Introduction
This document is a formal response to the review of my book on page 90 of the March 1994 Paradox Informant. The review was written by Jerry Coffey. My book “What Every Paradox for Windows Programmer Should Know” came out October 4, 1993 and has received high praise from many users.
Initially, I did not wish to reply to something I considered
viscious
 to me personally, destructive to the reading community, and useless as a book review. I also did not wish to validate Jerry’s review with a response because it would have sounded like sour grapes and brought more attention to the review. However, at the encouragement of friends, family, and the insistence of SAMS, I have created this document. If you wish, read on.
Overall impression of review
No one likes criticism. I like to believe, or at least hope, that I can accept constructive criticism. I consider myself a fairly open minded person and I have always tried to take constructive criticism positively. However, the review was so harsh that even though a few of Jerry’s complaints were legitimate, as a whole, I can only dismiss the review as I would any attack. I can not put merit into a review that is both unprofessional and does not discuss content.
What about content? Most book reviews I have read have discussed various facets of the book. Most book reviews look in detail at a couple of areas. This almost always includes general writing style and content. It was obvious that Jerry did not li
ke my general writing style. Jerry said
only
about
 five or so words on the content. This to me, makes the review lacking. Jerry might as well just printed, “I hate the book, don’t buy it”.
One of Jerry’s main concerns is that he perceives there are many contradictions throughout the book. On this issue I disagree. As with any book that spans 1,167 pages and over 7 megabytes of support files, a few errors are expected. When I spoke to Jerry shortly after I heard about the review, after it went to print, but before I could read it, Jerry said the same thing. He said something like, every book has errors. That is expected.
One of the things that first impressed me about his review was that he referenced specific pages. A careful reading of any of the sections he sighted leads the reader to the point I was making. Most reasonable readers agree with me on this point. And many have pointed out that he took quotes out of context. Taking quotes out of context makes Jerry look like he is being careful, but when quotes are taken out of context, it is unprofessional.
Unprofessional
My biggest complaint about the review is that it is unprofessional. His general tone was so negative, that it made him look like he was trying to go for th
e entertainment value rather tha
n giving the reading community a quality review. For example, I do not believe bashing a book with insults belongs in a professional review. To me, the following statements in the review were unprofessional, misleading, and somewhat childish.
“...Then there’s the English that makes the flesh crawl...”
“...an effective doorstop, ...”
“...avoid this book like the plague.”
The Future
I love the Paradox Informant, I always have and I always will. It is a great magazine. I just hope the staff at Paradox Informant
has
 an open mind to the next version of my book. A review of this nature from a magazine I love was extremely disappointing to me. It would be great if the Paradox Informant printed a retraction. That would stop the book buyers from cancelling orders for the book, but this is not realistic. Once a magazine publishes something, they have to stick by it -- no matter what. My intention with this formal reply is not to stir up a battle, but to let those that have not purchased the book know that many do like and recommend it.

Sincerely,

Mike A. Prestwood
�
What about his review?
Turn about is fair play as they say. The following is
a
blow by blow review of his review. Some of his review I agreed with, most I did not. In addition, I did not appreciate the
viscious
 tone to the review. Unlike Jerry
’s belie
f
 in my book, I believe
 everything has its positives and negatives. Jerry’s review is no exception.
First paragraph
This paragraph was insulting. No content, just an attack.
Lack of organization
I disagree. The organization of the book, in my opinion, was right on. Broken into four parts, the first part geared toward getting the new ObjectPAL user up to ObjectPAL. Part two geared to bring the beginning ObjectPAL programmer to an intermediate level. Part three addresses many issues the everyday programmer and advanced ObjectPAL programmer needs, including many undocumented features and advanced examples. Finally, part four brings it all together with a discussion of delivering your application.
ObjectPAL is an event handler
Jerry’s next point is that I use “Ambiguous wording”. He takes three sentences from page 100 and quotes them, here is the passage in whole. His main contention with this passage, it seems, is that I say
“
ObjectPAL is
...
”
,
“
ObjectPAL
includes
...
”
,
“ObjectPAL
is called...
”

an event handler. Jerry must read between the lines, because these paragraphs are very clear. I present the passage from page 100 in full for you to judge for yourself. The lines in question are in bold.
“ObjectPAL
ObjectPAL is for both programmers and nonprogrammers. If you have experience with another language, especially an object-oriented programming language such as C++ or Pascal with objects, you will find ObjectPAL especially interesting. If you have never programmed, ObjectPAL is a good language to learn first, because it's an event handler.
You use the user interface to design forms with objects on them[md]such as fields, tables, and buttons. When you're happy with the way the form works interactively, you attach ObjectPAL code to the objects that require it. This system of programming is called an event handler. It enables nonprogrammers to create applications easily.
Features of ObjectPAL
ObjectPAL's features include the event handler, data types, strong program control, the runtime library, user-defined commands, and dynamic link libraries.
The event handler built into ObjectPAL cuts down the amount of time you spend programming. It also makes the language accessible to nonprogrammers. ObjectPAL has many data types, including String, Number, SmallInt, Date, Time, Array, and DynArray. The language supports programming control with keyword structures such as if...then...endIf, for...endFor, while...endWhile, and scan...endScan. ObjectPAL also has a long list of commands called methods and procedures that a developer can use. Methods and procedures include open, attach, moveTo, setTitle, getPosition, and setPosition.
As with C and Pascal, you can create your own commands[md]called custom methods and custom procedures[md]with ObjectPAL. These user-defined methods and procedures consist of methods and procedures from the runtime library, other user-defined routines, and functions defined in the Uses window. You also can make calls to dynamic link libraries. DLLs are functions and procedures usually written in C, C++, or Pascal. After you register the foreign function in ObjectPAL, you can use it as though Borland included it. This offers you almost unlimited expandability.”
The use of the word global
Jerry’s next point is that I use the word global. Although you can’t tell from the review, when I spoke to him on the phone, he believes global is a Paradox for DOS term only. On this point Jerry is wrong! The term global is part of the product and, in fact, it is used in the manuals that ship with Paradox for Windows. One such usage from the manual follows.
Guide to ObjectPAL, page 149
“Global variables are global to the form where they are declared. You can’t declare a variable to be global to more than one form.”
The event handler is linear
Jerry’s next point is that I say the event handler is linear. Again, Jerry is taking liberties a reviewer should not. He has completely taken the phrase out of context. What follows is the complete passage from page 100 with the one line in question in bold.
“The event handler triggers events
How does Paradox execute all these independent routines? ObjectPAL is an event handler much like ObjectVision, Visual Basic, Hypercard, and Toolbook. You paint objects on the screen and attach code directly to them. The event handler monitors what events or triggers occur and automatically executes your code when it should. This mechanism of triggering events is known as an event handler. The plan or guideline that the event handler uses to trigger events is known as the event model.
The event handler is the most important aspect of ObjectPAL. This chapter explores a simplified view of a form and the built-in open method (see Figure 8.1). The event handler is linear. It executes in a linear fashion, much like a procedural language. You can attach code to the open method of the form, page, box, field, and button. The code executes in order. First the code on the form executes, then the code on the page, box, and field executes. Finally, the code on the button executes.
Although ObjectPAL and Paradox execute in a linear fashion[md]that is, one built-in method executes after another[md]you don't program ObjectPAL in a linear fashion. When you program in Paradox, think, "What object do I want to alter?" For example, if you want to check a value in a field after the user enters it, go to that field and put code on the built-in canDepart method, which checks the field's contents before it permits the cursor to leave the field.”
Custom methods are analogous to batch files
Jerry objected to this analogy. I am not sure why, but what follows is the passage in question from page 78 with the one line in question in bold. I present it for you to judge.
“The Methods Dialog Box
..Custom methods are routines you create. They make a set of frequently used commands easier to use. Custom methods are analogous to batch files in DOS. With batch files, you can use any DOS command, execute an external program, or even call another batch file. It's the same with custom methods. You can use any runtime library method or procedure, execute or call functions in DLLs, or even call other custom methods. Objects don't call custom methods directly. Instead, the code attached to a built-in method calls the custom method.”
GPF’s in ObjectPAL
Jerry’s next point is that on page 647 I state that because you can cause a GPF in ObjectPAL, it falls into the category of a low-level language. On this point, I agree that the language could have been a little more clearer. However, I strongly believe that if you read it in context, you will see where I was going. What follows is the passage in question from page 647 with the two lines in question in bold. I present it for you to judge.
“ObjectPAL Is a Low-Level Language
A low-level language is a machine-dependent programming language that is translated by an assembler into instructions for a particular machine. By this definition, most programming languages are low-level because they run only on particular machines. Therefore, we need some other criteria to classify programming languages as low or high. For the sake of this discussion, let's just say that a high-level language shelters you from GPFs. In a high-level language, you shouldn't be able to cause a GPF. Because you can cause GPFs in ObjectPAL, it falls into the category of a low-level language.
A low-level language is more open-ended and has fewer limitations than a high-level language. Low-level languages include C, C++, Pascal, FORTRAN, dBASE, and dBASE clones. With these languages, you aren't sheltered completely from low-level functions. Therefore, general protection faults, or GPFs, are possible. When you get a GPF with a low-level language, you need to ask yourself, "Should I really have been able to do that?" You can safely assume that something is wrong only if the answer is yes.
A high-level language, however, is a programming language that enables developers to code in familiar notation rather than in obscure machine code. ObjectPAL is a high-level language with much of the flexibility of a low-level language.
The scope of a high-level language[md]such as ObjectVision, Toolbook, Hypercard, and Visual Basic[md]is limited. With a high-level language, you can't manipulate the system at a low-level. Therefore, you never can cause a GPF. If you get a GPF, clearly something is wrong.”
Paradox is bug free
Jerry’s next point is that I contradict myself saying Paradox is or is not a bug free program. On this, I agree the language could
be
 more
 clear
. This time, I was purposely vague because I am a Borland employee and enjoy my job. I do not agree that the language makes the flesh crawl however. What follows is the passage in question from page 646 with the two lines in question in bold. I present it for you to judge.
“What Are Bugs?
Many ObjectPAL users assume that when they reuse bug-free code in object-oriented programming, it will still work. If all the elements are bug-free, the code remains bug-free when it's reused. This assumption sometimes holds true, but often it does not. Because you are using the code within a new container, it might not work. You must test the code and debug it again. Therefore, although the components can work fine, the application might be buggy or poorly pasted together. Bug-free doesn't necessarily mean well designed.
You can accomplish complicated and sophisticated tasks by using Paradox interactively. If Paradox is bug-free, the applications that you develop also will be bug-free. However, this doesn't mean that your applications are well designed. It is Borland's job to make Paradox as free of bug as possible. It's your job to make sure that your applications are well designed.
What Is an Anomaly?
Paradox is a bug-free program, especially for being a version 1.0 product. Of course, Paradox isn't without its problems; no software company could make that claim about any product. However, that Paradox has so few bugs is testimony to the quality of its overall design and its use of object-oriented technology. Paradox is a product with vast power and functionality, and it has few incompatibilities and bugs.”
A lost point
Jerry’s next point is that I loose the user with a discussion as to why to not use the built-in error method. Jerry is correct with this point, however for the wrong reason. The reason I loose the reader with this point is that Borland changed the behavior of version 4.5 just before the product shipped and after I turned in my manuscript. If Jerry new the product better, he might have realized that and could have pointed it out.
Roll past isPrefilter
Jerry’s next point is that I roll past isPrefilter without sufficient explanation. He does give an example, so I cannot address his specific concerns, but the book does address this very important topic many times. For example:
Chapter 10: Where to put code (section title: isPrefilter)
Chapter 27: The Keyboard & Characters (section title: Interupting a loop)
Chapter 32: Adding sound and graphics (section title: Using beep globally)
Chapter 35: Event methods and procedures (section title: Moving a text box during run mode)
Repeated text
Jerry’s next point is that I occasionally repeat sentences within five pages. On this point, he is correct. I do repeat some points many times throughout the book. I will try and do a better job with this on the next version.
51 built-in methods
Jerry’s next point is that I state three times on page 194-5 that ObjectPAL has 51 built-in methods when the new version 4.5 has 52. He is correct on this point. The timing of the maintenance release has caused some things in the book to be inaccurate. More on this below.
Passing by reference vs. passing by value.
Jerry’s next point is that I loose the reader with a discussion of passing by value vs.
p
assing by reference. I disagree. What follows is the passage in question from page 397. I present it for you to judge. Also note that this passage is followed with a series of six (that’s right six!!!) tutorials on this subject.
“Passing by Value Versus Passing by Reference
Custom methods can receive and return values. You can pass a value by value or by reference. When you pass a value to a custom method by value, you pass a copy of the value. If the custom method alters the copy, nothing happens to the original. When you pass a value to a custom method by reference, you pass a reference to the location where the value is currently stored. In other words, you are actually referring to the original value. If the custom method alters it, it is altering the original value.
Passing by value and passing by reference are common to custom methods and procedures. Take a look at the following custom method prototypes.
method myCust(var s String) ;Pass by reference
method myCust(s String) ;Pass by value
method myCust(Const s String) ;Pass by reference but not� ;changeable
If you're familiar with Pascal programming, you can see that examples 1 and 2 correspond to how you pass values to subroutines in Pascal. Example 1 has s as a var parameter that can be altered by the myCust method. In example 2, s is a value parameter.
In example 1, the value of s is changed. When you leave the myCust custom method, the value you changed s to stays. In example 2, s is passed by value: A copy of s is given to myCust, and any change doesn't affect the original value. In example 3, the value is passed by reference. Because the value is a constant, the custom method can't change it. The following tutorials demonstrate these concepts.”
A go nowhere discussion of variables
Jerry’s next point is, “and a go-nowhere discussion of where to declare variables on pages, 150-1.” I strongly disagree. I do not know wh
y
 Jerry
did not get what
I

