E & R H SR OO 0 F

Rodrigo Rubira Branco

rodrigo@kernelhacking.com
rodrigo @risesecurity.org

http://www.risesecurity.org

mailto:rodrigo@kernelhacking.com
mailto:rodrigo@risesecurity.org

R E S E & R C | S R O U P

Monica's Team!! Brazilian famous H.Q. story

http://www.risesecurity.org

Amazon Forest — Yeah, Brazilian country!

http://www.risesecurity.org

i<se

Soccer — Brazilian feam, the world most — we can lose, but we are the best in the

world!

Pauls Pinta/fA&E

Em pit Likcio, Edmilsen, Rogsn Jiknker, Glibarto Siive, Marcos, Kakd, Vampals, Andarson Polgs, Dida, Rogérko Ceani o Balletti. Agachadon:
Rpasbdinkbg Gadccha, Ronalde, Raberio Carlos, Klabersen, Rivalde, Calue, Janlas, Ricardinho, Luleha, Edilson, Denflsnn & Yaninho Paolisis.

http://www.risesecurity.org

i<se

Samba, Carnaval, Brazilian's woman!

http://www.risesecurity.org

Agenda:

- The lifecycle of security (evading/identifying/correcting)

- Why will this presentation cover kernel-specific features?

- A little talk about compiler security enhancements (canary
protection, code inspection)

- The mostly commons security resources for the linux kernel
and how it works

- When does it fail? Kernel vulnerabilities/Kernel Attacks

- FreeBSD 5.x Oday overview

- The proposal: Security Integrity Checks at Kernel Level

- A little talk about hooking the ELF loader to md5-sum the
executed binaries

- StMichael, what is it?

- StMichael Test Cases

- Acknowledges

http://www.risesecurity.org

i1<se

= E &8 R OC

- We try don't to put programming errors
- We try to identify the errors
- We try to correct that errors

But, bugs continuing to appear, security flaws continuing to be
explored... what 1s missing”?

An approach that improves the security, and turn the bug... ah...
unexploitable?

http://www.risesecurity.org

i1<se

= E &8 =R OO

- Actual and efficient security systems running in kernel mode

- To defeat that kind of systems, we must analyze kernel security
- We need to protect the kernel, to protect security systems

- Hum, it's funny cover the kernel ;)

http://www.risesecurity.org

i1<se

E = E & R OC = K > 0 F

- Only detects/prevents the “classical” exploitation forms:
* Format strings in standard implementations (or warnings against all
other implementations)
* Try to prevent overflows by inserting canary (can be easily defeated,
as showed many times)

- Need to have improvements from the kernel mode:
* No-exec stack, random allocation address (evade ret-into-lib)
* Syscall trace
* Be creative... let's analyze the existent ones!

http://www.risesecurity.org

i1<se

= E & R OC

We will analyze the pros/cons of these security systems:

StJude
LIDS
PaX
SeLinux

These are the mostly common security systems used in Linux environments.

We don't plan to recommend or break any of that systems, only spot the
improvements and problems existent today.

http://www.risesecurity.org

i1<se

= E & R OC

- Model to detect unauthorized/improper root transitions

- Originally developed by Timothy Lawless (presented at Defcon) and now
maintained by Rodrigo Rubira Branco (me)

- All the privileged process are associated with a restriction list

- Each restriction list 1s based on a global rule-based that describes the
valid transitions for an application in a defined context

- If a process creates a child, 1t will inherit the restriction list from its parent
- All executions are tested against the restriction list

- StJude uses another module, called StMichael (developed and maintained
by the same people as Stjude) to protect the kernel mode

http://www.risesecurity.org

i1<se

= E &8 FE & H O FE Oy P

- Trusted Domain Enforcement (TDE)

- Trusted Path Execution (TPE)

- Network enhancements
* Socket restriction
* Packet labels and netfilter interaction
* Portscan/Sniffer detector

http://www.risesecurity.org

i1<se

= E &8 RO

- KERNEXEC
* Introduces non-exec data into the kernel level
* Read-only kernel internal structures (feature exist in the 2.6.17.4 kernels)

- RANDKSTACK

* Introduce randomness into the kernel stack address of a task

* Not really useful when many tasks are involved nor when a task is
ptraced (some tools use ptraced childs)

All that PaX features don't prevent kernel changes (so, an attacker
maybe can't elevate privileges, but, change the kernel itself — introducing
a backdoor, for example)

http://www.risesecurity.org

i1<se

= E &8 RO

- SeLinux 1s not LSM! LSM is used by SeLinux to improve the system
security

- A lot of discussion exist about SeLinux, specially when talking about
pathnames into kernel mode

* You can handle newly created files (like .procmailrc) using a usermode
daemon (fedora implements restorecond to set the correct permissions/label
into a newly created file)

- Another question 1s about the threat model, which leaves kernel exploits
out of discussion

http://www.risesecurity.org

i1<se

= E & KO

- Ok, because SeLinux uses the LSM framework, we will explain how the
LSM framework works for the purpose of this presentation:

* security_operations structure that contains pointers to functions that
will be called by the internal hooks

* dummy 1mplementation that does nothing and will call the loaded
module hooks (stackable) -> First problem... the stackable module support
depends entirely on the modules, 1t will inherit a lot of complexity into the
code (kernel bugs)

* all symbols are exported, so, anyone can use it in a backdoor (some
samples...)! - for injection code, see phalanx in the references

http://www.risesecurity.org

i1<se

= E & KO

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry) {
printk("\n dumb rename \n");

return O;

J

static struct security_operations my_security_ops = {
Inode_rename = myinode_rename,

K

register security (&my security ops);

http://www.risesecurity.org

i1<se

= E &8 H O H O s KO LV F

static int
execute(const char *string)

{

f ((ret = call usermodehelper(argv[Q], argv, envp, 1)) !'=0) {
printk(KERN ERR "Failed to run \"S%s\": S%i\n",
string, ret);

}

return ret;

}

OBS: call usermodehelper replaces the exec usermodehelper showed
in the phrack article (see references)

http://www.risesecurity.org

i1<se

= = O U=

/* create a socket */
if ((err = sock create(AF _INET, SOCK DGRAM, IPPROTO UDP, &kthread->sock)) < 0)
printk (KERN_INFO MODULE_NAME": Could not create a datagram socket, error = %d\n", -ENXIO);
goto out;

if ((err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread->addr,
sizeof(struct sockaddr))) < 0)
printk (KERN _INFO MODULE NAME": Could not bind or connect to socket, error = %d\n", -err);
goto close _and out;

}
/* main loop */
for (;;)

{
memset (&buf, 0, bufsize+l);

size = ksocket receive(kthread->sock, &kthread->addr, buf, bufsize);

OBS: See the references for a complete UDP Client/Server 1in
kernel mode

http://www.risesecurity.org

i1<se

= = O U=

static struct workqueue struct *my workqueue;

static struct work struct Task;
static DECLARE WORK(Task, intrpt routine, NULL);

static void intrpt routine(void *irrelevant)

{

/* do the scheduled action here */

if (!die)
queue delayed work(my workqueue, &Task, HZ);

my workqueue = create workqueue(MY WORK QUEUE NAME);
queue delayed work(my workqueue, &Task, 100);

OBS: StMichael uses this kind of schedule, it has been taken from
the LKMPG Chapter 11 (see references)

http://www.risesecurity.org

i<

= E 8 KO

- Putting all things together, so you have:

* UDP Client/Server -> You can use that to receive and respond to backdoor
commands

* LSM registered functions (or hooks) -> Can intercept commands, hide
things, and do interesting things (will be revised later)

* Execution from the kernel mode -> Can execute commands requested by the
user

* Schedule tasks -> Permits scheduling the backdoor to run again (maybe to
begin a new connection - connback), after a period of time

Yeah, only using public available sources!!

http://www.risesecurity.org

i1<se

= E & KO

- Kernel bugs have been exploited many times in the last years...

- PaX is the only security feature that covers kernel exploits

- When compromise the kernel, an attacker can easily defeat many of the
existing security tools...

- Let's analyze a real kernel security flaw (yeah, Defcon is cool!)

http://www.risesecurity.org

i1<se

= E & KO

- Integer overtlow vulnerability

- Useful for our sample because no security feature can prevent this

kind of vulnerability from being exploited (PaX turns it really difficult, but
don't prevent changes in the kernel integrity, only put some parts as
read-only)

- Why show a FreeBSD and not a Linux vulnerability? Just for fun!

- Let's understand this flaw!

http://www.risesecurity.org

http://www.risesecurity.org

i1<se

F E = E & FEOC = KK > U0 ¥~

- We can use many kernel features to offer a security integrity check in
the kernel-level

- Specially for Defcon, I have first ported the StMichael to the 2.6 kernel
branch (try it, help with patches)

- StMichael uses LSM only for checking the integrity of the
[mod]_{registerlunregister}_security functions and registering itself to avoid
any other modules to be registered (but, don't cover the other hooks, it
continues to be exported)...

http://www.risesecurity.org

i1<se

= E & KOS

- Presented by Richard Johnson at Toorcon 2004

int

~load binary (struct linux binprm *linux binprm, struct pt regs *regs)
{

}

The parameter regs isn't used...

http://www.risesecurity.org

i1<se

= E & KOS

int my bprm set security (struct linux binprm *bprm)

{

if (! md5verify sum(bprm->filename))

{
printk("\n hey hey hey\n");
return -1,

}

return 0;

http://www.risesecurity.org

i1<se

H E & E & KOO = = O P

- A Kernel Module developed to protect the kernel integrity

- Checks some kernel parts and look for changes
- Protects StJude (or any other kernel-security feature)

- Detects all existing public backdoors (and offers some security
features — already covered by all others patches presented)

- Can't replace PaX, a good choice to complement it!

- Show me the code!

http://www.risesecurity.org

i1<se

= EBE & FHOC

- Replacing kernel code

- Loading a module that hides itself
- Changing the printk
- Using the timer handler to put hackings...

- Trying to defeat the module itself (attacking StMichael)

http://www.risesecurity.org

i1<se

E = E &8 B OC = = x LI &

- RISE Security

- Defcon Organization
- Pipacs (PaX creator)

- Timothy Lawless (StMichael/Stjude
creator)

- Your patience!

- Without friends, we are nothing,
let's drink!

http://www.risesecurity.org

R E S E & R O | S RO U P

- PaX/GrSecurity: http://pax.grsecurity.net/docs/

- Selinux: http://www.nsa.gov/selinux/

- StJude/StMichael: http://www.sf.net/projects/stjude

- Lids: http://www.lids.org

- LSM discussions: http://www .kernelhacking.com/rodrigo/lsm

- Kernel UDP Client/Server: http://www .kernelnewbies.org/Simple_UDP_Server
- Izik's Userland Scheduler Paper:

http://www.uninformed.org/?v=3&a=6&t=pdf

- Hooking the ELF Loader:
http://1abs.idefense.com/speaking/hooking_the_linux_ELF_loader.pdf

- Phalanx: http://packetstormsecurity.org/UNIX/penetration/rootkits/phalanx-b6.tar.bz2
- http://www.phrack.org/phrack/61/p61-0x0e_Kernel_Rootkit_Experiences.txt

- Chapter 11 (Scheduling Tasks): http://lkmpg.cvs.sourceforge.net/lkmpg/2.4/

- This Presentation/Samples: http://www kernelhacking.com/rodrigo/defcon

All that references has last seen in: 07/03/2006.

http://www.risesecurity.org

R E S E & R oC| G RO U P

DOUBTS ?

Rodrigo Rubira Branco

rodrigo @kernelhacking.com
rodrigo @risesecurity.org

http://www.risesecurity.org

mailto:rodrigo@kernelhacking.com
mailto:rodrigo@risesecurity.org

