�EMBED MSDraw * mergeformat���	 August, 1994

Milwaukee Association of FoxPro Developers

�
Where Does MAFD Meet?

Zoofari Conference Center, 9715 West Bluemound Road

(It's the building with the green awning just west of Hwy 45)

�
August Meeting

Tuesday, August 23

Double Feature

1. Overseas Development Perspective

2. Peter Diotte on SQL & Reports

5:40 Doors Open

6:00 Kit Session: Overseas Development

Wilson Ng breaks our “longest distance travelled” record by visiting from the Philippines (yes, the island group in the far Pacific). He runs a 30 person software company that develops Xbase applications and will share with us his views on a variety of subjects.

6:35 Cool Tool of the Month: Big Letters

Cory Jeager will show us a function he put together that displays and GETs character fonts that can be easily be seen from 8 to 10 feet away on a DOS screen. He uses this to enable lift truck drivers to enter data at a terminal from their truck - without getting too close to the monitor or CPU.

6:45 Announcements & Q&A

7:00 Break: An opportunity to mingle and co-mingle

7:10 Main Session: Multiple Report Selections Using SQL

Ever have your customer tell you all the possible ways how he will want to select data for a report? -- and less than a nanosecond after it is complete, another selection criteria is discovered.

Peter Diotte of SoftWorld's Fair will discuss his answer this dilema using a slick frontend to SQL.

DON'T FORGET! Bring a 3.5" disk to get a copy of the source and all the other useful stuff discussed at the meeting.

��EMBED MSDraw * mergeformat���

Parking and Meeting Admission are FREE!

1994 Membership Meetings

Membership meetings are on the FOURTH Tuesday for the rest of the year EXCEPT for December, which is on the THIRD Tuesday.

Septembe 27

October 25

November 11-12 (GLGDW)

November 22

December 20

GET YOUR DATES NOW!

Reserve November 11-12

The Great Lakes Great Database Workshop!

�Just Plain Folk...

Fox Users/Developers Group (FUDG)

c/o Information Management Group

720 North Franklin Avenue

Chicago IL 60610

President 			Robert Green 		(312) 280-1007	 76104,2514

Vice-President		Jerry Sedlock 		(708) 594-4416

Treasurer			Bob Kehoe 		(708) 294-0300

Past President		Andrew G Hargreave	(708) 294-0300	 72520,3705

Secretary			Walter Grogan		(312) 280-1007

Newsletter			Mike Beane		(312) 764-8756	 71175,3160

Membership		Randy Stegler		(312) 973-4411

At-Large			John Sinnott		(708) 382-3433	 72461,2751

The FoxPro User Group of Minnesota

P.O. Box 22444

Robbinsdale, MN 55422�0444

Co�Chair 			Harvey Johnson 		(612) 941-5952	 73737,3603

Co�Chair/Memb.		Jim Biggs 		(612) 537-8655	 70712,3030

Treasurer 			Bill Gray 			(612) 291-0736

Librarian 			Bill Bates 			(612) 474-1842

Newsletter			Chris Lekauder		(612) 623-7990 72123,113

FoxSoft Edmonton User Group

President			Charles Fleming		(403) 439-6414	 72431,1725

Vice President		George Allen		(403) 450-4107	 71553,42

Treasurer 			Robin Stuart 		(403) 460-3712	

Secetary			Bob Dick			(403) 423-8795

Membership		Ken Rayner		(403) 437-0315

Newsletter			Kim Thirlwall		(403) 481-1741

BBS								(403) 457-4105

Mid-Michigan FoxPro User and Developers Group

President			Paul Emery		(517) 372-3349	 72567,2570

Newsletter			Jeff Daly			(517) 347-0399

Fiscal Officer		Dick Janson		(517) 675-7340

BBS SYSOP		Mike Huntzinger	(517) 655-3347 (BBS)

The Milwaukee Association of FoxPro Developers

c/o Hentzenwerke

P.O. Box 17343

Milwaukee WI 53217

President 			Whil Hentzen 		(414) 332-9876	 70651,2270

3rd Party Productss	Tim Allen			(414) 277-6476	 75430,224

Consultant Referrals	Bill Chojnowski		(414) 961-2518	

At Large			Peter Diotte		(608) 758 0246	 70401,2235

NL Production		Jody Dulberg		(414) 963-6700	 70732,134

Exec-PC Coor		Jerry Novak		(414) 423-8227	 73441,2253

Programs			Dick Pierson		(414) 536-1336	 73512,771

Publicity			Kent Tushaus		(414) 289-3100	 70312,3216

DevNotes is the official publication of Chicago's Fox User/Developer Group (FUDG), The FoxPro User Group of Minnesota, the FoxSoft Edmonton User Group, the Mid-Michigan FoxPro Users & Developers Group, and the Milwaukee Association of FoxPro Developers. It’s the largest circulation user group newsletter in North America.