was saying
,
 but what follows is the passage in question from pages 150-1. I present it for you to judge.
“Global versus private variables
The concepts of various levels, containership, and what can see what are important in ObjectPAL. The most important element of ObjectPAL code placement, however, is where to declare a variable. The place where you declare a variable determines the scope and instance of a variable. The scope of the variable means what other objects, if any, can see it. The instance of the variable, means how long the variable exists. For example, if you declare a TCursor variable within a button and you want to use the same TCursor variable in another button, you could declare the TCursor in both buttons[md]a waste of resources. Or you could move the declaration to higher ground[md]that is, to a place where both buttons can see it. In the case of two buttons on a page, the page level is a good choice. All the objects on the page, including the two buttons, have access to page-level variables.
After you choose the level on which you want an object to declare a variable, you must decide whether you want a private or global variable. A private variable can be seen only by the built-in method in which it is declared. Therefore, if you want to use the variable in only a single method, use a private variable. A global variable in ObjectPAL is global to the object. Any object can access it from that point down in the containership hierarchy. Do not confuse the concept of a variable being global to an object versis private to a method with a global variable in other languages. A variable that is global to an object in ObjectPAL is global only to that object and not to any other objects.
After you choose the object, you have three places in which you can declare a variable: in the Var window, inside method...endMethod, or above method...endMethod. The Var window of an object creates a global variable. The other two places create a private variable.
Most often, the first place you choose to put a variable is inside method...endMethod. For example, you can put both the variable declaration and the code in the same method window, as in the following:
;Technique #1: private variable redeclared each time
;Button :: pushButton
var
 s String
endVar
s = "Hello World"
msgInfo("", s)
As an alternative to putting the variable declaration with the code, you can put the variable in the Var window and the code in the method, as in the following:
;Technique #2: Variable global to the object
;Button :: Var
var
 s String
endVar

;Button :: pushButton
method pushButton(var eventInfo Event)
 s = "Hello World"
 msgInfo("", s)
endMethod
The first technique is easier to read; all code is located in the same place. The second technique is more elegant; it uses the Var window of the object. The first technique uses a private, or local, variable. The second technique uses a global variable. More specifically, in the first technique, the variable is local to only this method; no other built-in methods of this object or of another object can see the variable. The variable in the second technique is global to the object; all the other methods of the object and of the objects it contains can see the variable. In other words, the scope you need for a particular variable is the determining factor. If no other object needs the variable, declare it privately.
Are there any exceptions to this rule? Yes. In the example above, either inside method...endMethod or in the Var window is equally elegant because the button's pushButton method occurs only once for each click of the button, which doesn't tax the system. In fact, you can declare a variable in any custom or built-in method that executes once. Methods such as pushButton, open, and arrive are prime candidates for declaring variables privately inside method...endMethod.
In the case of a built-in method such as newValue, which is triggered many times by many different events, the second technique of separating the variable in the Var window from the code in the built-in method is more elegant. Typically, newValue is triggered so many times during a session that redeclaring a variable each time doesn't make sense. A variable could be redeclared thousands of times in a newValue method.
Var window variables are declared for the existence of the object. Therefore, they are more elegant in most cases. It's much better programming practice to declare your variables only once so that the system won't be taxed. The declaring of variables in the Var window occurs only once, and it occurs even before the open event of the object. If you want to see this for yourself, put the following code on a button and run the form. The message box will display the correct variable declaration.
;Button :: open
method open(var eventInfo Event)
 msgInfo("", data Type(o))
endmethod

;Button :: Var
var
 o OLE
endVar
When you declare variables, you usually use one of the two techniques just discussed. In fact, it's a good rule of thumb to use the Var window as your first choice. Move the declaration from the Var window (which is global to the object) to within method...endMethod (which is private to the method) only when needed.
The problem with making a variable private is that potentially you could redeclare it over and over. This problem is easily overcome. A third place to declare a variable type is before the method line in a method...endMethod statement. This technique has the benefit of declaring the variable only once[md]that is, when the object is created[md]and the variable remains private to the method.
;Technique #3: private variable declared only once
;Button :: pushButton
var
 O OLE
endVar
method pushButton(var eventInfo Event)
 msgInfo("", DataType(O))
endmethod
This third technique is not used often enough. It is an elegant way to declare a private variable, because the variable is declared only once. In fact, it's a good rule of thumb never to declare a variable within method...endMethod. Instead, declare it either in the Var window (global to the object) or outside the method...endMethod (private to the method).
Variable Level
After you decide that you need a global variable[md]in other words, you have decided to use the Var window of an object[md]you must decide the level on which you want to declare the variable[md]the form, the page, the object's container, or the object. The answer depends on how global you need the variable to be. You can declare the variable either at the form level or at the lowest possible container. If you declare a variable at the form level, you don't have to worry about the scope of the variable because the variable is global to the form.
The better of these two approaches is to declare variables in the Var window of the lowest possible container. You can move them up the containership path when a broader scope is needed. For example, if you're going to use a variable on a button, declare it on the button. Declare the variable in the built-in method itself[md]for example, within pushButton. If you use it in another of the button's built-in methods[md]for example, mouseEnter[md]move it to the button's Var window. If you later need that variable for another object on that page or on another page in the form, move the variable back to the Var window of the page or form. In general, declare the variable on as low a level as possible, and use the Var window whenever you need the same variable with two different built-in methods or two different objects.”
4.5 in the title
Jerry did not like the fact that SAMS put 4.5 in the title when the book was clearly written for 1.0. While I agree with him in part on this point, I do have to point out several facts. At the time that SAMS made the decision to put the version number in the title, Borland was telling them the version number was going to be 1.1 and that it was a minor maintenance revision. Also, he ignores the fact that nearly all of the book still applies to the maintenance release. Jerry is correct in that some of the techniques I present have easier 4.5 methods. The timing of everything was unfortunate, but does not discount the value of the book.
On a similar point, keep in mind that the manuals shipping with 4.5 say 1.0 on the cover pages. This reference to 1.0 on the cover page and throughout every manual screams that Borland believes this is still the first version of the product. Changing the version of the product to match Paradox for DOS was a marketing maneuver.
There’s nothing here for the advanced programmer
Jerry’s next point is that there is nothing in the book for the advanced programmer. On this point I could not disagree more. The plain fact of the matter is that there is a ton of stuff in my book for the advanced ObjectPAL programmer. The fact that the target audience for the book was the beginning ObjectPAL programmer threw Jerry off. The only thing I can say is if he new ObjectPAL better, he would know how valuable my book is. The following is just a small sample of the advanced subjects in my book
	o	Which should I use, dBASE vs. Paradox tables?
	o	Advanced picture strings.
	o	A discussion of Object oriented programming (OOP) and how it relates to ObjectPAL.
	o	Embedding codes in strings.
	o	Dealing with aliases.
	o	Handling different screen resolutions.
	o	The best way to open another form (application control).
	o	Adding a speedbar to a report.
	o	Passing a report a value.
	o	Toggling buttons up and down (keeping a button pressed).
	o	Cascade delete.
	o	Displaying the largest n values in a table.
	o	Auto-incrementing with locks.
	o	Importing a text file to a memo field.
	o	Sending all structures in a directory to a text file.
	o	Debugging techniques.
	o	Creating pull down menus on a form.
	o	Adding automatically to a drop-down edit list.
	o	The correct way to define the columns of a table frame.
	o	Interrupting a loop.
	o	Hiding user input.
	o	Sending messages over a network.
	o	Using DLLs with ObjectPAL
	o	Using Windows API calls with ObjectPAL
	o	Writing DLLs for use with ObjectPAL
	o	Compiling to a psuedo .EXE
Too many appendices
Jerry’s opinion was that the book had too many pages of appendixes. Although some have told me that they like all the appendices as another source of information, when I saw the balance between text and the appendices, I was surprised. This decision was purely mine (not SAMS).
When I found out that Borland was not going to ship the ObjectPAL reference guide with the product, I thought it would be beneficial to put as much reference material in my book as possible. The reference guide stopped shipping several months before my book went to print. For this reason alone, the large number of appendices are valuable to the average user.
Also, if you take a close look, there is plenty of material in the appendices that are not available elsewhere. However, like I said, I was surprised at the balance between text and appendices and I plan to take out about half of the appendices in the next version and provide an application that generates them.
�
Support Letters
Since the review came out (and before), I have received many nice supporting messages. I offer the following as counterpoint to the March 1993 Paradox Informant review.

Compuserve posts in the PDoxWin forum
The following are complete unedited messages (except the last names and addresses were removed and a few incomplete messages as noted).
Part of CIS msg 122476 posted on 3/28/94

I read the pretty harsh review of your book in the Paradox Informant. I'm sure you must have read it, too. It seemed like the writer is either a crabby old English teacher or maybe has some kind of personal grudge against you<G>. Did you steal his girlfriend in high school, maybe? I hope the review didn't affect people's opinion of your book too much. I've heard nothing but good things about it here and I look forward to your next book. Maybe you could drop me a line when it's released.
Thanks
Mike
CIS msg 119304 posted on 3/18/94
Let me add just another GOOD review. I have been using PfW since release. I have spent HARD earned money buying lots of books, i.e. I don't take it lightly. Yours is WELL worth it as it sits directly next my CPU. In fact I have used it so much some pages are begining to get worn. Besides this the code disk is really worth it all by itself. Excellent job. --Marty
CIS msg 118963 posted on 3/11/94
Mike:
I was stunned by Mr. Coffey's review, the tone of which I thought was way too bitter and quite unusual for the Informant's usual professionalism. I have used your book extensively for several months and feel it's a great resource. I have recommended it to several other developers and will continue to do so.
Your book's biggest benefit for me is as, well, sort of like a lighthouse. Solving problems using OPAL is just so different from solving them the PdoxDOS way; my biggest challenge is learning a whole new way to *think*. I wish I had a dollar for every time I've read one of your book's techniques and said, "Gosh, I never thought of approaching it *that* way before!" Passing global variables, opening forms, using style sheets, and all the rest are great idea generators that frequently pointed out algorythms and new ways of doing things, paths I never would've discovered on my own, locked as I've been in The Old Ways. And *this* is what makes your book one of my best resources. Great stuff!
I've just finished my first major OPAL project. I had 3 after-market books that I came to rely on as my Holy Trinity of OPAL Knowledge because they didn't overlap each other very much: Cary Jensen's book for the basics, Vince Kellen's book for the stratosphere, and yours-- and *that's* not bad company! --Karen
CIS msg 119061 posted on 3/11/94
Ray:
Here are the 3 books I referred to that I relied on heavily to help me transition from PAL to OPAL:
"Programming Paradox for Windows" by Cary Jensen and Loy Anderson, ISBN 0-7821-1018-5, $34.95. The finest beginning OPAL book I've found, bar none, period, end of story. I first noticed Cary's wonderful ability to write clear, concise explanations through his articles for the Paradox Informant. He is my favorite Informant contributor, and this book is consistent with all his previous outstanding work. If you're still at Ground Zero with OPAL, then this book is where to begin.
“Paradox for Windows Power Programming" by Vince Kellen, et al., ISBN 1-56529-091-7, $40.00 with disk. I'm the first to admit that much of this book is over my head (for *now* <grin>), but the real gold for me was in the last 400 pages in chapters on Multiuser Strategies, Performance Tuning, and-- my favorite-- Neat Tricks and Bad Traps. The Neat Tricks chapter is 11 pages of short questions and answers, where the questions could easily have been the 50 most commonly asked questions here in the PdoxWin forum. When you're standing in the bookstore trying to decide whether to buy this book, turn to the Neat Tricks chapter at pages 585-596. Hot, hot stuff! And out of the 8 appendixes, the ones I found immediately helpful were "Paradox for Windows Installation and Configuration," "An Overview of ObjectPal for PAL Programmers," "An Overview of ObjectPal for non-PAL Programmers" (4 stars for including these 2 overview chapters), and "Issues in Developing Large Applications." Three of the 5 authors work for Kallista, and I felt that this book gave me a glimpse into how The Big Boys have confronted and solved many of the same issues I was facing in my own project. There is no fluff in this book.
"What Every Paradox 4.5 for Windows Programmer Should Know" by Mike Prestwood, ISBN 0-672-30368-X, $44.95 with disks. If Jensen's book is my basic text and Kellen's book my advanced text, then Prestwood's book is my intermediate text and the one that solves my day-to-day needs. How should I open a form, what's the best way to pass variables from form to form, how can I can control the report previewer, what's a good length for a LastName field, how can I pass a variable to a delivered report, and on and on and on. About the only complaint I have about this book is that the publisher chose a font for the index that makes it really hard to read, which is pretty darned trivial compared to its strengths. The book that always stays within arm's length whenever I'm actually writing code is this one.
So there it is: one person's opinion of what worked for them. --Karen
CIS msg 116804 posted on 3/11/94
I agree the Mike Prestwood's book is very good.
Someone pointed out to me that the book received a bad write-up in the March Paradox Informant (Page 90). I read the write-up by Jerry Coffey and I could'nt disagree with him more. Many of the flaws which Jerry writes up are either phrases which he has taken out of context or minor technicalities. I know 5 different people who independantly selected and purchased this book and they all love it (Thats 5 out of 5).
Make sure that you look at the book before you take the write-up in the Informant seriously. Jerry Coffey must have had too much coffey before he wrote that article.
Sincerely,
Scott
CIS msg 115510 posted 3/8/94
Ditto!
Mike Prestwood's book is excellent. It will certainly help you over the hurdles that you were looking for and give you new ideas for livening up your apps!
Alva
CIS msg 118538 posted 3/16/94 (code taken from my book)
>>How do you get PW to dial a modem?? I'm working on a app that requires the users to push a button in order to dial a displayed phone number at which time they would pick up the handset to talk. After they hangup, they would push the button again to tell PW that the conversation is complete. Behind the scenes the application is entering start and end times based on the button clicks. (Actually, if it were possible, I'd like to automatically post the end time to a field when they hangup, but I didn't think that this would be possible since its a voice conversation as opposed to modem.) Anyway, I still need to get PW to dial a number. Since I jumped in the middle of this thread, I missed how to do it. Any help would be greatly appreciated.<<
No problem. Remember, this is from an example in Mike Prestwood's book.
;|BeginMethod|#FormData1|Uses|
Uses USER
	OpenComm(ComPort CPTR, InQueue cWord, OutQueue cWord) cWord
	WriteComm(Cid cWord, Buf CPTR, Size cWord) cWord
	CloseComm(Cid cWord) cWord
endUses
;ComPort = COMn or LPTn where "n" is a number
;InQueue = Specifies the size of the receive queue
;OutQueue = Specifies the size of the transmit queue
;Cid = Specifies the device to receive or send the characters
;Buf = Characters to be sent or received
;Size = Specifies the number of characters to write or read
;|EndMethod|#FormData1|Uses|
;|BeginMethod|#FormData1|Var|
Var
	Cid	SmallInt
endVar
;|EndMethod|#FormData1|Var|
;|BeginMethod|#Page2.#Button6|pushButton|
method pushButton(var eventInfo Event)
	Cid = openComm("COM1", 32, 32)
	WriteComm(Cid, "H" + chr(13), 2)
	CloseComm(Cid)
endmethod
;|EndMethod|#Page2.#Button6|pushButton|
;|BeginMethod|#Page2.#Button3|pushButton|
method pushButton(var eventInfo Event)
	var
		SendStr	String
	endVar

	SendStr = "1234567"
	SendStr.view("Enter phone number to dial")

	if SendStr = "1234567" then return endIf

	SendStr = "ATDT" + SendStr + chr(13)

	Cid = openComm("COM1", 32, 32)
	WriteComm(Cid, SendStr, SmallInt(size(SendStr)))
	CloseComm(Cid)
endmethod
;|EndMethod|#Page2.#Button3|pushButton|

Pretty cool, eh?
>> BTW, the scroll rate on this forum is incredible! <<
Yes, it is a VERY popular place.
--Lloyd =Sysop=
CIS msg 117921 posted 3/15/94
>> >> I can't find one that is worth the money to me. I had high hopes for
>> >> Prestwood's book, but after Jerry Coffey's reveiw in this months PI...

>>FWIW, while I can't argue with Jerry's stylistic points (although
>>I'm sure Mike would like to... <g>) and I have to agree that the
>>book would have benefitted from a professional co-writer, Mike's bok
>>is *still* the best one I've seen, although I've heard (many) good
>>things about P4W Power Programming (not all of them from Vince >>Kellen, who co-wrote it <g>).

>>Unfortunately, "the best I've seen" means every hundred pages or so
>>(of the minority of the book that was written by a human) there's a
>>point I hadn't considered before, or something that's otherwise >>undocumented. Not really saying a lot for a $30-$40 investment, but
 >>hey... This is NOT a comment on Mike's book, since I've never seen
>>any of his reaction(s) to criticism of it, but *MOST* authors reply
>>to criticism like this by saying "for the price of the book, if
>>there's even *one* tip that saves you even one hour, it's worth the
>>price of the book. This response (I won't embarrass those who I've
>>heard say it) is ridiculous: the book has to pay back the 10 hours
>>it takes to *READ* it, PLUS another hour, to even "break even".
>>And, needless to add (although that's never stopped me before <g>),
>>"break even" is a pretty lousy return on an investment. Based on
>>this, I think Mike's book is the only one on which I did better than
>>"break even".
>> - Jeff

Mike just asked to be judged on content. Amen. And that he has had no negative comments from readers.
You make some excellent points on value and the filler in these books.
I have not seen price/page tags on the bookshelves, ... yet.
Thanks for the reply.
Joe
CIS msg 116239 posted 3/10/94
Thanks Mike,
And I enjoyed reading your book
Ron
CIS msg 82673 posted 11/25/94
Hello Reiner,
I have found the recent Mike Prestwood book called "Everything Every Paradox 4.5 For Windows Programmer Should Know" to be excellent. It is published by SAMS. It is virtually all OPAL, and, at least for me, is the first of the several things that I have read that helps me to understand "why" and not merely "how." I would certainly suggest that you look at it.
- Kenneth
CIS msg 82557 posted 11/24/94
Hi Mike!
I bought your book as soon as it was out. And have been enjoying it.
I shoud have asked you for the autographs. <g>
No, seriously, it would be real good.
Take care!
Happy Turkey!
Thet.

Part of msg 80052 posted 11/17/93
>> Congratulations on new book. A heavy effort in every sense<g>! I am enjoying wading through it. Nice to see a book which gets straight down to ObjectPal.

�
Compuserve private mail
Part of CIS private mail received 3/20/94

let me say that I really like your exposition. I've been through the OPAL tutorial in the program documentation, and I appreciate the leaner writing in your book. --Derek
Part of CIS private mail received 3/19/94
Your book is always the first I turn to and most of the time it has what I'm looking for. Sometimes it doesn't, but sometimes it has something neither of the others have. (I also
have Kellen's and Jensen's.)
Much as I'd like to send this to the forum as further praise of your book, there's enough traffic about books. --Stephen
Part of CIS private mail received 3/17/94
Mike,
I bought your book and it's great. I use it almost more than the reference guides provided with Paradox 4.5 for windows. Thanks alot. --Cameron
Part of internet private mail received 3/9/94
Your book is very clear and I am learning alot....hate to think how much
further there is to go!!!
Thanks.
CIS private mail received 3/7/94
Mr. Prestwood
You certainly have a winner in your Sams Publishing text.
I went back and reread Mr. Coffey's glowing critique of Mr. Entsminger's "Developing Paradox Databases" (M&T/Holt) as presented in the May '93 Paradox Informant, as well as briefly thumbed through my copy of the M&T/Holt text. Mr. Coffey obviously has something for you.
I look forward to future volumes and updates of your premier texts.
Fred
CIS private mail received 3/6/94
Mr. Prestwood
I certainly enjoyed your recent OPAL text. Without any doubt, your text serves a wider readership than does existing OPAL publications.
Reiteration of data was a welcomed strong point of the text.
As a microbiologist/immunologist, we too have our Jerry Coffeys.
I look forward to any future volume or update.
Fred
CIS private mail received 3/3/94
Mike,
Bought your book (What Every Pdox 4.5 ...) and am loving it. But the 2 of 2 disk that shipped was bad. Tried SCANDISK etc. - to no avail. Can you haave someone send me a new one?
Thanks
James
CIS private mail received 3/3/94
Just thought you might like to know that I find your book of real value. I have most of the better PW books and yours is one of the best.
Best Regards,
Woody
CIS private mail received 1/31/94
RISE is interested in using your book in our ObjectPAL training courses. At the very least we could give a copy of the book to the students at the end of the course, but there are other possibilities.
Please contact Michael Hunt at RISE ...
Part of CIS private mail received 12/17/94
Mike
I got your book last week, and am impressed with it. A book of hints and tips is very important, and makes me realise that the original manuals, which were the only source of reference for a long time, made PdoxWin very difficult to use.
CIS private mail received 12/2/94
Mike:
Good news about your book! I just heard it sold 85 copies last week at Borders. Since they only have 40 stores, that is outstanding and supposedly makes it the third best-selling computer book at Borders.
Congratulations!
Jordan Gold
Associate Publisher
Sams

�
Borland Tech Support
The following are a few of the messages I received here at Borland over our mail system. Granted, all of the following messages were written by my coworkers (some of them are even close friends). I reluctantly included them because they either have a valid point or mention customers that have given compliments of the book unsolicited.

Mike,

I still think that your book is the best that I have seen on object PAL programming. The text is clear and helpful. The examples are plentiful and easy to find when I am in a hurry. I use it myself when I need actual examples in a hurry (usually on a call), and I recommend it to anyone that wants to learn the language. --Lloyd

I have used Mike Prestwoods book "What Every Paradox 4.5 for Windows Programmer Should Know" and I like it. It is informitive and the samples both in the book and on the disks are very usefull. I have recommended the book to people I speak to on the phone and have gotten calls from people who state that they have the book and find it very helpful and well written.
Tim Converse
Paradox for Windows Tech Support

I feel that there was a serious conflict of interest involving PI. They were heavily involved in the technical review process for Cary Jensen's book "Programming Paradox for Windows". They also reviewed the book in PI and gave it glowing reviews. I think if PI wants to review books in their publication, they should stay out of the technical review business. --ej

Customer name is Lisa.
This customer recently received quality technical support from Robert.
Besides complimenting Robert's work in assisting her, she added that she has found Mike Prestwood's book to be very useful. She did not know whether or not we made book recommendations to callers; however, she thought you should know from a user's perspective her appreciation for this resource. --Leslie

Mike,
Wow! That was a pretty harsh review. The guy seems to have a problem with self contradiction, however, bringing himself into the world of hypocrisy, he states in his review that your book was clearly written for beginning Opal users, and there's nothing of use to an advanced Opal user, then at the end says if you need another Opal book, you might get this one, "but if you're new to Opal, avoid it like the Plague"
Is THAT contradiction? Hmm...
In any case, here is my thoughts on your book:
Often the documentation provided with Paradox for Windows is sufficient for understanding a function, but if the practical uses of a function are not obvious, or I need another slant on a subject, or I just want more information, 'What Every' has always been a great source.
-= Cam =-

Mike,
My feelings on the book are thus...
As an ObjectPAL developer I find the information and tips in the book quite invaluable. Also, I think the information in the book would be invaluable for *anyone* who is trying to become a better ObjectPAL developer.
David

From the desk of Mike Preestwood

Printed on � DATE \l �
03/30/1994
� at � TIME �
11:39 AM
�
Page � PAGE �
3
�

Printed on � DATE \l �
03/30/1994
� at � TIME �
11:39 AM
�
Page � PAGE �
1
�

