Intel didn’t think of
implementing the CPUID instruction
until they got as far as the 80486

processor (amazing how obvious
things seem given the benefit of
hindsight!) which is why the code
in Listing 1 is a good deal more
complex than it would otherwise
have to be.

The second property, CPUName,
returns a plain-English description
of the processor. This is for use by
those applications (like my reader
survey program) which simply
wish to report the CPU type with-
out necessarily doing anything else
with it. The possible values which
this string can take are:

’8086’
’80286’
’80386’
’80486’
’Pentium’
’Pentium Pro’
’Px’

The last item here is intended for
upward compatibility with future
processors. Although we can’t
predict Intel’s marketing names for
each processor, the ’Px’ designa-
tion should be consistent. I’ve
already got my order in for a quad,
2 GHz P10 motherboard...

How It Works
Listing 1 shows the component in
its entirety. Two private member
functions are implemented within
the class definition, GetCPUKind and

➤ Our TCPUName
component in
action! The
corresponding
Object Inspector
window is also
shown

January 1996 The Delphi Magazine 41



GetCPUName. These methods are
used to return the processor type
and processor name respectively
for the implementation of the two
properties described above. It’s
likely that you’ll only ever have one
instance of the TCPUName compo-
nent in any one application, but for
the sake of simplicity, and to avoid
re-interrogating the CPU where

multiple instances might be
present, I decided to store the CPU
identifier using a single integer
global variable. This is set up in the
unit initialisation code.

You’ll also notice that there are
two dummy routines, NOPInteger
and NOPString. These are used to
provide dummy write methods for
the two component properties.
The recommended way of creating
read-only properties (according to

the Delphi on-line help) is to
declare properties without an
associated write clause, like this:

published
  { Published declarations }
  property CPUKind: Integer
   read GetCPUKind; {read-only!}
  property CPUName: String
   read GetCPUName; {read-only!}
end;

unit CPUKind;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs;
type
  TCPUName = class(TComponent)
    private
      { Private declarations }
      function GetCPUKind: Integer;
      function GetCPUName: String;
      procedure NOPInteger (val: Integer);
      procedure NOPString (val: String);
    protected   { Protected declarations }
    public      { Public declarations }
    published
      { Published declarations }
      property CPUKind: Integer read GetCPUKind
        write NOPInteger; { read-only! }
      property CPUName: String read GetCPUName
        write NOPString;   { read-only! }
  end;
procedure Register;
implementation
const
  i8086       = 1;           { includes 8088 CPU as well }
  i80286      = 2;
  i80386      = 3;
  i80486      = 4;
  iPentium    = 5;           { P5 - Pentium }    
  iPentiumPro = 6;           { P6 - Pentium Pro }
var
  id: Integer;
function CpuID: Integer; assembler;
{ Assembly function to get CPU type incl Pentium and later }
asm
  push        ds             { first, check for 8086 -
                               Flag bits 12-15 always set }
  call        GetWinFlags    { call Windows API }
  or          ax,wf_CPU286   { or with 80286 processor bit }
  mov         ax,i80286      { assume 286 }
  jz          @@1            { branch if it was }
  { Not a 80286 - let’s check for a 8088/8086 next }
  pushf                      { save EFLAGS }
  pop         bx             { store EFLAGS in BX }
  mov         ax,0fffh       { clear bits 12-15 }
  and         ax,bx          { in EFLAGS }
  push        ax          { store new EFLAGS value on stack }
  popf                       { replace current EFLAGS value}
  pushf                      { set new EFLAGS }
  pop         ax             { store new EFLAGS in AX }
  and         ax,0f000h  { if bits 12-15 are set, then 8086 }
  cmp         ax,0f000h      { is an 8086/8088 ? }
  mov         ax,i8086       { turn on 8086/8088 flag }
  je          @@1            { yes - all done }
  { To test for 386 or better, we need to use 32 bit
    instructions, but the 16-bit Delphi assembler does not
    recognize the 32 bit opcodes or operands.  Instead, use
    the 66H operand size prefix to change each instruction to
    its 32-bit equivalent. For 32-bit immediate operands, we
    also need to store the high word of the operand 
    immediately following the instruction. The 32-bit
    instruction is shown in a comment after the 66H
    instruction. }
  db         66h             { pushfd }
  pushf
  db         66h             { pop eax }
  pop        ax              { get original EFLAGS }
  db         66h             { mov ecx, eax }
  mov        cx,ax           { save original EFLAGS }
  db         66h             { xor eax,40000h }
  xor        ax,0h           { flip AC bit in EFLAGS }
  dw         0004h
  db         66h             { push eax }
  push       ax              { save for EFLAGS }
  db         66h             { popfd }
  popf                       { copy to EFLAGS }
  db         66h             { pushfd }
  pushf                      { push EFLAGS }

  db         66h             { pop eax }
  pop        ax              { get new EFLAGS value }
  db         66h             { xor eax,ecx }
  xor        ax,cx      { can’t toggle AC bit, CPU=Intel386 }
  mov        ax,i80386       { turn on 386 flag }
  je         @@1
  { i486 DX CPU / i487 SX MCP and i486 SX CPU checking 
    Checking for ability to set/clear ID flag (Bit 21) in
    EFLAGS which indicates the presence of a processor with
    the ability to use the CPUID instruction }
  db         66h             { pushfd }
  pushf                      { push original EFLAGS }
  db         66h             { pop eax }
  pop        ax              { get original EFLAGS in eax }
  db         66h             { mov ecx, eax }

  mov        cx,ax           { save original EFLAGS in ecx }
  db         66h             { xor eax,200000h }
  xor        ax,0h           { flip ID bit in EFLAGS }
  dw         0020h
  db         66h             { push eax }
  push       ax              { save for EFLAGS }
  db         66h             { popfd }
  popf                       { copy to EFLAGS }
  db         66h             { pushfd }
  pushf                      { push EFLAGS }
  db         66h             { pop eax }
  pop        ax              { get new EFLAGS value }
  db         66h             { xor eax, ecx }
  xor        ax, cx
  mov        ax,i80486       { turn on i486 flag }
  je         @@1             
  { if ID bit cannot be changed, CPU=486 without CPUID
    instruction functionality }
  { Execute CPUID instruction to determine vendor, family, 
    model and stepping.  The CPUID instruction used in this
    program can be used for B0 and later steppings of P5 }
  db         66h             { mov eax, 1 }
  mov        ax, 1           { set up for CPUID instruction }
  dw         0
  db         66h             { cpuid }
  db         0Fh   { Hardcoded opcode for CPUID instruction }
  db         0a2h
  db         66h             { and eax, 0F00H }
  and        ax, 0F00H       { mask everything but family }
  dw         0
  db         66h             { shr eax, 8 }
  shr        ax, 8    { shift the cpu type down to low byte }
@1:
  pop        ds
end;
procedure TCPUName.NOPInteger(val: Integer); begin end;
procedure TCPUName.NOPString(val: String); begin end;
function TCPUName.GetCPUKind: Integer;
begin
  Result := id;
end;
function TCPUName.GetCPUName: String;
begin
  case id of
    i8086:       Result := ’8086’;
    i80286:      Result := ’80286’;
    i80386:      Result := ’80386’;
    i80486:      Result := ’80486’;
    iPentium:    Result := ’Pentium’;
    iPentiumPro: Result := ’Pentium Pro’;
  else
    Result := Format (’P%d’, [id]);
  end;
end;
procedure Register;
begin
  RegisterComponents (’Pilgrim’’s Progress’, [TCPUName]);
end;
begin
  id := CpuID;        { unit initialisation }
end.

➤ Listing 1

42 The Delphi Magazine Issue 5



Unfortunately, if you try this, you’ll
find that not only are the proper-
ties read-only, but they are also
invisible to the Object Inspector. I
found this rather irritating as I
wanted to see the properties in the
Object Inspector window. In order
to get the read-only properties to
appear, it was necessary to fool
Delphi into thinking that the prop-
erties were writeable, hence the
need for the dummy write meth-
ods. I think this is a shortcoming.
After all, it’s called an Object
Inspector, so you would imagine
that it ought to be able to inspect
read-only properties without any
implication that the properties in
question are writeable! Ho-hum...

The most important routine in
Listing 1 is the CpuID function. This
first calls the GetWinFlags API func-
tion in order to determine if a 286
is in use. Although the original Intel
source included 286 detection
code, this was commented out and
I got the impression it caused GPF
problems under Windows.

The program then tries to see if
it’s dealing with an 8088/8086 by
checking to see if certain bits are
‘stuck’ in the EFLAGS register. If
you’re paying attention, you’ll
know that there’s a zero percent
chance of detecting a 8088/8086
processor while running a Delphi
program since these processors
aren’t even capable of entering
protected mode, let alone running
Windows! Nevertheless, I’ve left
the code in so that you can adapt it
for use in a DOS application if you
wish. The same argument applies
to 286 detection. Most modern soft-
ware, including Windows 95 itself,
requires a minimum of a 386 proc-
essor, but again, I’ve left the code
in for the sake of completeness.

From then onwards, the code
uses 32-bit instructions to test for
386 (and higher) processors. Un-
fortunately, the in-line assembler
built into 16-bit Delphi won’t recog-
nise anything higher than 286 in-
structions, so we have to manually
prefix each 32-bit instruction with
the value $66. This looks rather un-
tidy, but the result is the same.
Each $66 op-code tells the proces-
sor to treat the next instruction as
being 32-bit rather than 16. Thus,

the op-code $50, which is inter-
preted as PUSH AX, will normally
only push the contents of the 16-bit
AX register onto the stack. How-
ever, if we precede the $50 op-code
with $66, then it becomes a PUSH EAX
instruction, pushing the entire
contents of the 32-bit EAX register.

Incidentally, 32-bit Delphi will be
able to assemble 32-bit instruc-
tions directly, so if you want to port
this code over you’ll be able to
significantly tidy it up and get rid of
the 8088/8086 and 286 checks at
the same time!

By the time the code has got to
this point, we know that it’s a 486
processor (or better). However,
not all 486 processors implement
the CPUID instruction which returns
the processor family and other
information. Accordingly, the code
has to perform another check,
testing bit 21 in the EFLAGS register
to see if CPUID functionality is
present. If it isn’t, we know it’s just
a low-end 486 chip. Otherwise the
code executes a CPUID instruction
and returns the family identifier
directly as the function result.

The CPUID Instruction
If you wanted to, you could easily
obtain more detailed information
from the call to CPUID. If you look at
Table 3 on page 4 of the Intel PDF
file on the disk (see ‘What’s On The
Disk’), you’ll see a description of
the format of the EAX register imme-
diately after CPUID has been exe-
cuted. This gives you the minor
stepping number, major stepping
number, family information (which
is what is picked up by the TCPUName
component) and model number.
Using this information, you could
easily add a model number and/or
string to the TCPUName property list,
and the same for the stepping infor-
mation. This is left as an exercise
for the reader, but it’s clearly very
straightforward.

Getting the model and stepping
information might be advanta-
geous in a hardware diagnostic
program, but bear in mind that if
you’re seeking to detect the notori-
ous Pentium division bug you
won’t get very far because Intel
didn’t change the processor step-
ping numbers when they fixed the

divide instruction. Instead, you
actually have to perform some
division and see if it checks out OK.

After the CPUID instruction has
executed, the EDX register contains
a list of ‘feature flags’ for the proc-
essor. The format of these flags is
given in the Intel PDF file, although
I think the information here is a bit
too esoteric to be of much general
use. I can’t help wondering,
though, if the undocumented fea-
ture flags perhaps provide an easy
way to detect the fixed division
problem, amongst other things.

What’s On The Disk
The disk with this issue contains
the component files as well as the
Intel documentation on the CPUID
instruction, in Adobe Acrobat
format as CPUAP.PDF (the Acrobat
reader is on your Delphi CD).

Dave Jewell is a freelance techni-
cal journalist, computer consult-
ant and author of Instant Delphi
from Wrox Press. This article is
based on part of his forthcoming
book on Delphi component writ-
ing, which will be published in the
first half of 1996. You can reach
Dave by email on the internet as
djewell@cix.compulink.co.uk or
on CompuServe as 102354,1572

January 1996 The Delphi Magazine 43



The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Radio Group Focus

QWhen I try and set focus to a
radio group, with the inten-

tion of focusing on the current
radio button within it, the focus
disappears. What seems to happen
is that the radio group itself takes
focus. I would explicitly set focus to
one of its radio buttons, but they
are represented by the Items
property, a TStrings object, and so
I can’t find a window handle. What
do I do?

AWell, when you get the group
box focused, a press of the

Tab key sets focus on the current
radio button. You need a program
statement that achieves the same
thing. Something like this:

RadioGroup1.SetFocus;
SelectNext(ActiveControl,
  True, True);

SelectNext focuses on the next
component on the form in the tab
order. It appears the radio buttons
come after the group box.

Drag And Drop On Grid Cells

QI have a DBGrid that I would
like to drag and drop a value

onto. It works fine when I drop the
value into the currently selected
row; however, I would like to be
able to drop it into the record the
drag cursor is over when the
mouse button is released. Is there
any way to change the selected
record in the grid based on the
location of the drag cursor?

ATo change the record
normally, you click with the

mouse. Here is one possible
solution, where the OnDragDrop
event handler simulates a mouse

click at the cursor position. Rather
than limit this answer to a TDBGrid,
I have also implemented a handler
for a TStringGrid. In my example
project (DRAGDROP.DPR on the
disk) there is a string grid and a
database grid, which will both
receive a value dragged over from
a file list box (SourceControl). The
two event handlers are shown in
Listing 1.

The string grid writes a value to
a cell using the two-dimensional
string array property, Cells, using
Selection to identify the currently
selected cell. The database grid
uses the SelectedField property to
write a value to the target field: it
also ensures the dataset the field
belongs to is in Edit mode first. The
OnDragOver method is simply:

Accept :=
  Source = SourceControl;

256 Colour TImages

QWhen I set the Stretch
property of a TImage which

contains a 256 colour bitmap to
True, its colours get mashed. Is this
a VCL bug, and is there a fix?

AI have heard that this does
not occur on some video

drivers, and so the problem could
be a TImage problem or a Windows
video driver feature. Rather than
decide who is to blame, let’s see if
we can fix it.

There are two approaches here,
and both involve using an interme-
diate bitmap to copy the TImage’s
bitmap onto. It seems that when
the bitmap is copied onto a canvas
directly, the palette is not fixed up,
or ‘realized’ correctly, however if it
is copied onto another bitmap, it
magically is. If you are brave
enough to modify the VCL source
(which you may not even have, de-
pending on what products you
have purchased), you can try the
first approach, otherwise you can
use the substitute component pre-
sented below.

First Method. Find the
EXTCTRLS.PAS file and locate the
TImage.Paint method. Add to it a
second local variable:

Bmp: TBitmap;

Now go down to the end of the
method and find:

procedure TForm1.StringGridDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
  if Source <> SourceControl then Exit;
  with Sender as TStringGrid do begin
    Perform(wm_LButtonDown, 0, MakeLong(X, Y));
    Perform(wm_LButtonUp,   0, MakeLong(X, Y));
    Cells[Selection.Left, Selection.Top] := SourceControl.FileName;
  end;
end;

procedure TForm1.DBGridDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
  if Source <> SourceControl then Exit;
  with Sender as TDBGrid do begin
    Perform(wm_LButtonDown, 0, MakeLong(X, Y));
    Perform(wm_LButtonUp,   0, MakeLong(X, Y));
    SelectedField.DataSet.Edit;
    SelectedField.AsString := SourceControl.FileName;
  end;
end;

➤ Listing 1

54 The Delphi Magazine Issue 5



with inherited Canvas do
  StretchDraw(Dest,
    Picture.Graphic);

Before these lines insert the block
of code in Listing 2. If this compiles
okay, copy the resultant
EXTCTRLS.DCU file into your
DELPHI\LIB directory (backing up
the old one first) and then rebuild
the component library (Options |
Rebuild Library).

You can see that if the Stretch
property is set, the code copies the
picture to another bitmap before
drawing it on the image’s canvas.
The use of inherited against a prop-
erty in the original and modified
code is worth exploring here, as it
causes a headache when
attempting to put similar code in a

new component. The TImage is
derived from a TGraphicControl
which has a Canvas property, refer-
ring to the screen space where it
will draw. TImage redefines Canvas
to refer to the bitmap’s canvas
instead. When it comes to draw it-
self in the Paint method, it must use
the word inherited to access the
real canvas, declared in the
TGraphicControl class.

Unfortunately there is no way for
a class inherited from TImage to get
access to this proper canvas, two
levels up the inheritance tree, so
we have to use other sneaky
devices to achieve the goal.

Second Method. The TNewImage
component in Listing 3 (the file
IMAGE2.PAS) traps the wm_Paint
message (well it’s not a real mes-
sage: a TImage does not have a
window handle, but let’s not get
too involved here) and obtains a
Windows device context handle
from the message parameters. It
uses this to set up a temporary
canvas that can be used by the new
Paint method. Notice that to allow
the entirety of the component to be
seen at design time, the new code
only executes if a stretched bitmap
is present. In other cases, the usual
surrounding dashed line will be
seen.

Using this approach has a side
benefit, as now things other than

if Stretch then begin
  Bmp := TBitmap.Create;
  try
    Bmp.Height := Picture.Height;
    Bmp.Width  := Picture.Width;
    Bmp.Canvas.Draw(
      0, 0, Picture.Graphic);
    inherited Canvas.StretchDraw(
      Dest, Bmp);
  finally
    Bmp.Free;
  end;
end
  else

➤ Listing 2

bitmaps can be stretched as well:
try and load an icon or a metafile
into a TImage and set the Stretch
property to True. In case you have
lots of TImage components in use
that you want to replace with
TNewImages, but can’t face the or-
deal of deleting the originals, add-
ing TNewImages, setting the Stretch
property and loading a Picture,
here is an alternative. Load your
form as a text file using File | Open
File, and choosing Form Files from
the file types combo box. Now do
a search and replace of TImage with
TNewImage and close the file. Finally
open the form’s unit file normally
and do the same search and
replace through the form class
definition. Problem solved.

This approach comes in very
handy if you start working on a
TTable component, use the Fields
Editor to set up all the field objects
and start writing code, only to real-
ise that you should have started
with a TQuery. If you were to delete
the TTable, all the field objects
would also be deleted. It is much
easier to change the definition of a
TTable to be a TQuery and alter the
differing property (ie change the
TableName property to be an SQL
property formatted appropriately
– you can find what the right format
is by examining an existing TQuery
component in text mode).

unit Image2;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, ExtCtrls;
type
  TNewImage = class(TImage)
  private
    FCanvas: TCanvas;
    FBmp: TBitmap;
  public
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;
    procedure WMPaint(var Msg: TWMPaint);
      message wm_Paint;
    procedure Paint; override;
  end;
procedure Register;
implementation

constructor TNewImage.Create(AOwner: TComponent);
begin
  inherited Create(AOwner);
  { Can’t draw on the TImage canvas - that turns out to
    be the bitmap object’s canvas }
  FCanvas := TCanvas.Create;
  { Temporary bitmap to cause palette realization }
  FBmp := TBitmap.Create;
end;

destructor TNewImage.Destroy;
begin

  FBmp.Free;
  FCanvas.Free;
  inherited Destroy;
end;

procedure TNewImage.WMPaint(var Msg: TWMPaint);
begin
  { Identify what the real canvas is }
  FCanvas.Handle := Msg.DC;    
  { Do normal stuff, like call Paint }  
  inherited;    
  { Now forget about it }     
  FCanvas.Handle := 0;          
end;

procedure TNewImage.Paint;
begin
  { Only do new stuff if it is a stretched image }
  if (Picture.Graphic = nil) or not Stretch then
    inherited Paint
  else begin
    FBmp.Height := Picture.Height;
    FBmp.Width  := Picture.Width;
    FBmp.Canvas.Draw(0, 0, Picture.Graphic);
    FCanvas.StretchDraw(ClientRect, FBmp);
  end
end;

procedure Register;
begin
  RegisterComponents(’Samples’, [TNewImage]);
end;
end.

➤ Listing 3

56 The Delphi Magazine Issue 5



Clipboard Stuff

QHow can I implement generic
cut/copy/paste menubar

functionality right across TEdit,
TDBEdit, TStringGrid, TDBGrid,
TMemos and TDBMemo controls?

ATo make common code work
across these components

we need some functionality com-
mon to them all. This is ok for edits
and memos, as they’re all based at
some point on TCustomEdit, but
what about the grids?

Well, when it comes to editing on
a grid the component makes use of
a specialised in-place edit control
called a TInPlaceEdit. This is also
based on TCustomEdit, and so we
need to know how to get a handle
on this object, so we can call its
clipboard-type functionality.

The code in Listing 4 contains
two routines used in the program
shown in the screenshot. When
the edit menu is invoked, the
EditMenuClick event handler is
invoked to identify if there is a
TCustomEdit derivative around to
work with. If the active component
is an edit or memo, then the target
has been found. However if it is a
grid, it is more involved. Even when
a grid has an in-place editor active,
the grid is still the active compo-
nent as far as the form is
concerned. If a TCustomGrid is ac-
tive, the code cycles through its
components until it finds a visible
TInPlaceEdit.

When a TCustomEdit descendant
is located it is assigned to a data

procedure TForm1.EditMenuClick(Sender: TObject);
var
  Loop: Byte;
begin
  EditCtl := nil;
  if ActiveControl is TCustomEdit then
    EditCtl := ActiveControl as TCustomEdit
  else if (ActiveControl is TCustomGrid) then
    with TCustomGrid(ActiveControl) do
      { When editing in a grid, the grid is the active
        control not the in-place editor, so we need to find
        the editor in the grid. If grid owns any controls,
        cycle through them checking for editor}
      if ControlCount > 0 then
        for Loop := 0 to Pred(ControlCount) do
          if Controls[Loop] is TInPlaceEdit then
            { Editor is visible when being used }
            if Controls[Loop].Visible then begin
              EditCtl := TInPlaceEdit(Controls[Loop]);
              Break;
            end;
  if Assigned(EditCtl) then begin
    Undo1.Enabled := 
      Bool(EditCtl.Perform(em_CanUndo, 0, 0));

    Cut1.Enabled := EditCtl.SelLength > 0;
    Copy1.Enabled := Cut1.Enabled;
    Paste1.Enabled := ClipBoard.AsText <> ’’;
    Delete1.Enabled := EditCtl.SelLength > 0;
  end else begin
    Undo1.Enabled := False;
    Cut1.Enabled := False;
    Copy1.Enabled := False;
    Paste1.Enabled := False;
    Delete1.Enabled := False;
  end;
end;
procedure TForm1.MenuClick(Sender: TObject);
begin
  if Assigned(EditCtl) then with EditCtl do
    case (Sender as TComponent).Tag of
      1: Perform(em_Undo, 0, 0);
      2: CutToClipBoard;
      3: CopyToClipBoard;
      4: PasteFromClipBoard;
      5: ClearSelection;
    end;
end;

➤ Listing 4

field called EditCtl which I have
added to the form’s declaration. If
an edit control is found, the various
menu items need to be enabled or
disabled, depending on the current
state of both it and the clipboard;
ie whether there is any selected
text, if there is any text in the
clipboard, etc.

All the menu items that hang off
the Edit menu use the same event
handler. To distinguish between
the menu item that triggered the
event, they have all had their Tag
properties set to unique values.
Providing EditCtl refers to a valid
object, the code performs a stand-
ard edit control clipboard type of
operation, such as CutToClipBoard
or ClearSelection. The one excep-
tion is for the Undo menu item,
which uses a windows message to
achieve its goal instead.

Updates From Issue 4
Several readers contacted us with
more elegant or efficient ways of
doing a left zero fill. Jack Bakker
and Niek de Ruitjer reminded us
about Delphi’s Format routine,
which will  do the job quite nicely:

Format(’%.5d’, [123]); {00123}

See the online help for ‘Format
Strings’ for more details (the
features are quite comprehensive
so it should meet most needs).

Also, Alan Gregory send in a less
dirty solution for updating a file
listbox. Simply call its Update
method.

Acknowledgements
Thanks to Roy Nelson of Borland
for the TDBImage VCL fix and idea for
the TDBImage replacement.

January 1996 The Delphi Magazine 57



Most of the components used
in building Delphi applica-

tions can be clearly seen on the
Component Palette and manipu-
lated with the Object Inspector at
design time. A click on the palette
and a click on the form, and any
component on the palette is ready
for use. However, the most impor-
tant component to any Delphi ap-
plication is not on the Component
Palette, nor will its properties be
found in the Object Inspector.
TApplication is the foundation for
all Delphi VCL based projects. It
contains the lowest level of code
needed to run a Windows applica-
tion, creating the ever-patient
message loop and handling all the
low level calls to the Windows API
that create and run an application.
Like a Secret Service agent,
TApplication is there, not quite
noticed, but very capable and
ready to serve.

Strangely enough, TApplication
is actually a component, descend-
ing directly from TComponent.
TApplication itself is declared in
the Forms unit of the runtime lib-
rary. The instance of TApplication
that is declared for all Delphi
projects, Application, is actually a
Window, created directly with a
call to the API CreateWindow. It is
intialized with zero height and zero
width, so it never actually appears
on the screen. Application knows
how to create and manage the main
form of a Delphi project at run-
time. TApplication has properties
and events just like any other
component. The best part is that a
number of these events and prop-
erties contain valuable information
for the Delphi programmer. That
information is not readily
apparent, but easily surfaced.

Application.ProcessMessages
Frequently, an application will
have to perform a task that takes a
rather large chunk of processor
time. Often, this involves some
sort of loop. Because Windows 3.x

Inside TApplication
by Nick Hodges

multi-tasks cooperatively, a well-
behaved Windows application has
to allow other applications a shot
at processing their messages.
Application provides a simple way
to allow messages to be processed
while a project is busy doing some
other menial task. A call to
Application.ProcessMessages any-
where in your code will ensure that
your application will give other
Windows programs space to do
their thing. Periodic calls inside a
loop will allow all applications to
process messages that would
otherwise be bottled up.

The sample application
(included on the disk and shown in
action over the page) demon-
strates how this works. When the
Waste Time check box is selected,
the demo continuously counts up
and down from 0 to 100 and
displays the status in a gauge (see
Listing 1). The repeat...until loop
would normally seize control of the
Windows environment, not allow-
ing any other applications access
to the message queue. However, a
simple call to Application.
ProcessMessages in the middle of
the loop causes the demo to peek
into the message queue and proc-
ess any messages waiting there. As
a result, Windows can function
normally despite a loop running
continuously in the background.

However, note that Application.
ProcessMessages will not close an
application when the wm_quit
message is encountered inside a
loop. Therefore, the loop itself

includes a check Application.
Terminated. This ensures that
Application.ProcessMessages actu-
ally processes all the waiting mes-
sages for the application before
terminating the application.
Application.ProcessMessages actu-
ally sets Terminated to true, but the
programmer must explicitly check
for it to allow it to be processed. To
see this work, try commenting out
the call in the until clause, run the
program and notice that the
program won’t close until the
Waste Time check box is
deselected.

You can call Application.
ProcessMessages anywhere at any
time, but it is best used when any
action a program takes might inter-
fere with the free flow of Windows
messages. Interestingly, the code
is the same as that invoked by
TApplication when it sets up the
message loop and waits for user
input in any Delphi program.

Starting Out Minimized
Employing a zero-sized window to
run a Delphi application and to
manage all of its associated forms
causes the application to behave
slightly differently to what might
normally be expected.

Despite how it may appear to a
developer within Delphi itself, the
real main window of any Delphi
application is the TApplication win-
dow itself. It is this window which
is displayed when the application
is minimized and it is this window
which is queried by Windows

procedure TForm1.CheckBox3Click(Sender: TObject);
var Increment: Integer;
begin
  Increment := 1;
  repeat {Waste time, but allow processing of Windows messages}
    Gauge1.Progress := Gauge1.Progress + Increment;
    if Gauge1.Progress = Gauge1.MaxValue then Increment := -1;
    if Gauge1.Progress = Gauge1.MinValue then Increment := 1;
    Application.ProcessMessages;
  until (not CheckBox3.Checked) or (Application.Terminated);
  Gauge1.Progress := 0;
end;

➤ Listing 1

8 The Delphi Magazine Issue 4



shells such as Program Manager
when seeking an icon.

One of the easiest ways to show
this slightly unusual trait is to
create a simple Delphi application,
install it in a group in Program
Manager and then tell Program
Manager to run the application
minimized. The Delphi-built appli-
cation will ignore the command
when run from Program Manager.
Since Application is really the main
form of the application, and it
creates and displays what the
developer calls the main window of
the application, the message never
gets to the application to start in a
minimized state. TApplication
doesn’t process the CmdShow
parameter which defines how the
program will be displayed on
startup.

Fortunately, there is an easy fix
to this seemingly anomalous
behavior. The demo application, if
started with the Run Minimized
command set in Program Manager,
will behave as expected. In the
main form of the demo program,
the FormCreate method checks the
CmdShow value that was passed to
TApplication and stored in the
CmdShow variable in the System unit
(see Listing 2). The FormCreate
constructor checks the value and
sets the WindowState accordingly. A
call to the ShowWindow API would do
the same thing, but wouldn’t neces-
sarily set the proper WindowState
value for the main form.

Icon And Icon Caption
Some developers may notice that
the once the application is prop-
erly minimized when called from
Program Manager, the icon that is
displayed in Program Manager is
not the one attached to the main
form’s Icon property.

This is another symptom of the
distinction between TApplication
and the main form. The icon that is
bound into the executable and
found by Program Manager is the
icon attached to the application
itself. This icon can be set through
Delphi’s IDE on the Options|
Project|Application page. You can
also change the application’s main
icon at runtime with a simple
assignment statement.

The solution to this dilemma is
to do one of two things: either en-
sure that the TApplication icon and
the main form icon are the same, or
leave the Icon property of the main
form blank and let TApplication do
all the icon management.

It is also easy to assume that the
main form’s caption will become
the caption for the icon, but such
is not the case. The Title property
of TApplication holds a string that
will be displayed as the minimized
application’s caption. The default
can be set in the project’s Option
dialog, and can be easily changed
at run-time.

The ever-present demo demon-
strates the use of icons and their
captions. Note that if placed in
Program Manager, the demo will
display the Delphi default icon.
When run and minimized, that
same icon will be displayed.

However, TApplication has an Icon
property that can be set at design
time. The demo allows you to do
that – see Listing 3. Assigning an
Icon to the main form’s Icon prop-
erty at design time would cause
that icon to be displayed on mini-
mization, but not as the icon repre-
senting the application in Program
Manager. Note, too, that the icon
assigned at runtime is only tempo-
rary, and that the icon assigned to
TApplication at design time is the
one bound into the program at
compile time as its main icon.

Finally, the caption can be easily
changed by entering a string into
the supplied edit box. That string
is then assigned to Application.
Title.

Dragged Files
The fact that the icon shown on
minimization is not the icon

➤ The example program in action

procedure TForm1.FormCreate(Sender: TObject); 
begin 
  {Ensure Window opens itself in state set by CmdShow} 
  case CmdShow of 
    sw_ShowMinimized, 
    sw_ShowMinNoActive     : WindowState := wsMinimized; 
    sw_ShowMaximized       : WindowState := wsMaximized 
  else
    WindowState := wsNormal 
  end; { case }
  { ... more code here, see files on the disk ... }
end;

➤ Listing 2

10 The Delphi Magazine Issue 4



representing the project’s main
form brings about more unusual,
but fixable, behavior in Delphi
applications. Because the icon
displayed when the program is
minimized is owned by the applica-
tion and not by the main form,
dragging files from File Manager to
the iconized application does not
function as expected. You can
cause an application’s main form to
accept dragged files as usual by
calling the DragAcceptFiles API and
responding to the wm_DropFiles
message to gather information
about those files. Once this is done,
Delphi applications that are in the
restored state will accept these
files gladly; however, when
minimized they will not.

TApplication has to be set up to
accept files as well. TApplication
has an event called OnMessage that
is invoked every time a message is
received by the application. By
calling DragAcceptFiles and pass-
ing Application.Handle, and by
writing a special handler to catch
the wm_dropfiles message inside
the OnMessage, a minimized applica-
tion can respond to files dragged to
it in exactly the same way as does
a restored program. Note that the
OnMessage event could be used to
trap any Windows message that
might need special handling by the
Application instance, such as
wm_paint for painting on the icon.

The demo application illustrates
how a Delphi application can be set

up to accept files in any state. Both
TApplication and the program’s
main form are able to accept
dragged files, and both respond to
the wm_dropfiles message by
gathering the names of all the
dragged files in a TStringList and
then placing that list into a listbox
on the form.

Hints
Windows applications these days
aren’t considered complete
without fly-by help boxes for but-
tons, tool bars and other compo-
nents. Delphi makes it incredibly
easy to supply these little hint
boxes. The TApplication object
makes it very easy to customize
them. TApplication supplies prop-
erties to change the time a user
waits to see the hints, whether the
hints are displayed at all, and even
the background color of the hints
themselves, in case a programmer
wants to be different and not
display hints with the standard
yellow background.

These features can be easily
seen in the demo application. The
hints can be turned on and off using
the so-named check box. The hint
delay time, in milliseconds, can be
set using the spin edit box. Note
that the delay is set only for the
first hint, once the first hint is
shown all hints after that are imme-
diately displayed without delay.
This allows users to see all the
hints without having to wait for the

delay for each control. Moving the
mouse off the main window resets
the delay. The background color of
the hints can be changed with a
simple call to a ColorDialog box.
The selected color is then set to the
TApplication HintColor property.

Stay-On-Top
Some Delphi developers may want
to create an application that
always remains on top of all the
other windows on the screen.

Interestingly, fsStayOnTop is the
only FormStyle property setting
that can be changed at runtime.
However, when in this state, prob-
lems can arise when the applica-
tion tries to call another dialog.
Dialogs called by programs in stay-
on-top mode can end up behind the
calling window. If such a dialog is
modal, it can lock up Windows
entirely! TApplication allows you to
place dialogs on top of forms that
have fsStayOnTop set. The two
methods NormalizeTopMosts and
RestoreTopMosts allow a program-
mer to toggle in and out of a state
that allows dialogs to be place on
top of a stay-on-top application
(see Listing 4).

The trusty demo application can
be switched to stay-on-top mode
and then can calls a message box
which is displayed on top of the
form. Without the calls altering the
topmost state, the message box
would be placed behind the app
and out of reach, causing Windows
to become modal with no escape.
Even worse, users wouldn’t even
know what had happened! To dem-
onstrate this, try setting the stay
on top checkbox and then try to
change the hint color!

Listing Components
Frequently, a Delphi developer
may wish to gain access to a
particular type of control or a cer-
tain set of controls on a form at run
time. TApplication contains a list of
all the components owned by the
main form in its Components prop-
erty. ComponentCount contains the
total number of controls in the
array. By using run-time typing in-
formation and a for loop, a pro-
grammer can cycle through all of
the main form’s components and

procedure TForm1.Button1Click(Sender: TObject); 
var Icon: TIcon; 
begin 
  {Get an icon and load it into the Application.  The new icon will now
   show up when the application is minimized} 
  Icon := TIcon.Create; 
  if OpenDialog1.Execute then begin 
    Icon.LoadFromFile(OpenDialog1.Filename); 
    Application.Icon := Icon; 
  end; 
  Icon.Free; 
end;

➤ Listing 3

procedure TForm1.Button5Click(Sender: TObject); 
begin 
  Application.NormalizeTopMosts; {Allow dialogs on top}
  MessageBox(Form1.Handle, ’This should be on top.’, ’Message Box’, MB_OK);
  Application.RestoreTopMosts; {Return to normal}
end; 

➤ Listing 4

November 1995 The Delphi Magazine 11



find components that are of a
certain type or that have certain
properties.  The demo shows this
by gathering all of the names of the
components on a form and putting
them in a list box (see Listing 5). It
also picks out all the TLabel
controls and alternates their font
color between red and black. You
can use this technique to find any
specific control or type of control.

The Command Line
TApplication also stores details at
run time about the command line
used to run itself. The EXEName prop-
erty stores the full path of the ex-
ecutable, which can be broken
down using functions from
SysUtils, such as ExtractFilePath
and ExtractFileName. The demo
displays its command line in a label
upon execution.

Conclusion
TApplication can perform a
number of other tricks, including
restoring and minimizing itself as
well as making it easy for to invoke
a program’s help file. Despite being
hidden away, TApplication has a
wealth of capabilities. Knowing a
few tricks we can take advantage of
the strengths of TApplication and
overcome its few quirks.

Nick Hodges, an experienced
Delphi and Pascal developer, is
known to many as the author of
TSmiley and the inspiration
behind a whole raft of Smiley-
Ware! He can be contacted via
CompuServe on 71563,2250

procedure TForm1.Button2Click(Sender: TObject); 
var I: Integer; 
begin 
  ListBox2.Clear; 
  for I := 0 to ComponentCount - 1 do begin 
    Listbox2.Items.Add(Components[I].Name); 
    if Components[I] is TLabel then begin
      {Use Run-time typing to check type. Toggle the text of only TLabels
       between Red and Black. Note that each component must be typecast
       first.} 
      if TLabel(Components[I]).Font.Color = clBlack then 
        TLabel(Components[I]).Font.Color := clRed 
      else
        TLabel(Components[I]).Font.Color := clBlack; 
    end
  end; 
  Label7.Caption := IntToStr(ComponentCount); 
end; 

➤ Listing 5

Several readers responded to the query in Issue 3’s Delphi Clinic about
how to make an iconised Delphi application stay on top of all other
windows – thanks! Here Hallvard Vassbotn provides a usefully gener-
alised solution, as well as revealing other useful facets of TApplication.

Icon On Top
For a Delphi application, even if the
main form’s FormStyle property is
set to fsStayOnTop, the icon which
shows when minimized is not on
top of the other windows. The rea-
son for this is that the Application
object maintains a hidden window
that is the actual main window of
the application. This hidden
window will distribute commands
to what Delphi considers the main
form as it sees fit. When the Delphi
main form is minimized, it will
actually be hidden and the
Application window is responsible
for drawing the main form’s icon.

With that in mind, and remem-
bering that the Application
window’s handle can be accessed
with it’s Handle property, we can
solve the problem using the code
in Listing 6.

We simply hook the OnMinimize
event of the Application object.
Whenever the application is mini-
mized, and thus the icon is showed,
the code in AppMinimize will be run.
Here we check if the FormStyle
property of the main form indi-
cates that the icon should be made
on top. If so we use the WinProcs
routine called SetWindowPos to
change the display attributes of the
icon.

Tile And Cascade
You might have noticed that when
running an application created

with Delphi it doesn’t respond
properly to the Tile and Cascade
commands from the Task Manager.
Delphi itself has this behaviour (it
was, after all, written in Delphi!).

You can test this by running a
Delphi app together with one or
more non-Delphi apps. Bring up the
Task Manager by double-clicking
on the background or pressing
Ctrl+Esc. Click the Tile and
Cascade buttons. All non-Delphi
applications are resized and posi-
tioned correctly. The Delphi app
doesn’t move, but instead an
empty square is left where the
window should have been placed.

This is another effect of the fact
that the Application object in
Delphi maintains its own hidden
window which is the actual main
window in Windows terms. The
blank space you see when tiling is
actually this hidden window.

To overcome this problem, we
can use a little known feature of the
Application object, the method
HookMainWindow, which lets us hook
into the message handler of the
Application window. This way we
can monitor and override any
functionality of the main window.

By using the WinSight utility
provided with Delphi, I found that
monitoring WM_WindowPosChanging
messages sent by Windows to the
Application window would let me
resize the main form correctly
when tiling and cascading. The
solution is shown in Listing 7.

First we hook the message
handler of the application window
with the HookMainWindow method.
Note that Application keeps track
of a list of hooks, so that there
might be several hooks installed at
once. When the main form is
destroyed we act politely and clean
up after ourselves by calling
UnHookMainWindow.

The HookProc method will now be
called for every message that
arrives in the Application window’s
message queue. We are only
interested in monitoring the
messages, not overriding the

12 The Delphi Magazine Issue 4



unit Unit1;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
  Forms, Dialogs;
type
  TForm1 = class(TForm)
    procedure FormCreate(Sender: TObject);
  private   { Private declarations }
    procedure AppMinimize(Sender: TObject);
  public    { Public declarations }
  end;
var
  Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
  Application.OnMinimize := AppMinimize;
end;

procedure TForm1.AppMinimize(Sender: TObject);
begin
  if FormStyle = fsStayOnTop then
    SetWindowPos(Application.Handle, HWnd_TopMost, 0, 0, 0, 0,
                 SWP_NoActivate or SWP_NoSize or SWP_NoMove);
end;
end.

➤ Listing 6

unit Unit2;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
  Forms, Dialogs;
type
  TForm1 = class(TForm)
    procedure FormCreate(Sender: TObject);
    procedure FormDestroy(Sender: TObject);
  private   { Private declarations }
    function HookProc(var Message: TMessage): boolean;
  public    { Public declarations }
  end;
var
  Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
  Application.HookMainWindow(HookProc);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
  Application.UnHookMainWindow(HookProc);
end;

function TForm1.HookProc(var Message: TMessage): boolean;
var
  LocalFlags: word;
begin
  Result := false;
  if Message.Msg = WM_WindowPosChanging then begin
    with TWMWindowPosMsg(Message).WindowPos^ do begin
      if (hWnd = Application.Handle)
      and not IsIconic(hWnd)
      and (cx > 0) and (cy > 0) then begin
        LocalFlags := flags or SWP_NoZOrder;
        if BorderStyle = bsSizeable then
          LocalFlags := LocalFlags and not SWP_NoSize
        else
          LocalFlags := LocalFlags or SWP_NoSize;
        SetWindowPos(Self.Handle, 0, x, y, cx, cy, LocalFlags);
      end;
    end;
  end;
end;
end.

➤ Listing 7

default behaviour, so we always
return false.

If it is a WM_WindowPosChanging
message, we are interested in it and
type-cast the message record to
the TWMWindowPosMsg defined in
Messages. The WindowPos field is a
pointer to a record that contains all
the useful information, so we
de-reference this pointer as well.
Now to be on the safe side we check
that the message was indeed
intended for the Application win-
dow, that we are not an icon and
that the size of the window is not
zero.

If all is well so far, we know that
we should resize the main form. To
keep things unobstructed, we
fiddle with the flag bits to make
sure that the Z-order is not affected
and that the size of a fixed-size
window isn’t changed.

Now Tile and Cascade from the
Task Manager should work the way
they are supposed to do. This code
example also shows how to
monitor and/or override the appli-
cation window’s behaviour – again
demonstrating Delphi’s power and
extensibility!

Hallvard Vassbotn lives and works
in Norway and can be reached by
email at hallvard@falcon.no

Titan   for Delphi
A High Performance Btrieve

Interface for Delphi Developers

Titan  replaces the Borland Database

Engine (IDAPI) and gives you native

access to your Btrieve files without the

need for ODBC.  It links into your EXE

thus making your distribution and instal-

lation a snap. Titan  supports all of

Delphi’s data aware controls, and allows

access to multiple Btrieve databases via

data definition files (DDF’s). Only $295!

To order call:

AmiSys Incorporated
1390 Willow Pass Road, Suite 930

Concord, CA 94520-5253, USA

(510) 671-2103   Fax:  (510)671-2104

CompuServe 70441,3250

November 1995 The Delphi Magazine 13



Delphi incorporates some very
useful database components

that make developing database
applications a breeze. And because
Delphi ships with a local version of
Borland’s InterBase database
server, a great number of applica-
tion developers now have an easy,
inexpensive means of exploring the
world of Client/Server technology
right at their fingertips. For these
reasons, many fledgling Delphi
programmers may be introduced
to Structured Query Language
(SQL) for the first time. This article
is intended to introduce you to the
principal SQL data access
statements: SELECT, INSERT,
UPDATE and DELETE. These are the
workhorses of SQL and by the end
of this article you’ll be able to
effectively use SQL to accomplish a
wide variety of tasks. We’ll
continue to expand our knowledge
of SQL in the next issue.

All of the examples in this article
use the sample InterBase database
EMPLOYEE.GDB that ships with
Delphi. You may find it helpful to
connect to this database through
the Windows Interactive SQL
(ISQL) program that ships with
Delphi and try the examples as you
read about them. It’s also handy to
be able to experiment as ideas
come to you while reading the text.
This database is located in the
\IBLOCAL\EXAMPLES directory if
you installed Delphi with the
default directories. We will be
adding information in this
database so you may want to make
a copy of the EMPLOYEE.GDB file
and work with the copy only.

Using ISQL
To use Windows ISQL, start the
ISQL program from the Delphi
program group. From the File
menu, select Connect to Database.
In the Database Connect dialog box,

Surviving Client/Server:
Getting Started With SQL Part 1
by Steve Troxell

make sure you’ve selected Local
Server, enter the path and filename
for the EMPLOYEE.GDB database,
enter SYSDBA for the user name, and
enter masterkey for the password
(make sure you enter the password
in lower case). This is the default
system administrator login for
InterBase databases.

Using the ISQL program is
simple: type in the SQL statement
you want to execute in the SQL
Statement window and click the Run
button to execute the statement.
The results of your statement will
appear in the ISQL Output window.
Once you run an SQL statement, it
disappears from the SQL Statement
window. If you want to run it again
(and perhaps make small changes
to it), you can retrieve any
previous SQL statement by clicking
the Previous button.

SQL Preliminaries
Before we get started, let’s look at
a few of the ground rules for work-
ing with SQL. First, three new
terms: the familiar structures of
file, record, and field are called
table, row, and column in relational

databases. A database is a
collection of tables; in Paradox
each .DB file represents a table, in
InterBase each .GDB file represents
a database and the tables are
managed internally.

Second, let’s take a look at the
syntax of a SQL statement. A
typical SQL statement might be:

SELECT name, address
  FROM customers;

SQL itself is case-insensitive, but in
this article SQL keywords are
shown in all uppercase and table
names, column names, etc. are
shown in all lower case. SQL gener-
ally requires a semi-colon at the
end of each statement, but in
certain tools (such as ISQL) it’s
optional.

Third, you can break an SQL
statement across multiple lines by
pressing RETURN anywhere you can
legally place a space in the
statement.

Finally, you can enclose literal
strings with single quotes or
double quotes. We’ll use single
quotes here.

Introducing The Column...

Delphi users seem to have settled down into several groups: firstly
occasional programmers or first-time programmers ( attracted by

Delphi’s ease of use), secondly professional full-time developers doing
general Windows application building (enthralled by Delphi’s amazing
productivity) and thirdly those putting together Client/Server systems
(impressed by Delphi’s robustness and power). This column is aimed
at the third group, but especially those who may be dipping a toe into
the waters of Client/Server for the first time.

Steve is involved in developing a variety of Client/Server systems in
his work at TurboPower Software, using different server databases, and
we are looking forward to learning from his experience over the months.
As well as SQL – an essential part of the Client/Server developer’s skill
set – Steve plans to cover a variety of other topics and also provide lots
of  hints and helps along the way. If there are things which you need
some help with, why not drop us a line and let us know!

12 The Delphi Magazine Issue 3



Reading Rows
SELECT is SQL’s data retrieval
statement and is probably the
most frequently used SQL
statement. The basic form of the
SELECT statement is:

SELECT <column(s)>
  FROM <table(s)>;

For example, try the following
SELECT statement in ISQL (the
results are shown in Figure 1):

SELECT last_name, first_name
  FROM employee;

We selected the last_name and
first_name columns from the
employee table. By default, SELECT
returns all the rows from the table,
but only shows data for the
columns we requested (called the
select list). If you wanted to see all
of the columns in a table, it would
be cumbersome to enter the name
of every column in the SELECT
statement, so SQL provides a
convenient shortcut:  an asterisk
can be used to indicate all columns.
Try the following in ISQL:

SELECT * FROM employee;

Computed Columns
You can also show calculated
results with a SELECT statement. In
this case, you simply provide the
expression used to make the calcu-
lation in place of a column name in
the select list. The example below
estimates the monthly earnings of
each employee:

SELECT last_name, salary / 12
  FROM employee;

Take a look at the results of this
statement in Figure 2. Notice that
there isn’t a column name for the
salary calculation. That’s because
the data shown doesn’t exist as a
named column in the table we
selected from. A column without a
name is just not a very useful thing
to have, so we need to assign an
alias to the column (see Figure 3):

SELECT last_name, salary / 12
  AS monthly_salary
  FROM employee;

SELECT last_name, salary / 12 FROM employee;

LAST_NAME                                 
==================== ======================

Nelson                                 8825
Young                                  8125
Lambert                              8562.5
Johnson                             5386.25
Forest                                 6255
Weston                          7191.078125

➤ Figure 2 (partial listing of rows)

SELECT last_name, first_name FROM employee;

LAST_NAME            FIRST_NAME    
==================== ===============

Nelson               Robert        
Young                Bruce         
Lambert              Kim           
Johnson              Leslie        
Forest               Phil          
Weston               K. J.     

➤ Figure 1 (partial listing of rows)

➤ ISQL in action

There’s no reason why we couldn’t
do the same thing to a regular
named column as well, if we
wanted to reference the data by
something other than its defined
column name. You might need to
do this if you were selecting data
from two or more tables that use
the same column name.

Selecting Subsets Of Rows
The selects we’ve looked at so far
return all the rows in the table.

Many times you’re not interested
in wading through all of the rows to
get the information you want.
Usually all you want is a specific
row, or a set of rows with
something in common. You use the
WHERE clause to restrict the rows
returned by SELECT.

For example, the following SQL
statement selects all the
employees in the Software
Development department (see
Figure 4):

September 1995 The Delphi Magazine 13



SELECT * FROM employee
  WHERE dept_no = 621;

The criteria defined by a WHERE
clause is usually referred to as the
search condition. The SELECT state-
ment returns only those rows that
meet the search condition. WHERE
supports a variety of conditional
operators and allows multiple
criteria to be logically combined
using AND and OR. Some of the
common operations that can be
performed are listed in Figure 5.
Many SQL databases offer
additional operations.

The following examples
illustrate some of the expressions
you can use to formulate search
conditions. They are all valid
search conditions for the employee
table, so feel free to try them out in
ISQL before continuing (try SELECT
* FROM employee using each of the
following WHERE clauses).

WHERE job_grade IN (1,3,4) AND
  job_country = ’USA’

WHERE salary / 12 > 10000

WHERE phone_ext IS NULL

WHERE hire_date BETWEEN
  ’1-1-90’ AND ’12-31-90’

WHERE UPPER(first_name)
  LIKE ’ROBERT%’

It should be noted that the columns
used in the WHERE clause do not
have to be part of the select list;
they only have to be available in
the table defined in the FROM clause
of the SELECT statement.

Wildcarding
You can use wildcards to select on
a character column matching a
given pattern (amazingly enough,
this is sometimes referred to as
pattern matching).

SQL supports two wildcard
characters:  % is used to match any
number of characters (including
zero), and _ is used to match
exactly one character. You must
use the LIKE operator to use wild-
cards in a character search, other-
wise the wildcards are taken
literally.

SELECT * FROM employee WHERE dept_no = 621;

EMP_NO FIRST_NAME      LAST_NAME            PHONE_EXT   HIRE_DATE
====== =============== ==================== ========= ===========

     4 Bruce           Young                233       28-DEC-1988
    45 Ashok           Ramanathan           209        1-AUG-1991
    83 Dana            Bishop               290        1-JUN-1992
   138 T.J.            Green                218        1-NOV-1993

➤ Figure 4 (partial listing of columns)

SELECT last_name, salary / 12 AS monthly_salary
  FROM employee;

LAST_NAME                    MONTHLY_SALARY
==================== ======================

Nelson                                 8825
Young                                  8125
Lambert                              8562.5
Johnson                             5386.25
Forest                                 6255
Weston                          7191.078125

➤ Figure 3 (partial listing of rows)

Operator Meaning

= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
BETWEEN x AND y Range: greater than or equal to <x> and

less than or equal to <y>
IS NULL Contains null value
IS NOT NULL Contains non-null value
IN (x,y,...) Value found in a list
NOT IN (x,y,...) Value not found in a list
LIKE Matches a wildcard pattern

➤ Figure 5  Common SQL operators

Suppose you needed to look up a
customer and all you could
remember was that they were
located on Newbury Street or
Avenue or Newbury something.
You could use the following SQL
statement:

SELECT customer, address_line1
  FROM customer
  WHERE address_line1
  LIKE ’%Newbury%’;

As Figure 6 shows, this select finds
all rows containing the word
Newbury anywhere in the column
address_line1, regardless of what

characters (if any) preceded or
followed the word.

Sorting Rows
You can sort the rows returned by
a SELECT statement by including an
ORDER BY clause. ORDER BY simply
names the columns you want to
sort on. Suppose you wanted a list
of sales orders sorted by the
amount of the order (see Figure 7
for the output):

SELECT cust_no, order_status,
  total_value
  FROM sales
  ORDER BY total_value;

14 The Delphi Magazine Issue 3



Like WHERE, the columns defined
in ORDER BY do not have to appear
in the select list. This is true for
InterBase but may not apply to
other SQL databases.

You can define the sort sequence
for each sort column by adding the
ASC (ascending) or DESC (descend-
ing) keyword after the column
name in the ORDER BY clause. Here’s
how you would make the query
above return a list of sales orders
in order of decreasing amount:

SELECT cust_no, order_status,
  total_value
  FROM sales
  ORDER BY total_value DESC;

As an alternative to specifying the
name of the column to sort on, you
can specify the number of the
column from the select list. This is
useful if you’ve included an
unaliased computed column in the
select list. For example, suppose
you wanted a list of employees in
order by monthly salary (see
Figure 8):

SELECT full_name, salary / 12
  FROM employee
  ORDER BY 2;

Here the 2 in the ORDER BY means
“order by the second column in the
select list”; that is, by the
computed column salary / 12.

If you use both a WHERE clause and
an ORDER BY clause in the same
select statement, the WHERE clause
must appear before the ORDER BY
clause, as in the following example:

SELECT * FROM employee
  WHERE dept_no = 621
  ORDER BY phone_ext;

Selecting From
Multiple Tables (Joins)
One of the most powerful features
of the SELECT statement (and of SQL
itself) is the ease with which you
can combine data from multiple
tables into one informative view.

For example, suppose you want
a roster of all employees by
department. Employee names are
stored in the employee table and
department names are stored in
the department table, so you’ll

have to combine this information
somehow into a single report. This
is where the concept of a “join”
comes into the picture.

A join can occur between two or
more tables where each pair of
tables can be linked by a common
field.

For example, departments are
identified by the dept_no column in
both the employee table and
department table, so this column
can be used to link the two tables
in a join. In SQL you can use the
WHERE clause to specify the link field
for a join between two tables. The
select statement below produces
the employee roster we want:

SELECT full_name, department
  FROM employee, department
  WHERE employee.dept_no =
    department.dept_no
  ORDER BY department;

This means “show the selected
columns from the given tables and

combine the rows such that
dept_no in the employee table
matches dept_no in the department
table” (in this case the department
table also happens to contain a
column called department). Take a
look at the results shown in Figure
9. The result of a join select is
indistinguishable from a single
table select.

The WHERE clause defines the
association between the two
tables. The linking columns are not
required to have the same name,
but they must be compatible data
types. As an alternative to the WHERE
clause, you can also define a join in
the FROM clause as follows:

SELECT full_name, department
  FROM employee JOIN department
    ON employee.dept_no =
       department.dept_no
  ORDER BY department;

You can join more than two tables
by simply ANDing the join

SELECT cust_no, order_status, total_value
  FROM sales
  ORDER BY total_value;

    CUST_NO ORDER_STATUS TOTAL_VALUE
=========== ============ ===========

       1003 waiting             0.00
       1001 shipped             0.00
       1006 shipped            47.50
       1014 shipped           100.02
       1010 shipped           210.00

➤ Figure 7 (partial listing of rows)

SELECT full_name, salary / 12 FROM employee ORDER BY 2;

FULL_NAME                                                  
===================================== ======================

Bennet, Ann                                          1911.25
Brown, Kelly                                            2250
O’Brien, Sue Anne                                    2606.25
Guckenheimer, Mark                         2666.666666666667
Reeves, Roger                                     2801.71875

➤ Figure 8 (partial listing of rows)

SELECT customer, address_line1 FROM customer
  WHERE address_line1 LIKE ’%Newbury%’;

CUSTOMER                  ADDRESS_LINE1                
========================= ==============================

Buttle, Griffith and Co.  2300 Newbury Street  

➤ Figure 6

September 1995 The Delphi Magazine 15



expressions together in the WHERE
clause (or concatenating JOINs in
the FROM clause). The linking col-
umns do not have to be the same
for all tables in the join. For exam-
ple, to get a list of all employees
assigned to a project and the name
of the projects they are assigned
to, you must join the employee,
employee_project, and project
tables:

SELECT full_name, proj_id,
  proj_name
  FROM employee,
    employee_project, project
  WHERE employee.emp_no =
    employee_project.emp_no
  AND
   employee_project.proj_id =
   project.proj_id
  ORDER BY full_name;

You can see the results in Figure 10.
One improvement we could

make is to reduce the bulk of this
statement a little by assigning
aliases to the tables just as we
assigned aliases to columns
previously. We do this in the same
fashion by following the actual
table name with its alias, however
we do not use the AS keyword in
between. We’re going to redefine
the employee, employee_project and
project tables to have the aliases a,
b and c respectively. So our final
select statement now looks like:

SELECT full_name, proj_id,
  proj_name
  FROM employee a,
   employee_project b,
   project c
  WHERE a.emp_no = b.emp_no
  AND b.proj_id = c.proj_id
  ORDER BY full_name;

Summing Up SELECT
SELECT is where most of the power
of SQL lies. There are even more
clauses and functionality to SELECT
than were covered here, so check
your manual. This was meant just
to show you the basic nuts-and-
bolts needed to do anything really
useful with SELECT.

In the next issue we’ll cover a lot
more on SELECT, but now that we’ve
got a handle on looking at the data,
we’ll turn to altering the data.

Committing Your Work
One of the key characteristics of
SQL is that when you add or modify
data in the SQL table, the changes
are not permanently recorded in
the table and other users of the
database will not see them, until
you commit them. In this way you
can work with the data as much as
you like until you get it just the way
you want it and then commit it
permanently to the database.

In ISQL you commit your
changes by selecting Commit Work
from the File menu. If you want to
undo your modifications, you can
select Rollback Work from the File
menu. This will rollback all the
changes you’ve made since the last
time you committed your work.
Think of this as a refresh of the data
you’re working with.

Be careful if you decide to
experiment with these data
modification statements outside
the examples given. The tutorial
database provided with InterBase
defines some data validation and
referential integrity constraints
that may give you errors if you
don’t modify the data just right

(this is yet another boon of SQL by
helping preserve data integrity
through automatic means).

Adding New Rows
We use the INSERT statement to add
a new row to a table. INSERT expects
us to enumerate the values of each
column in the table for the new
row.

For example, the country table
identifies the currency used in a
particular country and contains
two columns:  country and
currency. To add a new country row
in this table we would use:

INSERT INTO country
  VALUES (’SteveLand’,
    ’Twinkies’);

In this case Twinkies are the form
of currency in SteveLand. Try
entering this statement into ISQL
and then select all the rows from
country to see the result.

The data values must appear in
the same order as the columns are
defined; the first value given will be
inserted into the first column, the
second value into the second

SELECT full_name, proj_id, proj_name
  FROM employee, employee_project, project
  WHERE employee.emp_no = employee_project.emp_no AND
    employee_project.proj_id = project.proj_id
  ORDER BY full_name;

FULL_NAME                             PROJ_ID PROJ_NAME          
===================================== ======= ====================

Baldwin, Janet                        MKTPR   Marketing project 3
Bender, Oliver H.                     MKTPR   Marketing project 3
Bishop, Dana                          VBASE   Video Database     
Burbank, Jennifer M.                  VBASE   Video Database     
Burbank, Jennifer M.                  MAPDB   MapBrowser port    
Fisher, Pete                          GUIDE   AutoMap            
Fisher, Pete                          DGPII   DigiPizza      

➤ Figure 10 (partial listing of rows)

SELECT full_name, department FROM employee, department
  WHERE employee.dept_no = department.dept_no
  ORDER BY department;

FULL_NAME                             DEPARTMENT              
===================================== =========================

O’Brien, Sue Anne                     Consumer Electronics Div.
Cook, Kevin                           Consumer Electronics Div.
Lee, Terri                            Corporate Headquarters  
Bender, Oliver H.                     Corporate Headquarters  
Williams, Randy                       Customer Services       
Montgomery, John                      Customer Services   

➤ Figure 9 (partial listing of rows)

16 The Delphi Magazine Issue 3



column, and so on. Alternatively,
you can enter the values in any
order you like as long as you
specify the column names after the
table name. The data values must
then be in the order of the columns
as given. For example:

INSERT INTO country (currency,
  country)
  VALUES (’Clams’,
   ’Troxellvania’);

Using this same syntax you can
insert data into only certain
columns instead of all of them. Any
columns not specifically included
in the INSERT receive a null value.
Try this in ISQL and then select all
rows to see what happens:

INSERT INTO customer (customer)
  VALUES
    (’Bigwig International’);

The results of this statement are
shown in Figure 11. Notice that the
customer column was set as we
specified, and all the other col-
umns except cust_no were set to
null. Cust_no was set to a new value
because of two advanced concepts
called triggers and generators; con-
cepts that are outside the scope of
this article, but we’ll cover them in
a future issue.

Copying Rows
It is possible to combine the INSERT
and SELECT statements to allow you
to copy specific columns from
existing rows in one table to
another table. In this case, you sim-
ply omit the VALUES clause contain-
ing the explicit values and replace
it with any legal SELECT statement
with the same number and type of
columns that you are inserting. It’s
difficult to illustrate this concept
with the sample employee database
we’ve been using, so here is a
contrived example:

INSERT INTO shipped_orders
  (order_num, amount)
  SELECT order_num,
    order_total FROM orders
    WHERE order_status =
      ’shipped’;

In this example, we are reading all

the rows from the orders table that
have a status of shipped. For each
row we find, we are inserting a row
into the shipped_orders table that
consists of the order_num and or-
der_total columns from orders (re-
alistically, we would probably
delete these rows from orders after
we’ve copied them). If there are
any additional columns in
shipped_orders, they default to null
since we did not provide a value for
them. Notice that the column
names in the read table do not have
to match the column names in the
write table. We only need to have
the same number of columns and
of the same data type.

Changing Rows
Now that we have a new customer,
let’s add some useful information.
To change the value of a column
within an existing row we use the
UPDATE statement. Let’s add Joe
Johnson as the contact for our new
customer. Try the following in ISQL
and examine the results:

UPDATE customer
  SET contact_first = ’Joe’,
    contact_last = ’Johnson’
  WHERE customer =
    ’Bigwig International’;

(Note: Bigwig International must
be spelled and cased exactly as you
originally entered it in the INSERT
statement previously).

The SET clause specifies a list of
columns to modify and their new
values. The WHERE clause operates
just like the WHERE clause in the
SELECT statement and defines the
rows to apply the change to. If you
omit the WHERE clause, the change
will be applied to all rows in the
table.

UPDATE can be used to set
columns with calculated values as

well. If you were in a generous
mood and wanted to double
everybody’s salary, you could try:

UPDATE employee
  SET salary = salary * 2;

Removing Rows
Sooner or later, you’ll need to
remove some of the data from a
table. To delete rows we use the
DELETE statement. DELETE simply
uses a WHERE clause to identify the
rows to delete from a given table.

Let’s say our company is
downsizing and we now need to
remove the Software Development
department from the department
table. Try the following in ISQL and
then select all rows from the table
to see the results:

DELETE FROM department
  WHERE dept_no = 621

If the WHERE clause is omitted, then
all of the rows in the table are
deleted.

Conclusion
There you have it: the real meat of
SQL. We’ve covered the principal
statements of SQL and with these
you can perform a great deal of the
common tasks of relational
databases. In the next issue we’ll
cover some more features of SELECT
that simplify creating reports from
SQL data.

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems.  Steve can be
reached on CompuServe at
74071,2207

SELECT * from customer

CUST_NO CUSTOMER                  CONTACT_FIRST   CONTACT_LAST
======= ========================= =============== ===================

   1008 Anini Vacation Rentals    Leilani         Briggs             
   1009 Max                       Max             <null>             
   ...more rows...
   1015 GeoTech Inc.              K.M.            Neppelenbroek      
   1016 Bigwig International      <null>          <null>             

➤ Figure 11 (partial listing)

September 1995 The Delphi Magazine 17



Delphi is an open development
environment, in that it has

interfaces to enable you to
integrate your own tools and
experts with it. This article will
focus on writing and integrating
new Experts with Delphi.

There are three kinds of experts:
project, form and standard. The
first two can be found in the Options
| Gallery dialog, while standard
experts are on the Help menu (like
the Database Form Expert).

Project and form experts can be
activated whenever you create a
new project or form (just like
project and form templates).
Standard experts generally do not
create a new project or form, but
just a new file, or unit. A project
expert develops an entire project
for you based on your specific pref-
erences. A form expert develops
custom forms that are added to
your current project.

These example experts are not
external tools that can be started
from Delphi, they actually commu-
nicate with Delphi and form an
integral part of the development

Writing Your Own Experts 
by Bob Swart

environment. While this is not so
strange for the existing Delphi
experts (after all, they were devel-
oped and added by the same team
that developed Delphi in the first
place), it sounds intriguing at least
to know that we, too, can write a
Delphi expert that is able to com-
municate with Delphi in the same
way. Could we write an expert that
also opens files in the IDE, and can
start a new project from scratch?
Yes, all this is possible, and more,
as we will see shortly!

TIExpert
The major reason why everybody
thinks experts are difficult is
because they are not documented.
Not in the manuals or on-line Help,
that is. If you take a look at the
documentation and source code
on your hard disk, though, you’ll
find some important files and even
two example experts. The key
example files can be found in the
DELPHI\DOC subdirectory and are
EXPTINTF.PAS and TOOLINTF.PAS. The
first one shows how to derive and
register our own Expert, while the

second one shows how to use the
tool serviees of Delphi to make the
integration complete.

If we want to derive our own
expert, say TMyFirstExpert, we
have to derive it from the abstract
base class TIExpert, which has
seven abstract member functions
(GetStyle, GetName, GetComment,
GetGlyph, GetState, GetIDString
and GetMenuText) and one member
procedure (Execute).

My First Expert: TMy1stExp
Let’s have a closer look at our first
expert from Listing 1. Since
TIExpert is an abstract base class,
we need to override every function.
First of all, we need to specify the
style of the expert with the
GetStyle method that can return
one of three possible values:
esStandard to tell the IDE to treat
the interface to this expert as a
menu item on the Help menu,
esForm to tell the IDE to treat this
expert interface in a fashion similar
to form templates, or esProject to
tell the IDE to treat this interface in
a fashion similar to project

unit My1stexp;
interface
uses
  WinTypes, Dialogs, ExptIntf;
Type
  TMy1stExp = class(TIExpert)
  public
    function GetStyle: TExpertStyle; override;  { Style }
    { Expert Strings }
    function GetName: string; override;
    function GetComment: string; override;
    function GetGlyph: HBITMAP; override;
    function GetState: TExpertState; override;
    function GetIDString: string; override;
    function GetMenuText: string; override;
    procedure Execute; override;  { Launch the Expert }
  end;
  procedure Register;
implementation

function TMy1stExp.GetStyle: TExpertStyle;
begin
  Result := esStandard
end;

function TMy1stExp.GetName: String;
begin
  Result := ’My First Expert’
end;

function TMy1stExp.GetComment: String;
begin

  Result := ’’ { not needed for esStandard }
end;

function TMy1stExp.GetGlyph: HBITMAP;
begin
  Result := 0 { not needed for esStandard }
end;

function TMy1stExp.GetState: TExpertState;
begin
  Result := [esEnabled]
end;

function TMy1stExp.GetIDString: String;
begin
  Result := ’DrBob.MyFirstExpert’
end;

function TMy1stExp.GetMenuText: String;
begin
  Result := ’&My First Delphi Expert...’
end;

procedure TMy1stExp.Execute;
begin
  MessageDlg(’Hello World: My First Expert is alive!’,
             mtInformation, [mbOk], 0)
end;

procedure Register;
begin
  RegisterLibraryExpert(TMy1stExp.Create)
end;
end.

➤ Listing 1  Source Code for My First Expert (MY1STEXP.PAS)

September 1995 The Delphi Magazine 35



templates. For our TMy1stExp, a
standard type expert that shows a
MessageDlg to indicate it is alive, we
can use the esStandard style.

After we’ve set the style of the
expert, all we need to do is fill in the
other options accordingly. GetName
must return a unique descriptive
name identifying this expert, like
‘My First Expert’. If style is esForm
or esProject then GetComment
should return a short sentence
describing the function of this ex-
pert. Since the style is esStandard,
we can return an empty string. If
style is esForm or esProject then
GetGlyph should return a handle to
a bitmap to be displayed in the
form or project list boxes or
dialogs. This bitmap should have a
size of 60x40 pixels in 16 colours.
Again, since the style is esStandard,
we can return 0 here. If the style is
esStandard then GetState returning
esChecked will cause the menu to
display a checkmark. This function
is called each time the expert is
shown in a menu or listbox in order
to determine how it should be dis-
played. We just leave it esEnabled
for now. The GetIDString should be
unique to each expert. By
convention, the format of the string
is: CompanyName.ExpertFunction. If
the style is esStandard then
GetMenuText should return the
actual text to display for the menu
item, like ‘My First Delphi Expert’.
Since this function is called each
time the parent menu is pulled
down, it is even possible to provide
context sensitive text.

Finally, the Execute method is
called whenever this expert is
invoked via the menu, form gallery
dialog, or project gallery dialog.
The style will determine how the
expert was invoked. In this case, we
just call a MessageDlg in the Execute
method to indicate that the expert
is actually alive.

To install our first expert, all we
need to do is act like it’s a new
component: pick Options | Install
and add it to the list of installed
components. When Delphi is done
with compiling and linking
COMPLIB.DCL, you can find our
first new expert in the Help menu.
Just click on it and it will show that
it’s alive (see Figure 1).

And Now For Something
Completely Different...
Now that we’ve seen our first nice,
but useless, Delphi expert, it’s time
to move on to more serious
matters. I want to make a little side-
step to a subject that will make a
good example of a more serious
Delphi expert.

On the CompuServe DELPHI
forum, one of the queries that
comes up rather frequently is “How
do I write a DLL with Delphi?”. The
answer is not just that you need to
write the code starting with library
and so on, the answer also needs to
explain how to compile the source
for a DLL with Delphi. In their
wisdom, Borland made the Delphi
IDE only capable of compiling the
current project. If you just open a
single file with the source for the
DLL and press Ctrl-F9 to compile it,
you won’t get what you want. You
must actually open your DLL
source file as a project and then you
can compile your DLL. During this
process, Delphi will generate .OPT
and .RES files if these don’t already
exist. All things considered, I would
like something that enables me to
open a new or existing DLL source
file at once so I can compile it.

Speaking of DLLs, whenever I sit
down to write a DLL in Delphi (or
Borland Pascal, for that matter), I
pick up an old one to use as
skeleton. Mostly, I re-use the setup
for the ExitProc routine and the
exports settings. For this purpose,
I’ve written a DLL skeleton that can
be loaded every time I need it.
Considering the fact that some of
my friends also use this skeleton
for their new DLLs, I decided to
make it something truly re-usable:
a Delphi DLL Skeleton Generator
(see Figure 2).

As you can see, I’ve included the
key functionality all in one Form:
How do I write a Resource-only DLL?
How do I write my own WEP (the

same as ExitProc)? How do I export
routines from a DLL? All these
questions can be answered if you
just select the appropriate options
and click OK to generate the DLL
skeleton source code. A sample
skeleton DLL with  all options
enabled, except BPW compatibility
(which does not include the
SysUtils unit and AddExitProc
routine but requires you to setup
the ExitProc chain by hand), can be
found in Listing 2.

Behind the OkButtonClick is the
source code generator that writes
the selected source code to file.
Now I want something like this
integrated into Delphi itself, so I
can generate a new Delphi DLL
Skeleton and open it as my new
project at the same time. In order
to make the DLL Skeleton Gener-
ator a Delphi expert, all we have to
do is connect our expert Execute
method with our DLL Skeleton
Generator Form, as in Listing 3.

So, whenever the expert is
executed, it will see if our DLL
Skeleton Generator Form already
exists (ie if the expert is already
being executed) and create it if it
doesn’t exists. It will then show the
form and give it the input focus.
The DLL Skeleton Generator Form
is then in control.

The Final Frontier...
Only one thing remains: the final
integration with the Delphi IDE. I
would like to be able open a new
project with the source of the
generated DLL Skeleton inside. For
this, we need to communicate with
the Delphi IDE itself. This is

➤ Figure 2
Delphi DLL Skeleton Generator

➤ Figure 1
My First Delphi Expert is alive!

36 The Delphi Magazine Issue 3



possible with the special
ToolServices that are provided
from Delphi to its experts. Like the
expert interface, the ToolServices
are not documented in the manual
or on-line help. The only place you
can find more information on this
is in the TOOLINTF.PAS file, again in
the DELPHI\DOC directory.

First of all, we need to check if
the ToolServices are available to
us. This is just a check to see if
ToolServices (a global variable
from the TOOLINTF unit) is not nil. If
ToolServices are available, we can
do several things. I would like to
close the current project, which
can be done with the function
ToolServices.CloseProject. Then, I
would like to open a new project,
with the generated DLL Skeleton
source file as the filename, which
can be done with the function
ToolServices.OpenProject.

The last part of the OkButtonClick
method of the DLL Skeleton Gener-
ator Form is therefore as shown in
Listing 4.

Simple, eh? That’s all we need to
communicate with Delphi and
write a truly integrated Delphi
standard expert.

Project Expert
The DLL Skeleton Generator Expert
is still a standard expert, only
accessible from the Help menu. I
would like to make it a project
expert, so we can select it when we
start a new project. To do this, we
have to derive the project expert
from the standard expert and over-
ride four methods. First of all, we
have to override GetStyle and
return esProject. Also, we need to
return a comment (this is not really
needed) and a bitmap to display
the expert in the Gallery.

Standard And Project?
Remember the Database Form
Expert? This can be found in the
Gallery as a form expert and in the
Help menu as a standard expert. It
seems to be both.

I would like to be able to use my
DLL Skeleton Generator Expert not
only as a standard expert but also
as a project expert. In that case I
have to modify the expert func-
tions from Listing 1 to include both

library MyDLL;
{ Generated by DLL Skeleton Expert (c) 1995 by Dr.Bob for The Delphi Magazine }
uses WinTypes, WinProcs, SysUtils;
{$R MyDLL.RES}
function Max(X,Y: Integer): Integer; export;
begin
  if X > Y then Max := X
    else Max := Y
end {Max};
procedure Swap(var X,Y: Integer); export;
var Z: Integer;
begin
  Z := X;
  X := Y;
  Y := Z
end {Swap};
exports max index 1,
        swap index 2;
procedure MyDLLExitProc; far;
begin
  { WEP & cleanup }
end;
begin
  AddExitProc(MyDLLExitProc);
end.

➤ Listing 2  Generated DLL skeleton source code

if ToolServices <> nil then begin
  { I’m an expert!! }
  if ToolServices.CloseProject then
    ToolServices.OpenProject(ExtractFileName(DLLName.Text)+’.PAS’)
end

➤ Listing 4

procedure TDLLSkExp.Execute;
begin
  if not Assigned(DLLSkeletonGenerator) then
    DLLSkeletonGenerator := TDLLSkeletonGenerator.Create(Application);
  DLLSkeletonGenerator.Show;
  DLLSkeletonGenerator.SetFocus
end;

➤ Listing 3

the esStandard and esProject styles
(the result is in Listing 5). Also,
GetIDString needs to return unique
ID strings for both the standard and
the project expert. Even though the
two are essentially the same, I need
to return two special IDs. If you
don’t, Delphi will just GPF when
you try to install the experts.
Which leads back to Rule #1 from
the Under Construction column:
always have a backup of

COMPLIB.DCL at hand when you
start to play with components and
experts.

Now, if we install the expert, as
before, we get both a standard
expert in the Help menu and the
project expert in the Gallery (see
Figure 3). If we enable the gallery
from the environment options, we
can generate and open a DLL
Skeleton source file every time we
start a new project.

➤ Figure 3
DLL Skeleton
Generator
installed ready
for use

September 1995 The Delphi Magazine 37



unit Dllskexp;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, Buttons, StdCtrls,
  ExptIntf, ToolIntf;
{ definition of class TDLLSKeletonGenerator is on disk}
Type
  TDLLSkeletonStandardExpert = class(TIExpert)
  public
    { Expert Style }
    function GetStyle: TExpertStyle; override; 
    { Expert Strings }
    function GetIDString: string; override;
    function GetName: string; override;
    function GetComment: string; override;
    function GetGlyph: HBITMAP; override;
    function GetState: TExpertState; override;
    function GetMenuText: string; override;
    procedure Execute; override;    { Launch the Expert }
  end;
  TDLLSkeletonProjectExpert =
    class(TDLLSkeletonStandardExpert)
  public
    { Expert Style }
    function GetStyle: TExpertStyle; override;
    { Expert Strings }
    function GetIDString: string; override;
    function GetComment: string; override;
    function GetGlyph: HBITMAP; override;
  end;
  procedure Register;

implementation
{$R *.DFM}
{ class TDLLSKeletonGeneratorm implementation is on disk}

function TDLLSkeletonStandardExpert.GetStyle:
  TExpertStyle;
begin
  Result := esStandard
end;

function TDLLSkeletonStandardExpert.GetIDString: String;
begin
  Result := ’DrBob.StandardDLLSkExp’
end;

function TDLLSkeletonStandardExpert.GetComment: String;
begin
  Result := ’’ { not needed for esStandard }
end;

function TDLLSkeletonStandardExpert.GetGlyph: HBITMAP;
begin
  Result := 0 { not needed for esStandard }
end;

function TDLLSkeletonStandardExpert.GetName: String;
begin
  Result := ’DLL Skeleton Generator’
end;

function TDLLSkeletonStandardExpert.GetState:
  TExpertState;
begin
  Result := [esEnabled]
end;

function TDLLSkeletonStandardExpert.GetMenuText: String;
begin
  Result := ’Dr.&Bob’’s DLL Skeleton Expert...’
end;

procedure TDLLSkeletonStandardExpert.Execute;
begin
  if not Assigned(DLLSkeletonGenerator) then
    DLLSkeletonGenerator :=
      TDLLSkeletonGenerator.Create(Application);
  DLLSkeletonGenerator.Show;
  DLLSkeletonGenerator.SetFocus
end;
{$R DLLSKEXP.RES}
Const DLLSKEXPBITMAP = 666; { Bitmap ID }

function TDLLSkeletonProjectExpert.GetStyle:
  TExpertStyle;
begin
  Result := esProject
end;

function TDLLSkeletonProjectExpert.GetIDString: String;
begin
  Result := ’DrBob.ProjectDLLSkExp’
end;

function TDLLSkeletonProjectExpert.GetComment: String;
begin
  Result := ’This Project Experts generates and opens ’+
    ’a DLL Skeleton Source File’#13+ ’DLL Skeleton ’+
    ’Expert (c) 1995 by Dr.Bob for The Delphi Magazine’;
end;

function TDLLSkeletonProjectExpert.GetGlyph: HBITMAP;
begin
  Result := LoadBitMap(HInstance,
              MakeIntResource(DLLSKEXPBITMAP))
end;

procedure Register;
begin
  RegisterLibraryExpert(
    TDLLSkeletonStandardExpert.Create);
  RegisterLibraryExpert(
    TDLLSkeletonProjectExpert.Create);
end;
end.

➤ Listing 5  DLL Skeleton Generator Standard and Project Expert

If we select the DLL Skeleton
Expert, we can then select the
required options (as in Figure 2). If
we click on OK, the expert closes
and we’re in our main project: the
generated source of the DLL.

Since the generated DLL source
code is opened as a new project, we
can instantly compile it by pressing
Ctrl-F9. And once you have a
skeleton DLL, it’s easy to build on
it and add your own functions.

Serious Business...
The example DLL Skeleton Gener-
ator Expert is included on the
subscribers’ disk with this issue.
You’ll also find another expert, the
one I wrote about in the last issue:

HeadConv. This solves a more
serious problem that many people
have: “How do I use this foreign DLL
written in C, as I only have the C
header file with it and no Delphi
import unit?” The answer is to
convert the C DLL header file to a
Delphi import unit. This is no
simple task, especially for large
header files, and my HeadConv C
DLL Header Converter Expert tries
to assist in this task by creating an
initial conversion from which to
start. For some headers, the initial
conversion is good enough, for
others extra work might be
needed. Specifically, the declara-
tion of nested structs and actual
code (as opposed to function

declarations) will be a source of
problems (pun intended).

I’ve decided to sell HeadConv as
a shareware tool. The version on
the disk is fully functional, but for
a registration fee of $25 you get a
more advanced version with
explicit import unit capabilities
and the source code of the expert
(but not of the parser). The
CompuServe SWREG forum regis-
tration ID is 6533). See the advert in
this issue for more details.

Bob Swart is a professional soft-
ware developer using Borland
Pascal, C++ and Delphi; email:
100434.2072@compuserve.com

38 The Delphi Magazine Issue 3



Popup Menus
A question arose at a Delphi Developers’ Group
meeting in London recently. How do you find out which
component caused a popup menu to pop up? Remem-
ber that a popup menu may be associated with many
components. No one knew an immediate answer, and
so I set to work looking for a solution. I came up with
the techniques programmed in Listing 1 before finding
the documented PopupComponent run-time property. If a
right-click on a component caused a menu to pop up,
this property points to that component. I just wasted
all that time working out my own method! Or so I
thought.

It seems PopupComponent doesn’t work consistently. It
often gives mis-information, as shown in Figure 1: when
I right-click over a button that’s on some panels, the
popup thinks that Panel1 is under the cursor. So, let’s
dig that old code out of the bin and persevere. But
there’s another thing we can do...

Delphi uses popup menus in the form designer.
However, when you right click, a menu pops up which
is specific to the currently selected component, not the
component under the mouse cursor. Delphi can
generate its popup using a keystroke, Alt-F10 and
again, the selected component is used.

Given that VCL popups work on the current cursor
position, it may also be desirable to allow a keystroke
(Alt-F10) to popup a menu, but again, make it specific
to the component under the cursor, if there is one.

We can use the technique implemented in Listing 1
to do this. The menu that’s generated is a bit like a
Paradox for Windows popup. The first item is descrip-
tive (in this case it tells you the component name and
class) and non-selectable. It is disabled, but not greyed
out. If there is no component under the cursor, the top
menu item and its separator are hidden.

The Alt-F10 keystroke is trapped by setting the
form’s KeyPreview property to True and using an

OnKeyDown event handler. It then pops up the menu at
the current mouse position.

To find which component is under the mouse cursor
when a popup menu pops up we need to implement an
OnPopup event handler for the menu itself and then do
some exploratory work. The PopupMenu1Popup event
handler in Listing 1 calls FindComponentAtCursor to do
the job. FindComponentAtCursor returns the appropriate
component, and the event handler sets the first menu
item’s caption to the name and class of the component.
It then ensures the menu item is disabled, but not
greyed, by using a Windows API call.

The FindComponentAtCursor routine works by identify-
ing the current position of the cursor and then using
another API call to identify the handle of the window
that contains the cursor position. This handle is passed
to FindControl to identify which TWinControl-based
component has that handle as its Handle property.

Contributed by Brian Long (whose email address is
76004.3437@compuserve.com)

Form Design Quick Keys
Delphi makes designing the visual interface of your
applications so much easier, but there are tricks that
can make design even slicker! If you find it a pain

This is your column! Here is your opportunity to
share with your fellow Delphi enthusiasts those
hard-won hints and helps that make your life
easier day by day. Please do send in your Tips &
Tricks to us (preferably by email, to the Editor, at
70630.717@compuserve.com, or alternatively on
disk), whether large or small, on any aspect of
Delphi or related issues. We’re looking forward to
hearing from you!

Tips
& Tricks

➤ Figure 2  FindComponentAtCursor gets it right!

➤ Figure 1  PopupComponent gets it wrong...

September 1995 The Delphi Magazine 47



unit Popupsu;

interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, Menus, StdCtrls,
  ExtCtrls, Grids, Outline;
type
  TForm1 = class(TForm)
    Panel1: TPanel;
    Panel2: TPanel;
    Panel3: TPanel;
    Panel4: TPanel;
    Panel5: TPanel;
    Button1: TButton;
    PopupMenu1: TPopupMenu;
    DummyItem: TMenuItem;
    Memo1: TMemo;
    ListBox1: TListBox;
    RadioButton1: TRadioButton;
    Notebook1: TNotebook;
    Outline1: TOutline;
    N1: TMenuItem;
    Menuitem1: TMenuItem;
    Menuitem2: TMenuItem;
    Menuitem3: TMenuItem;
    EtcItem: TMenuItem;
    procedure PopupMenu1Popup(Sender: TObject);
    procedure FormKeyDown(Sender: TObject;
      var Key: Word; Shift: TShiftState);
  private
    { Private declarations }
  public
    { Public declarations }
    function FindComponentAtCursor: TWinControl;
  end;
var
  Form1: TForm1;
implementation
{$R *.DFM}

function TForm1.FindComponentAtCursor: TWinControl;
var  Pt: TPoint;
begin
  GetCursorPos(Pt);
  Result := FindControl(WindowFromPoint(Pt));
end;

procedure TForm1.PopupMenu1Popup(Sender: TObject);
begin
  with PopupMenu1 do begin
    PopupComponent := FindComponentAtCursor;
    { Write to the menu first, to make sure it is
      brought into life. If you do this last, the
      EnableMenuItem call will have had no effect,
      since the menu won’t actually exist }
    if PopupComponent <> nil then
      DummyItem.Caption := PopupComponent.Name + ’: ’ +
        PopupComponent.ClassName;
    { No component of ours under cursor  so get rid of
      menu item ... }
    DummyItem.Visible := PopupComponent <> nil;
    { ... and seperator }
    N1.Visible := PopupComponent <> nil;
    { Disable the dummy menu item, but _don’t_ grey it
      out. The Enabled property does grey the menu item
      when set to False }
    EnableMenuItem(Handle, DummyItem.Command,
      mf_ByCommand or mf_Disabled);
  end;
end;

procedure TForm1.FormKeyDown(Sender: TObject;
  var Key: Word; Shift: TShiftState);
var  Pt: TPoint;
begin
  GetCursorPos(Pt);
  if (ssAlt in Shift) and (Key = vk_F10) then
    PopupMenu1.Popup(Pt.X, Pt.Y);
end;
end.

➤ Listing 1

moving controls on your forms into exactly the right
position using the mouse, try these:
➣ Use Ctrl plus the cursor keys to move the current

control on the form in one pixel increments;
➣ Use Shift plus the cursor keys to re-size the current

control on the form in one pixel increments;
Also, pressing the Esc key while a control is selected on
a form passes the focus to the underlying control or
form.

Contributed by Tony McKiernan

More Editor Shortcuts
Ever wanted to remove a column of text at the end of
your lines? For example:

Statement1; { Comment 1 }
Statement2; { Comment 2 }
Statement3; { Comment 3 }
Statement4; { Comment 4 }
Statement5; { Comment 5 }
Statement6; { Comment 6 }
Statement7; { Comment 7 }

Suppose you wanted to remove the Comments.
Normally you would have to remove them one by one
by going to the beginning of the comment and pressing
Ctrl-Q-Y (to remove all the text up to the end of the

line). The new Borland IDEs (Delphi 1.0 and BC++ 4.x)
however support a new feature: you can now mark a
column of text. To do this using the Default or Classic
keyboard mapping:
Using the keyboard:
➣ Type Ctrl-O-C (to enter column selection mode),
➣ Now select the part you want to remove, by using

the Shift and cursor keys,
➣ After this you can remove the text by pressing

Ctrl-Del (or Shift-Del to cut it to the clipboard).
This method is also ideal if you want to swap two
columns of text: just mark the column, cut it to the
clipboard and paste it where you want it. To return to
the normal selection mode, press Ctrl-O-K.
Using the mouse:
➣ Use Alt Left Mouse Button to select a block of text.
You can also try out the other marking methods like
inclusive block marking or line marking (Ctrl-O-I and
Ctrl-O-L respectively). Here’s some more editor tips:
➣ Ever wanted to put a complete word into uppercase

or lowercase in the IDE? While the cursor is in the
word, press Ctrl-K-E to change it to lowercase, or
press Ctrl-K-F for lowercase.

➣ Ever wanted to go directly to a specific line number
in the IDE? Press Ctrl-O-G and then enter the line
number you want to go to.

Contributed by Arjan Jansen

48 The Delphi Magazine Issue 3



Replacing if..then..else
Rather than using clumsy if..then..else statements
such as:

procedure TForm1.FormResize(Sender: TObject);
begin
  if Button1.Top + Button1.Height div 2 <
    ClientHeight div 2 then
    Button1.Caption := ’Top Half’
  else
    Button1.Caption := ’Bottom Half’;
end;

you can take advantage of the anomalous typed
constant construct in Delphi, and also the fact that
arrays can have elements indexed by any ordinal type.
So, the condition above becomes:

procedure TForm1.FormResize(Sender: TObject);
const
  Captions: array[False..True] of String[11] =
    (’Bottom Half’, ’Top Half’);
begin
  Button1.Caption :=
    Captions[Button1.Top + Button1.Height div 2 <
    ClientHeight div 2];
end;

Notice that we are using the result of a Boolean expres-
sion to index the array, which was set up with Boolean
element indices. Another example uses a compound
statement in the if statement:

procedure TForm1.FormResize(Sender: TObject);
begin
  if Button1.Top + Button1.Height div 2 <
    ClientHeight div 2 then begin
    Button1.Caption := ’Top Half’;
    Button1.Enabled := True;
  end else begin
    Button1.Caption := ’Bottom Half’;
    Button1.Enabled := False;
  end;
end;

A simplification of this becomes:

procedure TForm1.FormResize(Sender: TObject);
const
  Captions: array[False..True] of
    String[11] = (’Bottom Half’, ’Top Half’);
begin
  Button1.Enabled :=
    Button1.Top + Button1.Height div 2 <
      ClientHeight div 2;
  Button1.Caption := Captions[Button1.Enabled];
end;

Contributed by Brian Long

Are We In Range?
If we want to check if an ordinal value is in a particular
range, or is one of a number of values, many third and
fourth generation languages instill the following
techniques in us:

if (TestValue >= 3) and (TestValue <= 7) then
  ShowMessage(’It’’s between 3 and 7’);
if (TestValue <> 3) and (TestValue <> 5) and
  (TestValue <> 7) then
  ShowMessage(’Found it’);

However Object Pascal offers us alternative constructs
to express this with:

if TestValue in [3..7] then
  ShowMessage(’It’’s between 3 and 7’);
if not (TestValue in [3, 5, 7]) then
  ShowMessage(’Found it’);

These expressions make use of sets which are a conven-
ient aid to reducing typing and making code (in my
opinion) more readable. Sets have limitations here
though: they only take values which take one byte, in
other words no Integer, Longint or Word variables,
amongst others. So the following won’t work:

if not (Message.Msg in [wm_LButtonDown,
  wm_LButtonDblClk]) then
  inherited WndProc(Message);

To cater for other types, we can avoid saying:

if (Message.Msg <> wm_LButtonDown) and
  (Message.Msg <> wm_LButtonDblClk) then
  inherited WndProc(Message);

by using a case statement. This allows you to specify
ranges and lists of values, as you can in a set, but
without the one byte restriction. So, for example, the
following may be a preferable scheme (bear in mind
that in many cases the tests we need to perform in our
programs may be rather larger than these simple
ones):

case Message.Msg of
  wm_LButtonDown, wm_LButtonDblClk: ;
else
  inherited WndProc(Message);
end;

Contributed by Brian Long

Thanks to all our contributors to this issue’s Tips
& Tricks column. Sorry to those who submitted
Tips that we didn’t have space for in this issue,
they’re in the file for Issue 4!

September 1995 The Delphi Magazine 51



So what is subclassing? Well,
the answer depends on the

context of the question. It means
different things to different
people. Let’s look at definitions
from some industry gurus.

Firstly Bjarne Stroustrup, the
guy who designed the C++
programming language, in his book
The C++ Programming Language,
Second Edition, says: “A base class
is sometimes called a superclass
and a derived class a subclass.” He
goes on to mention that this is a
confusing definition given that “an
object of a derived class has its
base class as a subobject and also
that a derived class is larger than
its base class in the sense that it
holds more data and provides
more functions.” From this we
learn that in the OOP world,
subclassing can be taken to mean
deriving new objects.

As for Charles Petzold, in
Programming Windows 3.1 in a
paragraph discussing scroll bars
says “the window procedure for
the scroll bar controls is some-
where inside Windows. However,
you can obtain the address of this
window procedure by a call
to GetWindowLong using the
GWL_WNDPROC identifier as a parame-
ter. Moreover, you can set a new
window procedure for the scroll
bars by calling SetWindowLong.
This technique, called ‘window
subclassing’ is very powerful.” 

So a subclass is a derived object,
but window subclassing (or more
correctly, window instance
subclassing, as there is also a
concept of global window sub-
classing) involves changing the
functionality of a window/control.
The reason we get (at least) two
definitions is that the base term
class is an OOP term, but it is also
the term Microsoft chose to apply
to a set of information that is
required when creating a window.
Most important of this information
is the window procedure, the
subroutine that responds to

messages sent to the window,
dictating how the window will
appear and function.

With tools such as Delphi, the
window procedure is tucked away
under the plush carpet of the class
library, but Delphi does not
prevent us accessing it directly.

Typically when people use the
term subclassing loosely, it ends
up meaning a combination of the
two ideas mentioned above: chang-
ing the behaviour of a particular
window instance by deriving a new
object class. This ends up being the
most convenient way of changing
the functionality accessed by the
window procedure associated with
the window class of the window.

So with all that  borne in mind
and with Delphi both giving us high
level encapsulations of all things
Windows-based and also allowing
us to get to the low-level nuts and
bolts of Windows, what options do
we have for subclassing a Window?
The answer is several.

To explore them all, let’s take a
trivial task and implement the
relevant subclassing in as many dif-
ferent ways as possible. The task
will be writing to the caption of a
label as characters are typed on
the keyboard when the form in a
simple application has the focus, in
other words changing the default
functionality that occurs when the
form window receives a wm_Char
message. However, before we start
it will be useful to view the course
a message takes as it is digested
through a Delphi application.

Message Execution Flow
When Windows has a message that
needs to be delivered to an applica-
tion, it normally places it in the
application’s message queue

(which defaults to a capacity of
eight messages). At least this is the
case if the message was sent using
PostMessage. If SendMessage, or the
Delphi method Perform, were used
instead, the message is passed
directly to the appropriate window
procedure by Windows/Delphi.

Messages which are sent using
PostMessage, or which manage to
get into the application message
queue in more elaborate ways, are
called queued messages. Those
that go directly to the window
procedure are unqueued messages.

The mechanism by which
queued messages get delivered to
the appropriate window in the
program is wrapped up in an
Application object method called
ProcessMessages, normally called
from Application.HandleMessage
(itself called repetitively from
Application.Run), but is also called
by the yielding method
Application.ProcessMessages .

Inside ProcessMessages, when a
message is plucked from the
queue, it is given to the Application
object’s user-supplied OnMessage
handler if one exists, which has the
option of terminating the
message’s existence, if it deems it
appropriate. If the message
survives this first hurdle, it is sent
to the appropriate window
procedure using the Windows API
function DispatchMessage.

The window procedure of the
form or control (or any object
descended from TWinControl) that
receives the message is a small
stub of code which calls the
non-virtual method MainWndProc,
which in turn passes the message
straight onto the virtual method
WndProc, originally defined in the
TControl object. Each object that

Subclassing Windows
by Brian Long

➤ Our all-singing, all-dancing example!

10 The Delphi Magazine Issue 2



overrides WndProc in the Visual
Component Library adds addi-
tional default handling. It is in this
default handling that the message
may again get swallowed. If it
makes it through this point, the
message gets passed to the TObject
method Dispatch, which invokes
the dynamic method dispatching
system to allow any specific
message handlers (defined using
the message keyword) that have
been implemented to be called.
Pre-written message handlers in
the VCL have the task of calling any
event handlers that have been
written at relevant points.

With that meandering tale
finished, it’s on with the show. 

Method 1:
The OnMessage Event
If we do this chronologically, the
earliest place we can encroach
upon the default message handling
scheme (for queued messages) is
by defining an event handler for the
Application object’s OnMessage
event. Unfortunately we can’t ask
the Delphi environment to manu-
facture an OnMessage handler as the
Application object does not have a
visual representation; we have to
do it manually, as shown in Listing
1 in the form’s OnCreate handler,
FormCreate.

The event handler, MsgHandler,
will be triggered as soon as a
message is picked from the
application queue inside
Application.ProcessMessage, regar-
dless of the target window. So in
the handler, we must check that
the target window handle of the
message matches our form’s
Handle property and that the mes-
sage is a wm_Char message and then
do what we want to do: determine
what key was pressed and add it to
the label’s caption.

Look in the Delphi help file for
more on the OnMessage event.

Method 2:
The Windows SDK Approach
If you say “subclass” to an experi-
enced Windows SDK programmer,
there is a strong possibility that, in
a fashion usually associated with
Pavlov’s dogs, they will involuntar-
ily say “SetWindowLong”. In the

world of procedural API program-
ming, window instance subclassing
is done using SetWindowLong to
replace the current window
procedure with another one of our
choosing. Because of implementa-
tion issues of object methods, the
new window procedure needs to
be a global function, not a method,
although we’ll see how to
overcome this in the next section.

Changing the window procedure
is better than using an OnMessage
handler since a window procedure
deals with all messages, no matter
how they are sent. The OnMessage
event only reacts to queued
messages and so the window
procedure is the earliest place in
the scheme of things that is
guaranteed to see every message.

The example in Listing 2 replaces
the form’s window procedure with
a global routine called NewWndProc.
The parameters passed into the
window procedure allow us to
identify the target window (fairly
redundant in this application since
this window procedure is associ-
ated with only one window;
however you may see fit at some
point to write one window proce-
dure to be associated with several
windows), the message number
and the two additional pieces of
information associated with the
message.

In the form’s creation event,
SetWindowLong is called with the
parameter gwl_WndProc to specify
that we wish to change a window
procedure and the form’s window
handle to indicate which window is
to be changed. In addition, the
address of our replacement
window procedure, typecast into a
Longint, is also passed along. The
return value from SetWindowLong is
the address of the old window
procedure: we need to call this
from our replacement window
procedure so we save this address.

In the new window procedure,
we check if the message is wm_Char
– if it is we update the label, if it isn’t
we invoke default functionality by
using CallWindowProc to call the
original window procedure,
passing the same parameters as we
were given. Notice that in the
form’s OnClose event handler,
FormClose, we tidy up by setting the
window procedure back to the
original routine that we saved.

Look in the Windows API help file
for more on  SetWindowLong.

Method 3: Windows SDK ++
In the section above on the course
taken by a message through an
application, I mentioned that the
window procedure for all forms
was a small stub of code which
calls the MainWndProc method. The

unit Subu1; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls; 
type 
  TWndProc = function(HWindow: HWND; Message: Word;
    WParam: Word; LParam: Longint): Longint; 
  TForm1 = class(TForm) 
    Label1: TLabel; 
    procedure FormCreate(Sender: TObject); 
  private { Private declarations } 
  public  { Public declarations } 
    procedure MsgHandler(var Msg: TMsg; var Handled: Boolean); 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
procedure TForm1.MsgHandler(var Msg: TMsg; var Handled: Boolean); 
begin 
  if (Msg.HWnd = Handle) and (Msg.Message = wm_Char) then 
    Label1.Caption := Label1.Caption + Chr(Msg.WParam); 
end; 
procedure TForm1.FormCreate(Sender: TObject); 
begin 
  Application.OnMessage := MsgHandler; 
end; 
end.

➤ Listing 1

July 1995 The Delphi Magazine 11



reason MainWndProc can’t be set as
the window procedure directly is
that it is a method. Windows
expects to be given a function
which takes a particular set of four
parameters.

The implementation of methods
in the Object Pascal language
causes them to have an additional
hidden parameter, Self, used to
identify the currently executing
object instance, which would
cause any attempt at parameter
passing by Windows to become
unsynchronised. That is why we
have to supply a global routine.
However, we can work around this
limitation using the function
MakeObjectInstance and its partner
FreeObjectInstance.

MakeObjectInstance takes one
parameter, the name of a method
that you wish to use as a window
procedure, which needs to be
defined as taking a TMessage
parameter, a record holding mes-
sage information. It returns a
pointer to a small block of code
which can be given to
SetWindowLong and which will
invoke your window procedure
method. When you are done with
this window procedure, be sure to
call FreeObjectInstance to
deallocate this code block.

Both MakeObjectInstance and
FreeObjectInstance were present in
Borland Pascal 7, but weren’t docu-
mented. In Delphi the Component
Writer’s Guide tells us what we can
use them for. They can be seen as
parallels to the Windows API func-
tions MakeProcInstance and
FreeProcInstance which deal with
procedure instances: small chunks
of code that Windows can safely
call, which in turn safely call some
exported routine in your code.
These functions generate code
snippets to safely allow Windows
to indirectly call object methods.

In Listing 3, MakeObjectInstance is
used to turn NewWndProc, a form
method, into the form’s window
procedure. In the form’s OnClose
event handler, the window
procedure is set back to its original
value and our window procedure
calling stub, which is returned
back from SetWindowLong, is freed
with FreeObjectInstance.

unit Subu3; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls; 
type 
  TForm1 = class(TForm) 
    Label1: TLabel; 
    procedure FormCreate(Sender: TObject); 
    procedure FormClose(Sender: TObject; var Action: TCloseAction); 
  private { Private declarations } 
  public  { Public declarations } 
    FOldWndProc: TFarProc; 
    procedure NewWndProc(var Message: TMessage); 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
procedure TForm1.NewWndProc(var Message: TMessage); 
begin 
  with Message do begin 
    Result := 0; 
    if Msg = wm_Char then 
      Label1.Caption := Label1.Caption + Chr(WParam) 
    else 
      Result := CallWindowProc(FOldWndProc, Handle, Msg, WParam, LParam); 
  end; 
end; 
procedure TForm1.FormCreate(Sender: TObject); 
begin 
  FOldWndProc := TFarProc(SetWindowLong(Handle, gwl_WndProc, 
    Longint(MakeObjectInstance(NewWndProc)))); 
end; 
procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 
  FreeObjectInstance( 
    Pointer(SetWindowLong(Handle, gwl_WndProc, LongInt(FOldWndProc)))); 
end; 
end.

➤ Listing 3

unit Subu2; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls; 
type 
  TForm1 = class(TForm) 
    Label1: TLabel; 
    procedure FormCreate(Sender: TObject); 
    procedure FormClose(Sender: TObject; var Action: TCloseAction); 
  private { Private declarations } 
  public  { Public declarations } 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
var OldWndProc: TFarProc; 
function NewWndProc(HWindow: HWND;   Message: Word;
  WParam: Word; LParam: Longint): Longint; export; 
begin 
  Result := 0; 
  if Message = wm_Char then 
    Form1.Label1.Caption := Form1.Label1.Caption + Chr(WParam) 
  else 
    Result := CallWindowProc(OldWndProc, HWindow, Message, WParam, LParam); 
end; 
procedure TForm1.FormCreate(Sender: TObject); 
begin 
  OldWndProc := TFarProc(SetWindowLong(Handle, gwl_WndProc,
    LongInt(@NewWndProc))); 
end; 
procedure TForm1.FormClose(Sender: TObject;
  var Action: TCloseAction); 
begin 
  SetWindowLong(Handle, gwl_WndProc, LongInt(@OldWndProc)) 
end; 
end.

➤ Listing 2

12 The Delphi Magazine Issue 2



Method 4: Virtual Window
Procedure Method
Having gone to all the trouble of
finding how we can do what is
essentially passing a method into
SetWindowLong, we will now see that
there was no real need to worry
about it. As mentioned previously,
there is a virtual method that acts
as a window procedure method
already waiting for us to override
it. So we can now dispense with
SetWindowLong, MakeObjectInstance
and FreeObjectInstance.

The code in Listing 4 is pretty
straightforward. We override the
virtual WndProc method and inside
it we update the label if a wm_Char
message is received, otherwise we
call upon the default WndProc
functionality inherited from the
TForm object.

Method 5: Message Handlers
In all the cases so far, we have
needed to check the message that
comes through to ensure it
matches the one we are interested
in trapping. There is an elegant
construct which allows us to
forego these comparisons. The
message keyword, when used in
conjunction with a method defini-
tion and an appropriate message
identifier, allows us to write a
specific message handler. The han-
dler needs to take either a generic
TMessage record as a parameter, or
one of the specific message
records defined in the Messages
unit, or alternatively a user-defined
message record if this is not a
standard message.

In our case we are changing the
behaviour of a wm_Char message so
the WMChar method uses a specific
TWMChar record type. To complete
the declaration of the method in
the class definition, the message
keyword is followed by the wm_Char
identifier.

Although this construct allows
us to conveniently write a specific
message handling method inside
the target window class definition,
there is a down side to it. Despite
the implementation being mostly
in hand-optimised assembler, the
dynamic method dispatching
scheme used in TObject.Dispatch is
slower than the virtual method

unit Subu6; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
  Forms, Dialogs, StdCtrls; 
type 
  TWndProc = function(HWindow: HWND; Message: Word; WParam: Word; 
    LParam: Longint): Longint; 
  TForm1 = class(TForm) 
    Label1: TLabel; 
    procedure FormKeyPress(Sender: TObject; var Key: Char); 
  private { Private declarations } 
  public  { Public declarations } 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char); 
begin 
  Label1.Caption := Label1.Caption + Key; 
end; 
end.

➤ Listing 6

unit Subu4; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
  Forms, Dialogs, StdCtrls; 
type 
  TWndProc = function(HWindow: HWND; Message: Word; WParam: Word; 
    LParam: Longint): Longint; 
  TForm1 = class(TForm) 
    Label1: TLabel; 
  private { Private declarations } 
  public  { Public declarations } 
    procedure WndProc(var Message: TMessage); override; 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
procedure TForm1.WndProc(var Message: TMessage); 
begin 
  if Message.Msg = wm_Char then 
    Label1.Caption := Label1.Caption + Chr(Message.WParam) 
  else 
    inherited WndProc(Message); 
end; 
end.

➤ Listing 4

unit Subu5; 
interface 
uses 
  SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, 
  Forms, Dialogs, StdCtrls; 
type 
  TWndProc = function(HWindow: HWND; Message: Word; WParam: Word; 
    LParam: Longint): Longint; 
  TForm1 = class(TForm) 
    Label1: TLabel; 
  private { Private declarations } 
  public  { Public declarations } 
    procedure WMChar(var Msg: TWMChar); message wm_Char; 
  end; 
var Form1: TForm1; 
implementation 
{$R *.DFM} 
procedure TForm1.WMChar(var Msg: TWMChar); 
begin 
  Label1.Caption := Label1.Caption + Chr(Msg.CharCode); 
end; 
end.

➤ Listing 5

July 1995 The Delphi Magazine 13



dispatching scheme, as discussed
in Chapter 2 of the Component
Writer’s Guide.

An object’s virtual method table
has pointers to all virtual methods,
be they inherited from ancestor
objects or new ones. The dynamic
method list on the other hand is
much more space conservative
(necessary since an object can
amass message handlers for many
Windows messages) and only
holds pointers to new methods
introduced in the current object.
This means that to find the relevant
address to jump to, Dispatch may
need to search through the
dispatch lists of all the object’s an-
cestors. Because of this, if speed is
key to your application, you would
do better to use one of the previous
window procedure or message
event approaches.

More information on creating
message handlers can be found in
Chapter 7 of the Component
Writer’s Guide, or alternatively in
the Component Writer’s help file
by searching for the messages
section and the  topic “Handling
messages.”

Method 6: Individual Events
After all that, for this particular
scenario there is a much simpler
and more familiar approach. A
Delphi event handler can be manu-
factured using the Object Inspec-
tor’s Events page for the OnKeyPress
event for the form in the normal
way, as shown in Listing 6. Inside
the VCL, the OnKeyPress event’s as-
sociated routine (or perhaps, more
accurately, I should say the
method pointed to by the
OnKeyPress pointer property since
the events listed in the Object
Inspector are nothing more than
properties for storing method
addresses in) is called indirectly
from a wm_Char message handler
method in the TWinControl
ancestor object of the TForm.

Conclusions
So, all this goes to show that with
an advanced product like Delphi,
which a lot of people treat like a
clever 4GL, but which of course is
really a very capable 3GL in a most
sumptuous wrapping, there are
more ways than one to skin the
proverbial cat. In this particular
example of window instance

subclassing, we have six different
approaches.

We can supply a routine that gets
called for all queued messages
targeted to any window in the
application, though this will miss
any nonqueued messages. There
are two ways of writing traditional
window procedure replacements,
using either a global routine or an
object method in conjunction with
a Windows API function. Then
there is the already present virtual
window procedure method and
also the elegant message dispatch
methods. Last but by no means
least is the standard Delphi event
model. And that, I think, is plenty
for one day.

Note: Brian’s examples are on the
free disk with this issue, as Delphi
projects called SUB1 to SUB6.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.



With its optimising compiler
and efficient VCL class

library, Delphi produces applica-
tions that run much faster than
those from interpreted products
such as Visual Basic. However, the
methodology employed in VCL for
screen updates has been simplified
to ease programming. The down-
side is that it can be inefficient
under certain circumstances.

In this article I will introduce you
to two techniques to optimise
screen updates which require only
a few simple additions to your
painting code. To illustrate this I
have a written a sample applica-
tion, FASTDRAW, which is included
on the free disk you’ll receive with
Issue 2. As a bonus, I have also used
code that illustrates the use of
Windows complex regions for
painting, exception handling to
protect allocations of Windows
resources and how to copy areas
directly from and to the screen.

So to begin with, let’s go back to
first principles. When a window is
created, or revealed by moving
another window, for example, the
parts which were previously
obscured and have now been made
visible need to be painted. We call
these areas invalid regions.

Windows maintains a list of
invalid regions and responds to the
need for updates by sending mes-
sages to the appropriate windows
to tell them to repaint themselves.
In Delphi applications, the VCL
receives this message for you and
calls the Paint method of your com-
ponent or form. If you have
installed an OnPaint handler this is
called too.

However, Windows supplies
extra information to help you opti-
mise the update but VCL does not
pass this on to the Paint method or
handler. It is non-essential informa-
tion, your windows will look fine
without it. The problem is that they
may repaint much slower than
necessary because in many cases
only part of the window needs

repainting. But because VCL
doesn’t tell you which part, you
just have to code your paint
method to paint everything. What
you need is that extra information.

Fortunately, the Windows API is
fairly helpful in this respect. There
is a simple function which you can
call to get a TRect that completely
surrounds the invalid region. Then,
all you need to do is check which
parts of your form or component
intersect that area and paint those.
It may sound complicated but it’s
not. It’s time to look at the sample.

Ellipses, Ellipses, Everywhere
The sample program simply
creates a random pattern of ellip-
ses of different colours spread out
to cover an 800 by 600 pixel form.
However, when the form first
appears it is considerably smaller
than this. The form has a toolbar
with a checkbox that switches
optimised painting on and off.
When it’s off, the paint method
blindly paints every ellipse
whether it needs to or not. When
the form is in its initial size, for
example, only about a quarter of
the total number ellipses are
visible, but it tries to draw all of
them anyway. Of course, Windows
makes sure that the ellipses
outside the window don’t appear,
but it still does all the calculations,
which wastes a lot of time. For a
comparison see Figures 1 and 2.

I have defined a TEllipse class,
shown in Listing 1. Notice the Rect
field. It’s a good idea to add a rect
to classes that you are going to
display so that you can quickly
determine if they need to be drawn.
TEllipse’s Paint method simply
sets the line and fill colours and
calls TCanvas.Ellipse.

Now let’s look at the Paint -han-
dlers for the form. I ’ve written two
of these, one “dumb” and the other
“smart”. When you change the op-
timised checkbox, the appropriate
handler is assigned to the form’s
OnPaint property. The “dumb”

paint method simply iterates
through the list of ellipses and calls
their Paint methods as declared
above. The loop looks like this:

for i := 0 to
  Ellipses.Count - 1 do
    TEllipse(
    Ellipses[i]).Paint(Canvas);

When you check optimised, the
other, “smart”, OnPaint handler is
assigned. This has additional code
to optimise painting. It does this by
calling the Windows procedure
GetClipBox which gets the TRect
that encloses the invalid region.
Then it iterates through the ellip-
ses as before but uses the
IntersectRect function to check if
any part of each ellipse intersects
the invalid rect to see if it needs to
call TEllipse.Paint:

GetClipBox(Canvas.Handle,
  ClipRect);
for i := 0 to
  Ellipses.Count - 1 do
  with TEllipse(Ellipses[i]) do
    if IntersectRect(ARect,
    Rect, ClipRect) <> 0 then
      Paint(Canvas);

When you get your disk, try
running the sample. Press the
‘Repaint all’ button with and
without optimised drawing and
note the difference in the times
displayed on the toolbar. On my
system I get a twelve-fold increase
in speed! Interestingly, the time to

Optimising Display Updating
by Mike Scott

type
  TEllipse = class( TObject )
  protected
    LineColor : TColor;
    FillColor : TColor;
  public
    Rect      : TRect;
    constructor Create(
      const ARect : TRect;
      ALineColor  : TColor;
      AFillColor  : TColor);
    procedure Paint(ACanvas :
      TCanvas); virtual;
  end;

Listing 1

10 The Delphi Magazine Issue 1



repaint the form using the dumb
technique is substantially longer
when it is not maximised because
of the extra calculations which
Windows performs to clip each
ellipse to the visible region. In
contrast, the optimised method
takes less time as the form is
reduced in size.

If you maximise the running
form, there is virtually no speed
difference between dumb and
smart redraws because all the ellip-
ses have to be drawn in both cases
anyway. The good news is that the
additional code that is executed in
the optimised case is so fast that
you shouldn’t notice any increase
in the time recorded.

If you press the ‘Ellipses...’
button you can change the number
of ellipses on the form. You will
really notice the difference with a
large number, say 500 or more.
Also, you should try moving the
‘Ellipses...’ dialog around and
noting how long it takes to repaint
the revealed area.

You may notice that there is no
repaint if you simply close the
dialog without moving it. In this

Figure 2

Now notice the
difference in
repaint time with
optimisation!

The comparison
when only one
ellipse is repainted
(Repaint one) is even
more staggering.

Figure 1

Repainting all the
ellipses without
optimisation

case, Windows has decided to take
a copy of the background and
replace it when the dialog is closed.
Moving it forces a repaint and
Windows discards the noted area.

Reducing Flicker
VCL has another simplification
that can cause another type of
annoyance – flicker.

Windows provides a function to
invalidate an area of a window to
force a paint message to be sent.
VCL, however, supplies an invali-
date method but this invalidates all
of the component or form and tells
Windows to erase the background
before painting. This erase and
then paint causes excessive flicker.
A much better way is to erase only
the rect that you want to redraw.

The ellipse sample program has
an example of this. When you press
the ‘Invalidate one’ button, a single
ellipse is chosen at random and
invalidated. This causes Windows
to send a paint message and the
optimised handler only updates
the rect for that ellipse. So if you
only need to update a part of your
component or form, instead of

calling its Invalidate method, call
the Windows API InvalidateRect
function instead. Here is the
sample code that does this:

var InvalidRect : TRect;
begin
  ...
  InvalidRect :=
    TEllipse(
      TempList[Random(
      TempList.Count )]).Rect;
  InvalidateRect(Handle,
    @InvalidRect, true);

It’s not necessary to copy Rect into
InvalidRect but I did so for clarity.
InvalidateRect takes three parame-
ters: the first is a window handle
which you can get from the form or
component’s Handle property. The
second is a pointer to a TRect, so
remember to prefix it the ‘@’ or
you’ll get ‘Error 26: type mismatch’
when you try to compile. The last
parameter is a boolean that tells
Windows whether to erase the
background or not. You should
generally set this to true. Setting it
to false can produce some unusual
effects and is not recommended
until you know what you’re doing!

Regions
As I said at the start, I’ll give you a
bonus by including some region
handling code. You might notice
that I draw a thick frame around
the ellipse when you click the
‘Invalidate one’ button to attract
your attention to the area being
drawn. The code inverts the frame
and then inverts it again when the
drawing is finished which restores
the screen to its original state,
preventing the need for invalida-
tion and repainting.

I achieve this by using a region.
This is an area which can be any
shape and can include holes and
gaps. There are a number of
Windows API functions which you
use to create a complex region by
different combinations of simpler
regions. To create the frame effect,
first I create a TRect that is the size
of the outside edge of the frame
and use CreateRectRgn to create a
region from this. I do the same for
the inner edge and I have two
rectangular regions, one defining

April 1995 The Delphi Magazine 11



the outer edge of the frame and the
other defining the ‘hole’ in the mid-
dle. I then use the CombineRgn func-
tion with the RGN_DIFF operator
which gives me a region which is
the difference of the two. This
effectively removes the ‘hole.’ I can
then invert the region using the
InvertRgn function. The code is in
Listing 2.

Note the use of try blocks to
protect the allocation of the region
resources which Windows will not
free automatically, even after the
program quits. If you’re not careful
when writing Windows code you
can end up with severe resource
leakage. A good habit to get into is
to automatically type a try state-
ment on the line following any allo-
cation or operation which you
have to undo or tidy up later. I then
often type in the finally...end with
the cleanup code before I even put
in the rest of the lines. That way I
am sure it won’t be forgotten and
it’s easier to follow the indentation!

I use try...finally to deallocate
the two source regions because

they must always be freed whether
there is an exception or not. I use
the try...except block to free up
Result only when there is an excep-
tion. In most cases you should call
Raise at the end of your try...
except block to pass the exception
back up the stack. On the other
hand, you don’t call Raise in a
finally block because the appro-
priate processing continues
anyway. Region functions gener-
ally make a copy of any region
passed as a parameter so remem-
ber to free up the source regions as
I have done in the example.

One very powerful use of regions
is to control the clipping area when
painting. Windows allows you to
specify your own region where
painting will be allowed. In the
above example, I could have
selected the region as the clipping
region and then inverted the whole
form with:
InvertRect(Canvas.Handle,
  Rect(0, 0, Width, Height)) 

instead of using InvertRgn. The
result would have been the same
because Windows would limit the
invert, or any other drawing opera-
tion, to the area defined by the
frame region. This is a very power-
ful technique which you can use to
fill or paint complex shapes.

Direct From
The Screen And Back...
You may have noticed that I
overlay a rectangular red box
containing some text along with

var ABitmap : TBitmap;
begin
  ...
  ABitmap := TBitmap.Create;
  try
    ABitmap.Width :=
      DestRect.Right;
    ABitmap.Height :=
      DestRect.Bottom;
    { grab the pixels from
      the form’s canvas }
    ABitmap.Canvas.CopyRect(
      DestRect, Canvas,
      SourceRect);
    { ... do whatever you need
      to do ... }
    { & copy pixels back again}
    Canvas.CopyRect(SourceRect,
      ABitmap.Canvas, DestRect);
  finally
    ABitmap.Free;
  end;

Listing 3

function
CreateFrameRegion(const ARect :
  TRect) : HRgn;
var Region1, Region2 : HRgn;
begin
  { creates a “frame” area using
    regions as an illustration -
    also illustrates protecting
    code with try blocks }
  with ARect do begin
    Region1 :=
      CreateRectRgn(Left - 6,
        Top - 6, Right + 6,
        Bottom + 6);
    try
      Region2 :=
        CreateRectRgn(Left, Top,
           Right, Bottom);
      try
        Result := CreateRectRgn(
          0, 0, 0, 0);
        try
          { remove region 2 from
            region 1 and delete
            the source regions }
          CombineRgn(Result,
            Region1, Region2,
            RGN_DIFF);
        except
          DeleteObject(Result);
          Raise;
        end;
      finally
        DeleteObject(Region2);
      end;
    finally
      DeleteObject(Region1);
    end;
  end;
end;

Listing 2

the inverted frame when the ‘Invert
one’ button is pressed. When the
frame is removed, so also is the
text box but there is no time-
consuming paint. I achieve this by
creating a temporary memory
bitmap the size of the box and
using its canvas to copy the area
straight off the screen. To remove
the box, all I need to do is copy the
area back when I’m finished.

Performing this update trick is
actually very simple. You use the
canvas CopyRect method which
does all the work. All you need to
do is create a bitmap, set its width
and height and use this method to
grab the pixels from the screen.
When you’re done you use CopyRect
in the reverse direction to put the
pixels back again and then just free
the bitmap. Simple! The code is in
Listing 3.

DestRect is a TRect that defines
the area on the form on the screen.
In this case the other canvas used
in CopyRect is that of the form, but
it could be any other canvas. Again,
I use try...finally to make sure
ABitmap gets freed at the end.

You can use a similar technique
to completely banish flicker alto-
gether. Instead of painting straight
on to the form’s canvas, you create
a bitmap just like the above code
fragment, set the width and height
to the width and height of the area
you’re updating on the form, paint
to the bitmap’s canvas and then
use CopyRect to blast the result
straight on to the screen with no
trace of flicker at all. Because you
are not going across a bus to the
screen card with every drawing
operation, this technique is often
faster than the usual method of
writing direct to the form’s canvas.
Space does not allow a proper
example or full details. That is the
topic for another article...!

Mike Scott is a Director of Mobius
Software which specialises in
Delphi VCL component tool kits
and applications and is based in
Edinburgh, Scotland. He can be
contacted via CompuServe at
100140,2420 (on the internet it’s
100140.2420@compuserve.com), or
telephone  +44 (0)131-467 3267

12 The Delphi Magazine Issue 1


	Cover
	Contents
	About The Delphi Magazine
	Subscription Form
	Subscribing from USA & Canada
	Under Construction: Property Editors
	Using Resource Files In Delphi
	Custom Cursors
	Resources By Number

	Delphi Internals: CPU Type
	The Delphi Clinic
	Radio Group Focus
	Drag And Drop On Grid Cells
	256 Colour Images
	Clipboard Stuff

	Inside TApplication
	Surviving Client/Server: Getting Started With SQL
	Writing Your Own Experts
	Tips & Tricks
	Popup Menus
	Form Design Quick Keys
	More Editor Shortcuts
	Replacing if..then..else
	Are We In Range?

	Subclassing Windows
	Optimising Display Updating