This rag not only wanders through the hands of about a gazillion members of the above mentioned User Groups, but also to officers of every other FoxPro User Group in the World (like Australia, Canada, the U.K., Benelux, Germany and Spain.)

Send your FoxPro�related article in ASCII, WordPerfect or WinWord format to Whil Hentzen, CIS 70651,2270 or on 3.5" diskette to PO Box 17343, Milwaukee, WI 53217.

This publication is intended as a general guide. It covers a highly technical & complex subject, and is distributed as is, without warranty of any kind, either express or limited, for the quality, performance, merchantability or fitness for any particular use.

The above Fox User Groups, their officers, board of directors, members, advertisers and other people who come into casual contact shall not be liable to any person or entity for any loss or damage caused or alleged to be caused by this publication. FoxPro, FoxBase and Windows are registered trademarks of Microsoft Corporation.

�Editor’s Gossip Column

By Whil Hentzen

It’s official: The Great Lakes Great Database Workshop, hosted by our user group and sponsored by Microsoft, will be held on Friday, November 11 and Saturday, November 12. We’ll have more details later, but here’s what has been finalized at press time:

The workshop features tracks on FoxPro (both 2.x and fundamentals, and preparing for FoxPro 3.0), Access and Visual Basic. Additional sessions on SBT, MIS/consulting, and vendor products are also planned.

The workshop is aimed at technical computer personnel at corporation, technical personnel at computer consulting companies, independent consultants, programmers and developers.

The workshop will be held at the Hyatt Regency, downtown Milwaukee, and attendees will receive a 45% discount off of room rates to $79/night. Midwest Express is the official airline of the workshop; attendees are eligible for a 6% discount off of air fares.

Registration is $125 by Saturday, September 17, $150 by Saturday, November 6, and $175 thereafter. Payment must be received by above dates in order to qualify for early discounts. Registration includes all conference activities, session notes and materials, and lunch both days.

Special: Members of the user groups who participate in this newsletter consortium can receive a $20 discount. You must be a paidup member - no mailing list malingerers.

The workshop schedule looks like this:

Thursday, November 10

6:30 - 8:00 PM	Advance registration and pickup

Friday, November 11

7:30		Registration

8:30		General session featuring Microsoft personnel

9:15		Break

9:30		Session One

10:45	Break

11:00	Session Two

12:15	Lunch (provided)

1:30		Session Three

2:45		Break

3:00		Session Four

4:15		Break

4:30		Session Five

5:45		Cash Bar

7:00		End of Friday Sessions

Saturday, November 12

8:00		Session Six

9:15		Break

9:30		Session Seven

10:45	Break

11:00	Session Eight

12:15	Lunch (provided)

1:30		Session Nine

2:45		Break

3:00		Q&A Panel

3:30		Raffle and Giveaway

4:00		End of Saturday Sessions

More information will be available later in August.

Whine, Whine, Whine

First, as you’ll see, we’ve gotten SOME submissions for the newsletter - but not enough. They should be stacked up for months, folks! You don’t have to write the Great American Novel - a half-page tip, an editorial, a brief list of lies...

Whil

Book Review: OO System Design

By Mike Beane

Object-Oriented Systems Design: An Integrated Approach, by Edward Yourdon. Prentice Hall, 1994, 380 pages.

Edward Yourdon is best known as the father of structured programming and structured systems design. He has written numerous books on systems development over the last 20 years. You know a new methodology has arrived in the mainstream when Yourdon writes a book about it. Fortunately he is not one of those people who spends the rest of his life tirelessly defending the first technology he learned. On the other hand, having been around the block a few times he doesn’t instantly embrace each new methodology with wild abandon, a phenomenom which is quite evident in the religious fervor of a number of other OO books. His mixture of openness to new ideas, tempered by caution born of experience, inspires the reader’s trust. You don’t get the impression he’s carrying a torch, but neither is his purpose to debunk. It is very much a dispassionate engineer’s approach.

Yourdon’s goal is a “synopsis and integration of several popular object-oriented development methods, with particular emphasis on OO analysis and design.” The intended audience is systems developers and managers (“not the ‘pure’ technician whose primary interest is rigorous theory and formal methods.”). OO programming is not addressed in any detail. The book is less theoretical and more pragmatic than many of the other OO books. Yourdon doesn’t spend a lot of time explaining what classes, inheritance, etc. are. Instead the focus is on the steps in developing systems using OO techniques.

[If a tutorial in basic OO concepts is what you want, start instead with David Taylor’s short and highly readable book (reviewed here last month). Or, if you’re the type to choke down cod liver oil every day on the theory that it’s good for you, Grady Booch is your man. His long and virtually inpenetrable book is full of leaden prose which almost defies you to read it. On the other hand, many skilled developers swear by him. (I’m content to swear at him)].

Yourdon covers the major alternative methodologies and conventions, often including his own. He seldom makes recommendations, though; it is more of an encyclopediac than an advisory approach. It must be said that his fame (and perhaps his pride) occasionally sabotage the encyclopedia approach. For example, even after admitting that his use of the term “services” is out of step with the nearly universal use of the term “methods” he continues to call them services.

You have probably heard that one of the defining characteristics of OO technology is inheritance. It is certainly true that authors of OO books freely inherit each other’s words, quoting each other until the mind reels. This is inevitably true of this book, whose aim is to be a synopsis. “The definition provided by Ivar Jacobson...” “Embley, Kurtz and Woodfield make a similar distinction...” “James Rumbaugh and coworkers, for example, also include...” This Reader’s Digest approach quickly becomes annoying. It isn’t endorsing plagiarism to wish OO authors were not such a self-referential group.

The book is organized into three main sections plus a couple of minor ones. The first main section discusses various management issues related to OO development. The second covers object-oriented analysis (OOA) and the third covers object-oriented design (OOD).

The management section begins with a chapter on project life cycles. OO projects differ from traditional project life cycles in that all phases revolve around objects. “Whether the project is involved in the analysis stage, the design stage, or the programming stage, the project team will be involved in discovering, documenting, prototyping, and/or developing objects, and in all of the life-cycle activities, the fundamental OO concepts of abstraction, encapsulation, and inheritance play a large role. ... This is in stark contrast to the development activities in projects using the older, conventional methodologies: the activities of the data modeling group often seem utterly unrelated to the activities of the project modeling group.”

Unlike some other OO authors, Yourdon views the introduction of OO methodologies into an organization as an evolutionary, rather than revolutionary, process. This is because of the huge investment in databases developed using other methodologies: there is no magic wand to instantly convert all that data to proper classes, subclasses, etc. He cautions, however, against trying to use a “mix and match” approach on a single project. Due to incompatible analysis notations, OO design objects cannot be easily integrated with non-OO objects, any more than English and German can easily be integrated in a single book. He also cautions against expecting OO to be the appropriate methodology for all projects. Project size is a critical determinant: “Massive megaprojects will almost certainly continue to exhibit some aspects of a conservative waterfall approach.”

Yourdon views prototyping as a key aspect of OO development. Given a good set of reusable objects, developing a rapid prototype with which to gain user acceptance is orders of magnitudes easier. Prototyping can be done iteratively throughout the project, not just once in the early stages. This concept of iterative prototyping during all project phases is another of those OO concepts that takes some getting used to.

Due to the newness of the technology the answer to basic questions like “How long will it take?” and “How many people will we need?” are not readily answerable. “From a software metrics perspective, most managers will be ‘flying blind’ on their first OO development project.” Yourdon suggests some steps a project manager can take to achieve some semblance of control and predictability. The use of quantitative data from pilot projects is advanced as one method, on the theory that some data is better than none.

Yourdon goes on to discuss configuration management. That’s a fancy term for change control, also including ongoing management of the organization’s repository of classes and class hierarchies. Yourdon sees a need for configuration management specialists on a full time basis. This role sounds similar to that played by a DBA in the ongoing management of a relational database.

A very interesting and somewhat sobering section of the book covers the issue of reuse. Yourdon estimates that the best DP organizations achieve reusability levels of 70 to 80 percent while the worst achieve no more than 20 to 30 percent. (And even among those who achieve a higher level, the most common form of reuse is “cut and paste”). The dismal state of affairs in so many shops clearly has negative impact on productivity and quality. In discussing the reasons for suboptimal reusability levels, Yourdon suggests that one of them is the “from the ground up” orientation of most software textbooks. Students are taught to design systems and write code from scratch rather than using existing, working code and designs to the degree possible. “Not surprisingly, this educational bias becomes deeply ingrained and stays with the student when he or she joins the work force.” Another reason is that in many organizations which include productivity measurement among the criteria for evaluating developers, reuse is not only not encouraged, it is often discouraged by discounting lines of code reused rather than written from scratch. The point is not really specific to OO but it is food for thought, and possibly action, for the reader.

An additional point is that proper OO development should reuse designs as well as code. Although it is well understood by now that only 10 to 15 percent of a project is spent on coding, the development community has been slow to recognize that greater benefits from reuse are available in other phases of the project, namely design.

The Object-Oriented Analysis section of the book covers the analysis steps of an OO project. The first step is to identify the classes involved. “There is nothing more central, more crucial, to any object-oriented methodology than the process of discovering which classes and objects should be included in the model.” Yourdon distinguishes between “data oriented” and “process oriented” projects. The two case studies which serve as the glue for the second half of the book are used skillfully to illustrate this point. One, a computer journal subscription system, is data oriented; the other, an elevator scheduling system, is process oriented. The discovery of objects in a data oriented system is very similar to building entity-relationship diagrams in classical data modeling methodologies.

It is impossible not to notice that the analysis stage of an OO project is similar to that of a “traditional” project, apart from the iterative use of prototyping. For example, a chapter devoted to object relationships will be totally to those who have done data modeling using entity-relationship diagrams.

In discussing object-oriented design (OOD) Yourdon stresses that there is much overlap between the analysis and design phases of OO projects. “This may have been accidental in the early days of OO, but now it is a conscious and deliberate feature of the methodology. ... If one asks the project team whether they are doing analysis, design or programming at any particular instant in the project, their answer is likely to be ‘Yes’.”

Yourdon suggests an OO design architecture similar to the “Model-View-Controller” model used by Smalltalk developers. There are four parts: the Human Interaction Component (HIC), the Problem Domain Component (PDC), the Task Management Component (TMC) and the Data Management Component (DMC).

The Human Interaction Component is segregated because that part of the system is prone to change and we want to isolate the rest of the system from changes to the interface. Yourdon cautions specifically against assuming the system will have a graphical user interface (GUI). He predicts pen-based computing will be the next wave of user interfaces, followed by voice recognition interfaces, and notes that researchers at Xerox PARC are working on 3 dimensional interfaces to replace the current 2D. Who knows when (or if) many of these new interfaces will enter the mainstream but the basic idea of isolating the user interface within an application seems sound.

The Problem Domain Component design is largely a refinement of work done earlier in the analysis phase. The PDC is essentially the classes and objects which model a given application.

The Task Management Component (TMC) is largely performed by modern operating systems and/or run time environments that handle the details of multitasking, task synchronization, and so on. In most applications the developer does not need to be concerned with developing these services. Yourdon does not discuss it beyond including it in the list; one wonders why he bothered to include it.

Finally, the Data Management Component (DMC) transforms objects into database records or tables. In a perfect world this would not be necessary but in Yourdon’s view it “deals with an ugly reality that most software engineers must accept: no matter how elegant the architecture of the object-oriented software that runs on the CPU, it must interact with legacy data on a database that was designed 5, 10 or even 20 years ago.” As with the HIC, the idea of making this a separate component is to isolate the parts of the system that tend to be impure or volatile. In this way the core classes in the PDC can be as pure and reusable as possible.

A final area covered by Yourdon is OO testing. He makes a convincing case that testing is more difficult with an OO methodology, since objects seldom stand alone. “Almost all of the ‘interesting’ behavior will involve collaborations of several classes and objects.” The implications of this are that unit testing will be more difficult and integration testing must begin much earlier in the project. It is important that the debugging tools used be “object aware,” knowing about class and object semantics and making it easy to examine the instance variables and class variables associated with an object.

Object-Oriented Systems Design: An Integrated Approach is a useful book for those who want to go beyond the basic definitions and gain a greater understanding of how OO concepts will actually be put to use in the development of a system.

Mike Beane is an independent FoxPro developer in Chicago. He is a member of the FoxTalk magazine User Advisory Board and was recently named a quarterly MVP of the CompuServe FoxForum

SQL_USE - An environmental use command

By Peter Hecht

Having seen the power of the SELECT-SQL command in Foxpro version 2.0, I was thinking this is great. At first I didn't really think of how powerful the SELECT-SQL command was. How many lines of code it saves me each time I use is incredible. Although, as with everything, I was not quite happy with it. This example (SQL_USE.PRG and driver program SQL_EXAM.PRG) is how I became happy with the SELECT - SQL command in FoxPro. SQL_USE is the first part of a two part system I have developed, the second, SQL_CLOS.PRG will discussed at another time..

In this example I use the Laser.dbf table found in the directory \FOXPROW\SAMPLE\LASER\DATA\ on my installed drive C:. I have tested this program significantly and use a less spruced up version in operational FoxPro applications. The purpose of this article is to show how using the USED() and ORDER() functions a person can easily create programs that do not change the status of workareas. Therefore, it does not introduce bugs by nature of changing an order or availability of a table to the rest of your application. This is helpful with either large projects or with projects that have many writers.

One aspect of the SELECT - SQL command is FoxPro leaves tables open after a the command is issued. If it was closed, it will now be open. If FoxPro found a handy index to use, it will be set to it. So, if you are writing a report module and need a table called Laser, what right do you have to leave it open? You could use SET VIEW to save the table information in a view file, but this will take much longer and does more than you really want.

So, if you were righting a module to select the 10 next longest durations of a certain LASER library, you could do so and maintain the order you found laser in. So, if it was closed, it would be closed after you finished with it. If it was open, it would remain open in the expected order. This allows your module to be called from many more situations, where you do not need to know the current table view.

In this article I will discuss the opening of tables in such a way that you can reset them to the way you they were before you needed them. In my next article, I will discuss the process of using that information to close the tables properly after you are done.

This is the PARAMETER statement of the function SQL_USE: "PARAMETER pcsq_cdbf, pcsq_order, plsq_exclusive, plsq_tagtype, pcsq_pathtodbf, pcsq_oldorder, pcsq_alias"

SQL_USE is a program that only needs the first parameter (pcsq_cdbf), the table you want to open, it will return true if it was already opened, or false otherwise. This is done by using the USED() function that came with FoxPro.

If you use a second parameter (pcsq_order), SQL_USE will set the table to that order. If you need to use it exclusively, send a third parameter set to True. If you are using the new (since 2.0) cdx index system, tags, then set the four parameter to True. If still using single index files (NDX, IDX type), set it to False.

If you have to look elsewhere for you table, set pathtodbf to the proper subdirectory. Use a right slash to finish the caracter string. If you are concerned about the order that the table was in before you should initialize a variable to a null character string and send that as the sixth parameter. On return, a side effect of SQL_USE will be you can use SET ORDER TO to get the table back in proper order. In other words the way you found it. Finally, the parameter pcsq_alias will allow you to give the table you are about to open an alias besides the table name. This comes in handy in a few areas.

In conclusion, this is not rocket science. But, if you need to write module programs, especially SQL based, the use of USED() and ORDER() will help you get things back to the way you had them. I just put them into a function so I can do it quickly. Next time I will discuss sql_clos.prg that uses the variables set by sql_use to put everything back in order.

* SQL_EXAM.PRG

PRIVATE m.cie_table, m.cie_order, m.cie_oldorder, m.cie_path

PRIVATE m.lce_used

STORE "LASER" TO m.cie_table

STORE "TITLE" TO m.cie_order

STORE "" TO m.cie_oldorder

* Make sure passed paramters are set to reference.

IF SET("UDFPARMS") = "VALUE"

	SET UDFPARMS TO REFERENCE

ENDIF

CLOSE DATA

SET VIEW ON

WAIT "No tables open" WINDOW

STORE "C:\foxprow\sample\laser\data\" TO m.cie_path

m.lce_used = SQL_USE(m.cie_table, ;

 m.cie_order, .F., .T., ;

	m.cie_path) && , m.cie_oldorder)

WAIT "Now do a SQL SELECT command" WINDOW

SELECT a.TITLE, a.CRITICS, A.STUDIO ;

	FROM LASER a ;

	WHERE a.STUDIO = "MCA" ;

	ORDER BY a.CRITICS ;

	INTO CURSOR Q_TITLES

WAIT "Use the query to do something, such as list" WINDOW

LIST FIELDS STUDIO, TITLE, CRITICS

SELECT laser

WAIT "Notice laser is in " + ORDER() WINDOW

LIST FIELDS TITLE, CRITICS NEXT 10

WAIT "Now we will use it using a different order - DURATION" WINDOW

= SQL_USE(m.cie_table, "DURATION",;

 .F., .T., m.cie_path, ;

	m.cie_oldorder)

LIST FIELDS TITLE, DURATION, CRITICS next 10

WAIT "In order of duration, right?" WINDOW

WAIT "Of course it was! Now set back to " ;

	+ m.cie_oldorder WINDOW

SET ORDER TO (m.cie_oldorder)

LIST FIELDS TITLE, DURATION, CRITICS next 10

WAIT "Now if we had something to properly " + ;

	"close laser, hmmm?" WINDOW

RETURN

* SQL_USE.PRG

* Parameters:

* Only the first two are required.

* (pcsq_cdbf and psq_order)

* p?sq variables are parameters passed to sql_use.

* ? equals (C)har, (n)umber, (l)ogical, or (d)ate

* pcsq_cdbf is the name of the database to use

* pcsq_order is the order you would like it in.

* pcsq_exclusive is a logical variable set to .T. if

* you need to perform a pack or reindex.

* plsq_tagtype really is not needed. It would be

* set to .F. only if you were using a non-tag

* type index file.

* i.e. USE clients INDEX phone instead of:

* USE clients TAG phone (inside clients.cdx).

* pcsq_pathtodbf is the path to the data table

* you need opened.

* pcsq_oldorder will contain old order before set

* to pcsq_order.

* pcsq_alias is the alias name you want to use.

PARAMETER pcsq_cdbf, pcsq_order, plsq_exclusive, ;

 plsq_tagtype, pcsq_pathtodbf, pcsq_oldorder, ;

 pcsq_alias

* Local variables:

* m.lsq_usedalready is set to true if we need to

* restore it the way it was.

* m.nsq_params is the number of parameters

* passed to sql_use

PRIVATE m.lsq_usedalready, m.nsq_params

* Save number of parameters in case error routine

* is called.

m.nsq_params = PARAMETERS()

* Check for minimum number of parameters.

IF m.nsq_params < 2

 * If not 2, send a to late message and exit.

 WAIT WINDOW NOWAIT "Incorrect parameters in sql_use.prg"

 RETURN .F.

ENDIF

* Check to see if we need to alias the use statement

IF m.nsq_params < 7

 * Otherwise fill with nothing.

 STORE "" TO pcsq_alias

ENDIF

* If user does not need to keep old ord set to null.

IF m.nsq_params < 6

 STORE "" TO pcsq_oldorder

ENDIF

* If use doesn’t specify path, assume std data path.

IF m.nsq_params < 5

 * I use a system variable called pathdbf,

 * for others to use I have implemented a check

 * before using it, actually not a bad idea.

 IF TYPE('pathdbf') # "U"

 STORE pathdbf TO pcsq_pathtodbf

 ELSE

 STORE "" TO pcsq_pathtodbf

 ENDIF

ENDIF

* See if user is using a seperate index file,

* one different from the path.

IF m.nsq_params < 4

 * Assume true unless sent parameter.

 STORE .T. TO plsq_tagtype

ENDIF

* Assume shared use, if user needs to pack or

* index or something

IF m.nsq_params < 3

 STORE .F. TO plsq_exclusive

ENDIF

**

* END OF PARAMETER CHECKING

**

* Make table name as nice as possible (pcsq_cdbf)

STORE ALLTRIM(pcsq_cdbf) TO pcsq_cdbf

* Set used already to false for now.

STORE .F. TO m.lsq_usedalready

* CODE TO SETUP TABLE AND REMEMBER HOW IT WAS

* SETUP BEFORE

* Is the table name or alias in use right now?

IF USED(pcsq_cdbf) OR USED(pcsq_alias)

 * If no alias, use table name.

 IF EMPTY(pcsq_alias)

 SELECT (pcsq_cdbf)

 ELSE

 * Select alias.

 SELECT (pcsq_alias)

 ENDIF

 * Get current order and send it to pcsq_oldorder.

 STORE ORDER() TO pcsq_oldorder

 * If needed exclusively,

 IF plsq_exclusive

 * Use path and table name to USE ... EXCLUSIVE

 IF EMPTY(pcsq_alias)

 USE (pcsq_pathtodbf + pcsq_cdbf) EXCLUSIVE

 ELSE

 * If alias is specified, USE ... ALIAS ... EXCLUSIVE

 USE (pcsq_pathtodbf + pcsq_cdbf) ALIAS (pcsq_alias) EXCLUSIVE

 ENDIF

 ENDIF

 IF m.nsq_params >= 2

 * Look at plsq_tagtype to see if we need

 * an order or an index.

 IF plsq_tagtype

 SET ORDER TO (pcsq_order)

 ELSE

 SET INDEX TO (pcsq_order)

 ENDIF

 ENDIF

 * Finally, mark usedalready to true.

 * This value is returned by sql_use.

 m.lsq_usedalready = .T.

 * If not already used, sql_use will still

 * setup the table by the user specifed

 * options given via paramaters.

ELSE

 * Start off with a new work area.

 SELECT 0

 * If needed exclusively...

 IF plsq_exclusive

 * If no alias use table name.

 IF EMPTY(pcsq_alias)

 USE (pcsq_pathtodbf + pcsq_cdbf) EXCL

 ELSE

 USE (pcsq_pathtodbf + pcsq_cdbf) ;

 ALIAS (pcsq_alias) EXCLUSIVE

 ENDIF

 * if not needed exclusive, then open ;

 * normally. (SHARED).

 ELSE

 * Check for use of alias.

 IF EMPTY(pcsq_alias)

 USE (pcsq_pathtodbf + pcsq_cdbf)

 ELSE

 USE (pcsq_pathtodbf + pcsq_cdbf) ;

 ALIAS (pcsq_alias)

 ENDIF

 ENDIF

 * Wasn't used before so can't have an old order!

 STORE "" TO pcsq_oldorder

 * See if sql_use needs to set the order or index

 IF m.nsq_params >= 2

 * if tag use it

 IF plsq_tagtype

 SET ORDER TO (pcsq_order)

 ELSE

 * otherwise use index file.

 SET INDEX TO (pcsq_order)

 ENDIF

 ENDIF

 * Finally, mark usedalready to false.

 m.lsq_usedalready = .F.

ENDIF

RETURN (m.lsq_usedalready)

*: EOF: SQL_USE.PRG

Peter Hecht is director of Client Services at Velcor Company in Madison WI. He can be reached at 608-231-3535 or on CIS at 72510,3720.

How Unique?

By Cory Jaeger

The online help description of Foxpro’s SYS(3) function says:

“This function returns a unique file name which can be used to create temporary files. A different file name is returned each time SYS(3) executes.”

Well, how unique is this 8 character filename (all digits) anyhow? Eight digits isn’t too bad, right? That would give you 10,000,000 different file names. In fact, with that many unique eight digit codes, you could use SYS(3) to return some sort of unique record ID tags, right?

WRONG! And how do I know? That’s exactly what I did four months ago. Then today, I got a little suspicious about it. When I took a look at a database with about 83,000 records in it, I found douplicates, lots of ‘em. Several hundred in fact. There were even some triplicates in there too.

Aparently, I’m not the first one to realize that SYS(3) doesn’t give you a guarenteed uniqe name. If you take a look at GENSCRNX, you will find this code to get a temporary file name:

DO WHILE .T.

	m.filename='_'+ALLTRIM(SUBSTR(SYS(3),2,7))

	IF .NOT.FILE(m.filename+'.DBF')

		EXIT

	ENDIF

ENDDO

A loop that keeps trying file names until it finds one that isn’t already used.

Bottom line, unless you are doing some double checking, you can’t rely on SYS(3) for a unique value. (Even with some double checking, it is still possible to run into problems in a multi-user app.

 I wanted a generic function that would return an 8 character code that would be a valid filename also. (So I wouldn’t have to change my indexes and only make minor changes to my code.) Here is a stripped down version of what I finally ended up with:

PRIVATE st, m.ret

SET TALK ON

st="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

IF USED("_X_UNIQ")

	SELECT _X_UNIQ

ELSE

	IF !FILE("_X_UNIQ.DBF")	&&Check if Database Exists

		CREATE TABLE _X_UNIQ (IDNUM N(13,0))

		APPEND BLANK

	ELSE

		SELECT 0

		USE _X_UNIQ

	ENDIF

ENDIF

GO TOP

m.idnum=_x_uniq.idnum+1

REPLACE _x_uniq.idnum WITH m.idnum

m.ret=""

****The following DO WHILE converts m.idnum to 8 character code.

DO WHILE m.idnum>0

	m.ret=SUBSTR(m.st,(m.idnum%36)+1,1)+m.ret

	m.idnum=INT(m.idnum/36)

ENDDO

RETURN PADL(m.ret,8,"0") && Make sure code is full 8 characters

The idea is actually pretty simple. _X_UNIQ is a database with a single record, and a single field (IDNUM). The function creates the file if it doesn’t exist and adds the single record. When run, the function gets the next number and increments IDNUM. It basicaly converts the number to a base 36 number and returns it. (With enough leading zeroes to make it 8 characters.) With a little record locking, this function would be reliable in a multi-user program also.

So then, how unique is the return value? Completely. You would be doing pretty good if it simply generated a truely random number. The odds in that case would be 1 in 2,821,109,907,456 (almost 3 trillion.) You’d be more likely to win the lottery. But, the truth is that we are simply returning a serial #. So, until you’ve called it 2.8 trillion times, the function won’t return a duplicate.

The completed function will be available on Compuserve in FOXFORUM, as UNIQID.ZIP. It includes record locking and code to leave things the way it finds them. (Except it leaves _X_UNIQ open.) It is freeware, so if all you want to do is pick it apart to try something new, go ahead.

By the way, converting a number to a base greater than 10 can save space room if you need it. For example, if you use most of the characters that are allowable in a CODE 3�OF�9 barcode, you can fit 3,111,696 unique numbers in 4 characters.

(Cory Jaeger is the I.S. Director at Wausau Coated Products, Inc. A central Wisconsin manufacturer of label material. There he manages a 26 user Netware network, and does the in-house programming. He lives in Schofield, WI with his wife Carrie and their daugter Alexandra, 5 and son Stefan, 3. He can be reached by phone at (715)843-6347 (days), on CompuServe at 73424,536, or at the monthly MAFD meeting, weather permitting, when he makes the 3½hr. Trip.)

* UNIQID.PRG

* RETURNS a GUARANTEED unique 8 character code.

* The 8 character code is a serialized id.

* A total of 2,821,109,907,456 unique codes will

* be returned before repetition begins.

PRIVATE m.oldrepro, st, oldsel, m.ret

m.oldrepro=SET("REPROCESS")

oldsel=SELECT()

st="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" && "Digits" of our base-36 number

SET REPROCESS TO -1

IF USED("_X_UNIQ")

 SELECT _X_UNIQ

ELSE

 * IF file doesn't exist, create it

 * with 1 record.

 IF !FILE("_X_UNIQ.DBF")

 CREATE TABLE _X_UNIQ (IDNUM N(13,0))

 APPEND BLANK

 * The created file will be used excl,

 * so close it

 USE

 ENDIF

 SELECT 0

 * Use file as shared regardless of SET EXCLUSIVE

 USE _X_UNIQ SHARED

ENDIF

GO TOP

* Let user know what is going on in case there is

* some competition for access. (Function runs 35%

* faster without WAIT/WAIT CLEAR)

WAIT WINDOW "Getting ID #" NOWAIT

* Because of the REPROCESS setting, this will wait

* here until lock is obtained.

=LOCK()

WAIT CLEAR

* Add 1 to counter

m.idnum=_x_uniq.idnum+1

* Just in case someone actually does roll

* the counter.BTW - in time tests on a 486dx2/66Mhz

* computer, that would take almost 500 years.

IF m.idnum>2821109907455

 m.idnum=0

ENDIF

* Update Database

REPLACE _x_uniq.idnum WITH m.idnum

* Let someone else have a chance.

UNLOCK

m.ret=""

* This DO WHILE loop converts m.idnum (base-10) to

* a base-36 number.

DO WHILE m.idnum>0

 m.ret=SUBSTR(m.st,(m.idnum%36)+1,1)+m.ret

 m.idnum=INT(m.idnum/36)

ENDDO

* Restore starting work area

SELECT (oldsel)

* Restore the SET REPROCESS setting to whatever

* it was.

SET REPROCESS TO (m.oldrepro)

* Return our base-36 number as a 8 character string.

RETURN PADL(m.ret,8,"0")

Position wanted

FoxPro Programmer: I currently work in the Minneapolis/St. Paul area but would like to relocate to the Milwaukee area. Qualifications: 2.5 years FoxPro 2.0/2.5 experience working with SBT Pro Series, Series 7, Visionpoint Accounting Systems and Abracadabra Payroll & HR systems. Hardware and Novell network experience.

Dean Woodhouse, 380 E. Wheelock Parkway, #135, St. Paul MN 55101. (H) 612.772.0520. (W) 612.291.0736.

Position available

A top ten long-distance reseller ($100 million in sales) is looking for three FoxPro programmers for it’s Mac network (Windows OK). This well-managed company is experiencing meteoric growth. The community is rural and peaceful but has been referred to by a national publication as the “Silicorn Valley” of the Midwest because of the very great number of computer companies doing business there.

Contact Al at 800.634.2954, fax 515.469.3240, CIS 73312,3227, Internet al@amerishare.win.net.

September

Article�Deadline:

Tuesday, 8/30

Milwaukee Association of

FoxPro Developers

c/o Hentzenwerke

PO Box 17343

Milwaukee WI 53217

�

Milwaukee Association of

FoxPro Developers

c/o Hentzenwerke

PO Box 17343

Milwaukee WI 53217

Milwaukee Association of

FoxPro Developers

c/o Hentzenwerke

PO Box 17343

Milwaukee WI 53217

Page �PAGE�4�

Page �PAGE�3�

Page �PAGE�2�

Page �PAGE�9�

