��The Vlib SDK

A DOS based game
programming library����
By Donald E. Vandenbeld��Bifrost Creations (Canada)��
(1995, 1996, 1997��All rights reserved
����
Sections of the VLib manual
��
Introduction
��
Section/function reference
��
Utility reference
��
Example program explanation
���Table of Contents
� TOC \o "1-2" �Table of Contents	� GOTOBUTTON _Toc385677112 � PAGEREF _Toc385677112 �i��
License Agreement	� GOTOBUTTON _Toc385677113 � PAGEREF _Toc385677113 �1��
Registration of the VLib SDK	� GOTOBUTTON _Toc385677114 � PAGEREF _Toc385677114 �3��
Contacting Bifrost Creations	� GOTOBUTTON _Toc385677115 � PAGEREF _Toc385677115 �3��
About the Manual	� GOTOBUTTON _Toc385677116 � PAGEREF _Toc385677116 �4��
Overview of the Vlib Library	� GOTOBUTTON _Toc385677117 � PAGEREF _Toc385677117 �4��
Using The Library	� GOTOBUTTON _Toc385677118 � PAGEREF _Toc385677118 �5��
Installation	� GOTOBUTTON _Toc385677119 � PAGEREF _Toc385677119 �5��
Basics	� GOTOBUTTON _Toc385677120 � PAGEREF _Toc385677120 �5��
Resources	� GOTOBUTTON _Toc385677121 � PAGEREF _Toc385677121 �5��
Error Checking and Bugs	� GOTOBUTTON _Toc385677122 � PAGEREF _Toc385677122 �6��
Global Variables	� GOTOBUTTON _Toc385677123 � PAGEREF _Toc385677123 �6��
Compiling and Linking	� GOTOBUTTON _Toc385677124 � PAGEREF _Toc385677124 �6��
Vlib.h Constants	� GOTOBUTTON _Toc385677125 � PAGEREF _Toc385677125 �7��
Module 1: BMP Module Functions	� GOTOBUTTON _Toc385677126 � PAGEREF _Toc385677126 �9��
Overview	� GOTOBUTTON _Toc385677127 � PAGEREF _Toc385677127 �9��
BMP Constants	� GOTOBUTTON _Toc385677128 � PAGEREF _Toc385677128 �9��
BMP Global Variables	� GOTOBUTTON _Toc385677129 � PAGEREF _Toc385677129 �9��
BMP Structures	� GOTOBUTTON _Toc385677130 � PAGEREF _Toc385677130 �9��
GetBMPHeader	� GOTOBUTTON _Toc385677131 � PAGEREF _Toc385677131 �9��
IsBMP	� GOTOBUTTON _Toc385677132 � PAGEREF _Toc385677132 �10��
LoadBMP	� GOTOBUTTON _Toc385677133 � PAGEREF _Toc385677133 �10��
LoadBMPPalette	� GOTOBUTTON _Toc385677134 � PAGEREF _Toc385677134 �11��
SaveBMP	� GOTOBUTTON _Toc385677135 � PAGEREF _Toc385677135 �11��
Module 2: Button Functions	� GOTOBUTTON _Toc385677136 � PAGEREF _Toc385677136 �13��
Overview	� GOTOBUTTON _Toc385677137 � PAGEREF _Toc385677137 �13��
Boolean Buttons	� GOTOBUTTON _Toc385677138 � PAGEREF _Toc385677138 �13��
Toggle Buttons	� GOTOBUTTON _Toc385677139 � PAGEREF _Toc385677139 �13��
Slider Buttons	� GOTOBUTTON _Toc385677140 � PAGEREF _Toc385677140 �13��
Button Constants	� GOTOBUTTON _Toc385677141 � PAGEREF _Toc385677141 �13��
Button Global Variables	� GOTOBUTTON _Toc385677142 � PAGEREF _Toc385677142 �15��
Button Structures	� GOTOBUTTON _Toc385677143 � PAGEREF _Toc385677143 �15��
AddButton	� GOTOBUTTON _Toc385677144 � PAGEREF _Toc385677144 �16��
Check Buttons	� GOTOBUTTON _Toc385677145 � PAGEREF _Toc385677145 �17��
ColorButton	� GOTOBUTTON _Toc385677146 � PAGEREF _Toc385677146 �17��
DrawButton	� GOTOBUTTON _Toc385677147 � PAGEREF _Toc385677147 �17��
RemoveButton	� GOTOBUTTON _Toc385677148 � PAGEREF _Toc385677148 �18��
SetSliderEntry	� GOTOBUTTON _Toc385677149 � PAGEREF _Toc385677149 �18��
SetSliderOffset	� GOTOBUTTON _Toc385677150 � PAGEREF _Toc385677150 �18��
Module : DOS Functions	� GOTOBUTTON _Toc385677151 � PAGEREF _Toc385677151 �21��
Overview	� GOTOBUTTON _Toc385677152 � PAGEREF _Toc385677152 �21��
DOS Constants	� GOTOBUTTON _Toc385677153 � PAGEREF _Toc385677153 �21��
DOS Global Variables	� GOTOBUTTON _Toc385677154 � PAGEREF _Toc385677154 �21��
GetDirectoryf	� GOTOBUTTON _Toc385677155 � PAGEREF _Toc385677155 �21��
GetDirectory	� GOTOBUTTON _Toc385677156 � PAGEREF _Toc385677156 �22��
GetDOSError	� GOTOBUTTON _Toc385677157 � PAGEREF _Toc385677157 �22��
LargestMemBlock	� GOTOBUTTON _Toc385677158 � PAGEREF _Toc385677158 �23��
Module 4: Draw Functions	� GOTOBUTTON _Toc385677159 � PAGEREF _Toc385677159 �25��
Overview	� GOTOBUTTON _Toc385677160 � PAGEREF _Toc385677160 �25��
Draw Constants	� GOTOBUTTON _Toc385677161 � PAGEREF _Toc385677161 �25��
Draw Structures	� GOTOBUTTON _Toc385677162 � PAGEREF _Toc385677162 �25��
Bline	� GOTOBUTTON _Toc385677163 � PAGEREF _Toc385677163 �25��
DrawBox	� GOTOBUTTON _Toc385677164 � PAGEREF _Toc385677164 �26��
Draw3DBox	� GOTOBUTTON _Toc385677165 � PAGEREF _Toc385677165 �26��
Draw3DBoxFilled	� GOTOBUTTON _Toc385677166 � PAGEREF _Toc385677166 �27��
DrawBig3DBox	� GOTOBUTTON _Toc385677167 � PAGEREF _Toc385677167 �27��
DrawBig3DBoxFilled	� GOTOBUTTON _Toc385677168 � PAGEREF _Toc385677168 �27��
DrawFilledBox	� GOTOBUTTON _Toc385677169 � PAGEREF _Toc385677169 �28��
DrawHLine	� GOTOBUTTON _Toc385677170 � PAGEREF _Toc385677170 �28��
DrawVLine	� GOTOBUTTON _Toc385677171 � PAGEREF _Toc385677171 �28��
GetPixel	� GOTOBUTTON _Toc385677172 � PAGEREF _Toc385677172 �29��
Line	� GOTOBUTTON _Toc385677173 � PAGEREF _Toc385677173 �29��
SetPixel	� GOTOBUTTON _Toc385677174 � PAGEREF _Toc385677174 �30��
Module 5: FLIC Functions	� GOTOBUTTON _Toc385677175 � PAGEREF _Toc385677175 �31��
Overview	� GOTOBUTTON _Toc385677176 � PAGEREF _Toc385677176 �31��
FLIC Constants	� GOTOBUTTON _Toc385677177 � PAGEREF _Toc385677177 �31��
FLIC Global Variables	� GOTOBUTTON _Toc385677178 � PAGEREF _Toc385677178 �31��
FLIC Structures	� GOTOBUTTON _Toc385677179 � PAGEREF _Toc385677179 �32��
CloseFLI	� GOTOBUTTON _Toc385677180 � PAGEREF _Toc385677180 �32��
IsFlic	� GOTOBUTTON _Toc385677181 � PAGEREF _Toc385677181 �33��
GetFLIHeader	� GOTOBUTTON _Toc385677182 � PAGEREF _Toc385677182 �33��
LoadFLIFrame	� GOTOBUTTON _Toc385677183 � PAGEREF _Toc385677183 �33��
OpenFLI	� GOTOBUTTON _Toc385677184 � PAGEREF _Toc385677184 �34��
Module 6: IFF Functions	� GOTOBUTTON _Toc385677185 � PAGEREF _Toc385677185 �35��
Overview	� GOTOBUTTON _Toc385677186 � PAGEREF _Toc385677186 �35��
IFFConstants	� GOTOBUTTON _Toc385677187 � PAGEREF _Toc385677187 �35��
ChangeIFF	� GOTOBUTTON _Toc385677188 � PAGEREF _Toc385677188 �36��
CheckChunk	� GOTOBUTTON _Toc385677189 � PAGEREF _Toc385677189 �36��
CheckIFF	� GOTOBUTTON _Toc385677190 � PAGEREF _Toc385677190 �36��
CloseIFF	� GOTOBUTTON _Toc385677191 � PAGEREF _Toc385677191 �37��
CreateIFF	� GOTOBUTTON _Toc385677192 � PAGEREF _Toc385677192 �37��
LoadChunk	� GOTOBUTTON _Toc385677193 � PAGEREF _Toc385677193 �37��
LoadChunkSearch	� GOTOBUTTON _Toc385677194 � PAGEREF _Toc385677194 �38��
OpenIFF	� GOTOBUTTON _Toc385677195 � PAGEREF _Toc385677195 �38��
ReadFromIFF	� GOTOBUTTON _Toc385677196 � PAGEREF _Toc385677196 �38��
SeekChunk	� GOTOBUTTON _Toc385677197 � PAGEREF _Toc385677197 �39��
SetIFFPosition	� GOTOBUTTON _Toc385677198 � PAGEREF _Toc385677198 �39��
WriteChunk	� GOTOBUTTON _Toc385677199 � PAGEREF _Toc385677199 �39��
WriteChunks	� GOTOBUTTON _Toc385677200 � PAGEREF _Toc385677200 �40��
Module 7: Joystick Functions	� GOTOBUTTON _Toc385677201 � PAGEREF _Toc385677201 �41��
Overview	� GOTOBUTTON _Toc385677202 � PAGEREF _Toc385677202 �41��
Joystick Constants	� GOTOBUTTON _Toc385677203 � PAGEREF _Toc385677203 �41��
Joystick Global Variables	� GOTOBUTTON _Toc385677204 � PAGEREF _Toc385677204 �41��
CalibrateJoystick1	� GOTOBUTTON _Toc385677205 � PAGEREF _Toc385677205 �42��
CalibrateJoystick2	� GOTOBUTTON _Toc385677206 � PAGEREF _Toc385677206 �42��
CheckJoystick	� GOTOBUTTON _Toc385677207 � PAGEREF _Toc385677207 �42��
JoystickButtons	� GOTOBUTTON _Toc385677208 � PAGEREF _Toc385677208 �43��
JoystickPos	� GOTOBUTTON _Toc385677209 � PAGEREF _Toc385677209 �43��
JoystickRaw	� GOTOBUTTON _Toc385677210 � PAGEREF _Toc385677210 �43��
LoadJoystickConfig	� GOTOBUTTON _Toc385677211 � PAGEREF _Toc385677211 �43��
SaveJoystickConfig	� GOTOBUTTON _Toc385677212 � PAGEREF _Toc385677212 �44��
Module 8: Keyboard Functions	� GOTOBUTTON _Toc385677213 � PAGEREF _Toc385677213 �45��
Overview	� GOTOBUTTON _Toc385677214 � PAGEREF _Toc385677214 �45��
Keyboard Constants	� GOTOBUTTON _Toc385677215 � PAGEREF _Toc385677215 �45��
Keyboard Global Variables	� GOTOBUTTON _Toc385677216 � PAGEREF _Toc385677216 �47��
GetKey	� GOTOBUTTON _Toc385677217 � PAGEREF _Toc385677217 �47��
InstallKeyboard	� GOTOBUTTON _Toc385677218 � PAGEREF _Toc385677218 �47��
RestoreKeyboard	� GOTOBUTTON _Toc385677219 � PAGEREF _Toc385677219 �48��
WaitKey	� GOTOBUTTON _Toc385677220 � PAGEREF _Toc385677220 �48��
Module 9: Linear Frame Buffer Functions	� GOTOBUTTON _Toc385677221 � PAGEREF _Toc385677221 �49��
Overview	� GOTOBUTTON _Toc385677222 � PAGEREF _Toc385677222 �49��
Linear Frame Buffer Constants	� GOTOBUTTON _Toc385677223 � PAGEREF _Toc385677223 �49��
Linear Frame Buffer Global Variables	� GOTOBUTTON _Toc385677224 � PAGEREF _Toc385677224 �49��
DPMIAllocSelector	� GOTOBUTTON _Toc385677225 � PAGEREF _Toc385677225 �49��
DPMIMapPhysicalToLinear	� GOTOBUTTON _Toc385677226 � PAGEREF _Toc385677226 �49��
DPMISetSelectorBase	� GOTOBUTTON _Toc385677227 � PAGEREF _Toc385677227 �50��
DPMISetSelectorLimit	� GOTOBUTTON _Toc385677228 � PAGEREF _Toc385677228 �50��
GetPtrToLFB	� GOTOBUTTON _Toc385677229 � PAGEREF _Toc385677229 �50��
Module 10: Mouse Functions	� GOTOBUTTON _Toc385677230 � PAGEREF _Toc385677230 �53��
Overview	� GOTOBUTTON _Toc385677231 � PAGEREF _Toc385677231 �53��
Mouse Constants	� GOTOBUTTON _Toc385677232 � PAGEREF _Toc385677232 �53��
Mouse Global Variables	� GOTOBUTTON _Toc385677233 � PAGEREF _Toc385677233 �53��
CheckMouse	� GOTOBUTTON _Toc385677234 � PAGEREF _Toc385677234 �53��
FreeMouseBuffer	� GOTOBUTTON _Toc385677235 � PAGEREF _Toc385677235 �54��
HideMouseCursor	� GOTOBUTTON _Toc385677236 � PAGEREF _Toc385677236 �54��
ReadMouse	� GOTOBUTTON _Toc385677237 � PAGEREF _Toc385677237 �54��
ReadMouseButton	� GOTOBUTTON _Toc385677238 � PAGEREF _Toc385677238 �54��
RelMouse	� GOTOBUTTON _Toc385677239 � PAGEREF _Toc385677239 �55��
SetMouseCursor	� GOTOBUTTON _Toc385677240 � PAGEREF _Toc385677240 �55��
ShowMouseCursor	� GOTOBUTTON _Toc385677241 � PAGEREF _Toc385677241 �56��
UpdateMouse	� GOTOBUTTON _Toc385677242 � PAGEREF _Toc385677242 �56��
UpdateMouseBlast	� GOTOBUTTON _Toc385677243 � PAGEREF _Toc385677243 �56��
UpdateMouseCoords	� GOTOBUTTON _Toc385677244 � PAGEREF _Toc385677244 �57��
WaitMouse	� GOTOBUTTON _Toc385677245 � PAGEREF _Toc385677245 �57��
Module 11: Palette Functions	� GOTOBUTTON _Toc385677246 � PAGEREF _Toc385677246 �59��
Overview	� GOTOBUTTON _Toc385677247 � PAGEREF _Toc385677247 �59��
Palette Constants	� GOTOBUTTON _Toc385677248 � PAGEREF _Toc385677248 �59��
Palette Global Variables	� GOTOBUTTON _Toc385677249 � PAGEREF _Toc385677249 �59��
CopyPalette	� GOTOBUTTON _Toc385677250 � PAGEREF _Toc385677250 �59��
FindColor	� GOTOBUTTON _Toc385677251 � PAGEREF _Toc385677251 �60��
GetPaletteRegister	� GOTOBUTTON _Toc385677252 � PAGEREF _Toc385677252 �60��
LoadRAWPalette	� GOTOBUTTON _Toc385677253 � PAGEREF _Toc385677253 �60��
RecolorImage	� GOTOBUTTON _Toc385677254 � PAGEREF _Toc385677254 �61��
SavePalette	� GOTOBUTTON _Toc385677255 � PAGEREF _Toc385677255 �61��
SetPalette	� GOTOBUTTON _Toc385677256 � PAGEREF _Toc385677256 �61��
SetPaletteRegister	� GOTOBUTTON _Toc385677257 � PAGEREF _Toc385677257 �62��
Module 12: PCX Functions	� GOTOBUTTON _Toc385677258 � PAGEREF _Toc385677258 �63��
Overview	� GOTOBUTTON _Toc385677259 � PAGEREF _Toc385677259 �63��
PCX Global Variables	� GOTOBUTTON _Toc385677260 � PAGEREF _Toc385677260 �63��
PCX Structures	� GOTOBUTTON _Toc385677261 � PAGEREF _Toc385677261 �63��
IsPCX	� GOTOBUTTON _Toc385677262 � PAGEREF _Toc385677262 �63��
GetPCXHeader	� GOTOBUTTON _Toc385677263 � PAGEREF _Toc385677263 �64��
LoadPCX	� GOTOBUTTON _Toc385677264 � PAGEREF _Toc385677264 �64��
LoadPCXPalette	� GOTOBUTTON _Toc385677265 � PAGEREF _Toc385677265 �64��
SavePCX	� GOTOBUTTON _Toc385677266 � PAGEREF _Toc385677266 �65��
Module 13: Picture Functions	� GOTOBUTTON _Toc385677267 � PAGEREF _Toc385677267 �67��
Overview	� GOTOBUTTON _Toc385677268 � PAGEREF _Toc385677268 �67��
Picture Constants	� GOTOBUTTON _Toc385677269 � PAGEREF _Toc385677269 �67��
Picture Global Variables	� GOTOBUTTON _Toc385677270 � PAGEREF _Toc385677270 �67��
Picture Structures	� GOTOBUTTON _Toc385677271 � PAGEREF _Toc385677271 �67��
GetPicInfo	� GOTOBUTTON _Toc385677272 � PAGEREF _Toc385677272 �67��
LoadPalette	� GOTOBUTTON _Toc385677273 � PAGEREF _Toc385677273 �68��
LoadPic	� GOTOBUTTON _Toc385677274 � PAGEREF _Toc385677274 �68��
Module 14: Screen Functions	� GOTOBUTTON _Toc385677275 � PAGEREF _Toc385677275 �69��
Overview	� GOTOBUTTON _Toc385677276 � PAGEREF _Toc385677276 �69��
Principles of Use	� GOTOBUTTON _Toc385677277 � PAGEREF _Toc385677277 �69��
Screen Constants	� GOTOBUTTON _Toc385677278 � PAGEREF _Toc385677278 �70��
Screen Global Variables	� GOTOBUTTON _Toc385677279 � PAGEREF _Toc385677279 �70��
AllocDoubleBuffer	� GOTOBUTTON _Toc385677280 � PAGEREF _Toc385677280 �71��
AllocTripleBuffer	� GOTOBUTTON _Toc385677281 � PAGEREF _Toc385677281 �71��
ClearDirtyRectangle	� GOTOBUTTON _Toc385677282 � PAGEREF _Toc385677282 �72��
CopyRect	� GOTOBUTTON _Toc385677283 � PAGEREF _Toc385677283 �72��
DoubleBuffer	� GOTOBUTTON _Toc385677284 � PAGEREF _Toc385677284 �72��
DoubleBufferRect	� GOTOBUTTON _Toc385677285 � PAGEREF _Toc385677285 �73��
FreeDoubleBuffer	� GOTOBUTTON _Toc385677286 � PAGEREF _Toc385677286 �73��
FreeTripleBuffer	� GOTOBUTTON _Toc385677287 � PAGEREF _Toc385677287 �74��
GetVideoMode	� GOTOBUTTON _Toc385677288 � PAGEREF _Toc385677288 �74��
OverlayBuffer	� GOTOBUTTON _Toc385677289 � PAGEREF _Toc385677289 �74��
RestoreRect	� GOTOBUTTON _Toc385677290 � PAGEREF _Toc385677290 �75��
ScreenFill	� GOTOBUTTON _Toc385677291 � PAGEREF _Toc385677291 �75��
SetClippingArea	� GOTOBUTTON _Toc385677292 � PAGEREF _Toc385677292 �75��
SetVideoMode	� GOTOBUTTON _Toc385677293 � PAGEREF _Toc385677293 �76��
UpdateDirtyRectangle	� GOTOBUTTON _Toc385677294 � PAGEREF _Toc385677294 �76��
WaitVbl	� GOTOBUTTON _Toc385677295 � PAGEREF _Toc385677295 �77��
Module 15: Serial Functions	� GOTOBUTTON _Toc385677296 � PAGEREF _Toc385677296 �79��
Overview	� GOTOBUTTON _Toc385677297 � PAGEREF _Toc385677297 �79��
Serial Constants	� GOTOBUTTON _Toc385677298 � PAGEREF _Toc385677298 �79��
Serial Global Variables	� GOTOBUTTON _Toc385677299 � PAGEREF _Toc385677299 �81��
DialNumber	� GOTOBUTTON _Toc385677300 � PAGEREF _Toc385677300 �81��
DropDTR	� GOTOBUTTON _Toc385677301 � PAGEREF _Toc385677301 �81��
ModemInit	� GOTOBUTTON _Toc385677302 � PAGEREF _Toc385677302 �82��
ModemResult	� GOTOBUTTON _Toc385677303 � PAGEREF _Toc385677303 �82��
SerialClose	� GOTOBUTTON _Toc385677304 � PAGEREF _Toc385677304 �82��
SerialFlush	� GOTOBUTTON _Toc385677305 � PAGEREF _Toc385677305 �82��
SerialOpen	� GOTOBUTTON _Toc385677306 � PAGEREF _Toc385677306 �83��
SerialPrint	� GOTOBUTTON _Toc385677307 � PAGEREF _Toc385677307 �83��
SerialRead	� GOTOBUTTON _Toc385677308 � PAGEREF _Toc385677308 �83��
SerialReady	� GOTOBUTTON _Toc385677309 � PAGEREF _Toc385677309 �84��
Serial Write	� GOTOBUTTON _Toc385677310 � PAGEREF _Toc385677310 �84��
WaitForConnection	� GOTOBUTTON _Toc385677311 � PAGEREF _Toc385677311 �84��
Module 16: Sound Functions	� GOTOBUTTON _Toc385677312 � PAGEREF _Toc385677312 �85��
Overview	� GOTOBUTTON _Toc385677313 � PAGEREF _Toc385677313 �85��
Sound Constants	� GOTOBUTTON _Toc385677314 � PAGEREF _Toc385677314 �85��
Sound Structures	� GOTOBUTTON _Toc385677315 � PAGEREF _Toc385677315 �85��
CloseCuedFile	� GOTOBUTTON _Toc385677316 � PAGEREF _Toc385677316 �86��
CueFurtherSound	� GOTOBUTTON _Toc385677317 � PAGEREF _Toc385677317 �86��
CueSoundfile	� GOTOBUTTON _Toc385677318 � PAGEREF _Toc385677318 �86��
FreeSound	� GOTOBUTTON _Toc385677319 � PAGEREF _Toc385677319 �87��
FreeSoundSystem	� GOTOBUTTON _Toc385677320 � PAGEREF _Toc385677320 �87��
InitSoundSystem	� GOTOBUTTON _Toc385677321 � PAGEREF _Toc385677321 �87��
LoadSound	� GOTOBUTTON _Toc385677322 � PAGEREF _Toc385677322 �88��
PlaySound	� GOTOBUTTON _Toc385677323 � PAGEREF _Toc385677323 �88��
SoundPlaying	� GOTOBUTTON _Toc385677324 � PAGEREF _Toc385677324 �88��
StopSound	� GOTOBUTTON _Toc385677325 � PAGEREF _Toc385677325 �89��
Module 17: Sprite Functions	� GOTOBUTTON _Toc385677326 � PAGEREF _Toc385677326 �91��
Overview	� GOTOBUTTON _Toc385677327 � PAGEREF _Toc385677327 �91��
Sprite Constants	� GOTOBUTTON _Toc385677328 � PAGEREF _Toc385677328 �92��
Sprite Global Variables	� GOTOBUTTON _Toc385677329 � PAGEREF _Toc385677329 �93��
Sprite Structures	� GOTOBUTTON _Toc385677330 � PAGEREF _Toc385677330 �93��
AddBob	� GOTOBUTTON _Toc385677331 � PAGEREF _Toc385677331 �94��
AddSprite	� GOTOBUTTON _Toc385677332 � PAGEREF _Toc385677332 �94��
AllocSpriteBuffer	� GOTOBUTTON _Toc385677333 � PAGEREF _Toc385677333 �94��
AnimateSprite	� GOTOBUTTON _Toc385677334 � PAGEREF _Toc385677334 �95��
BuildTranslationTable	� GOTOBUTTON _Toc385677335 � PAGEREF _Toc385677335 �95��
ClearSpriteBuffer	� GOTOBUTTON _Toc385677336 � PAGEREF _Toc385677336 �96��
CloneSprite	� GOTOBUTTON _Toc385677337 � PAGEREF _Toc385677337 �96��
CloseSpritebank	� GOTOBUTTON _Toc385677338 � PAGEREF _Toc385677338 �96��
DeleteSprite	� GOTOBUTTON _Toc385677339 � PAGEREF _Toc385677339 �97��
DrawBob	� GOTOBUTTON _Toc385677340 � PAGEREF _Toc385677340 �97��
DrawFlippedBob	� GOTOBUTTON _Toc385677341 � PAGEREF _Toc385677341 �97��
DrawFlippedScaledBob	� GOTOBUTTON _Toc385677342 � PAGEREF _Toc385677342 �98��
DrawFlippedScaledSprite	� GOTOBUTTON _Toc385677343 � PAGEREF _Toc385677343 �98��
DrawFlippedScaledSpriteTranslate	� GOTOBUTTON _Toc385677344 � PAGEREF _Toc385677344 �98��
DrawFlippedSprite	� GOTOBUTTON _Toc385677345 � PAGEREF _Toc385677345 �99��
DrawFlippedSpriteTranslate	� GOTOBUTTON _Toc385677346 � PAGEREF _Toc385677346 �99��
DrawScaledBob	� GOTOBUTTON _Toc385677347 � PAGEREF _Toc385677347 �100��
DrawScaledSprite	� GOTOBUTTON _Toc385677348 � PAGEREF _Toc385677348 �100��
DrawScaledSpriteTranslate	� GOTOBUTTON _Toc385677349 � PAGEREF _Toc385677349 �100��
DrawSprite	� GOTOBUTTON _Toc385677350 � PAGEREF _Toc385677350 �101��
DrawSpriteTranslate	� GOTOBUTTON _Toc385677351 � PAGEREF _Toc385677351 �101��
FreeSpriteBuffer	� GOTOBUTTON _Toc385677352 � PAGEREF _Toc385677352 �101��
GetSpritePos	� GOTOBUTTON _Toc385677353 � PAGEREF _Toc385677353 �102��
LoadSpritebankPalette	� GOTOBUTTON _Toc385677354 � PAGEREF _Toc385677354 �102��
LoadSprite	� GOTOBUTTON _Toc385677355 � PAGEREF _Toc385677355 �102��
OpenSpritebank	� GOTOBUTTON _Toc385677356 � PAGEREF _Toc385677356 �102��
RemapSprite	� GOTOBUTTON _Toc385677357 � PAGEREF _Toc385677357 �103��
StillSprite	� GOTOBUTTON _Toc385677358 � PAGEREF _Toc385677358 �103��
UpdateSprite	� GOTOBUTTON _Toc385677359 � PAGEREF _Toc385677359 �103��
Module 18: Text Functions	� GOTOBUTTON _Toc385677360 � PAGEREF _Toc385677360 �105��
Text Constants	� GOTOBUTTON _Toc385677361 � PAGEREF _Toc385677361 �105��
Text Global Variables	� GOTOBUTTON _Toc385677362 � PAGEREF _Toc385677362 �105��
Text Structures	� GOTOBUTTON _Toc385677363 � PAGEREF _Toc385677363 �105��
GetText	� GOTOBUTTON _Toc385677364 � PAGEREF _Toc385677364 �105��
GetTextDefault	� GOTOBUTTON _Toc385677365 � PAGEREF _Toc385677365 �106��
Text	� GOTOBUTTON _Toc385677366 � PAGEREF _Toc385677366 �106��
Module 19: TGA Functions	� GOTOBUTTON _Toc385677367 � PAGEREF _Toc385677367 �107��
Overview	� GOTOBUTTON _Toc385677368 � PAGEREF _Toc385677368 �107��
TGA Global Variables	� GOTOBUTTON _Toc385677369 � PAGEREF _Toc385677369 �107��
TGA Structures	� GOTOBUTTON _Toc385677370 � PAGEREF _Toc385677370 �107��
IsTGA	� GOTOBUTTON _Toc385677371 � PAGEREF _Toc385677371 �107��
GetTGAHeader	� GOTOBUTTON _Toc385677372 � PAGEREF _Toc385677372 �107��
LoadTGA	� GOTOBUTTON _Toc385677373 � PAGEREF _Toc385677373 �108��
LoadTGAPalette	� GOTOBUTTON _Toc385677374 � PAGEREF _Toc385677374 �108��
SaveTGA	� GOTOBUTTON _Toc385677375 � PAGEREF _Toc385677375 �108��
Module 20: Time Functions	� GOTOBUTTON _Toc385677376 � PAGEREF _Toc385677376 �111��
Overview	� GOTOBUTTON _Toc385677377 � PAGEREF _Toc385677377 �111��
Time Constants	� GOTOBUTTON _Toc385677378 � PAGEREF _Toc385677378 �111��
Time Global Variables	� GOTOBUTTON _Toc385677379 � PAGEREF _Toc385677379 �111��
ChangeTimer	� GOTOBUTTON _Toc385677380 � PAGEREF _Toc385677380 �111��
GameTimer	� GOTOBUTTON _Toc385677381 � PAGEREF _Toc385677381 �112��
InitFPS	� GOTOBUTTON _Toc385677382 � PAGEREF _Toc385677382 �112��
OldTimer	� GOTOBUTTON _Toc385677383 � PAGEREF _Toc385677383 �112��
PaceFLI	� GOTOBUTTON _Toc385677384 � PAGEREF _Toc385677384 �112��
PaceMainLoop	� GOTOBUTTON _Toc385677385 � PAGEREF _Toc385677385 �113��
ReportFPS	� GOTOBUTTON _Toc385677386 � PAGEREF _Toc385677386 �113��
SetFLISpeed	� GOTOBUTTON _Toc385677387 � PAGEREF _Toc385677387 �113��
SetMainloopSpeed	� GOTOBUTTON _Toc385677388 � PAGEREF _Toc385677388 �114��
Module 21: VESA Functions	� GOTOBUTTON _Toc385677389 � PAGEREF _Toc385677389 �115��
Overview	� GOTOBUTTON _Toc385677390 � PAGEREF _Toc385677390 �115��
VESA Constants	� GOTOBUTTON _Toc385677391 � PAGEREF _Toc385677391 �115��
Vesa Global Variables	� GOTOBUTTON _Toc385677392 � PAGEREF _Toc385677392 �115��
VESA Structures	� GOTOBUTTON _Toc385677393 � PAGEREF _Toc385677393 �116��
CheckVesa	� GOTOBUTTON _Toc385677394 � PAGEREF _Toc385677394 �117��
FindBestVesaMode	� GOTOBUTTON _Toc385677395 � PAGEREF _Toc385677395 �117��
FindVesaMode	� GOTOBUTTON _Toc385677396 � PAGEREF _Toc385677396 �118��
FreeVesa	� GOTOBUTTON _Toc385677397 � PAGEREF _Toc385677397 �118��
GetVesaModeInfo	� GOTOBUTTON _Toc385677398 � PAGEREF _Toc385677398 �119��
SetDisplayStart	� GOTOBUTTON _Toc385677399 � PAGEREF _Toc385677399 �119��
SetVesaMode	� GOTOBUTTON _Toc385677400 � PAGEREF _Toc385677400 �119��
SetVesaPage	� GOTOBUTTON _Toc385677401 � PAGEREF _Toc385677401 �120��
VesaDoubleBuffer	� GOTOBUTTON _Toc385677402 � PAGEREF _Toc385677402 �120��
VesaDoubleBufferRect	� GOTOBUTTON _Toc385677403 � PAGEREF _Toc385677403 �120��
VesaDoubleBufferInterlaced	� GOTOBUTTON _Toc385677404 � PAGEREF _Toc385677404 �121��
Module 23: VLib Functions	� GOTOBUTTON _Toc385677405 � PAGEREF _Toc385677405 �123��
Overview	� GOTOBUTTON _Toc385677406 � PAGEREF _Toc385677406 �123��
VLib Constants	� GOTOBUTTON _Toc385677407 � PAGEREF _Toc385677407 �123��
VLib Global Variables	� GOTOBUTTON _Toc385677408 � PAGEREF _Toc385677408 �123��
InitVLib	� GOTOBUTTON _Toc385677409 � PAGEREF _Toc385677409 �123��
FreeVLib	� GOTOBUTTON _Toc385677410 � PAGEREF _Toc385677410 �124��
Module 24: Wave Functions	� GOTOBUTTON _Toc385677411 � PAGEREF _Toc385677411 �125��
Overview	� GOTOBUTTON _Toc385677412 � PAGEREF _Toc385677412 �125��
Wave Global Variables	� GOTOBUTTON _Toc385677413 � PAGEREF _Toc385677413 �125��
Wave Structures	� GOTOBUTTON _Toc385677414 � PAGEREF _Toc385677414 �125��
GetWAVHeader	� GOTOBUTTON _Toc385677415 � PAGEREF _Toc385677415 �125��
IsWAV	� GOTOBUTTON _Toc385677416 � PAGEREF _Toc385677416 �126��
LoadWAV	� GOTOBUTTON _Toc385677417 � PAGEREF _Toc385677417 �126��
Spritebank Editor	� GOTOBUTTON _Toc385677418 � PAGEREF _Toc385677418 �129��
Overview	� GOTOBUTTON _Toc385677419 � PAGEREF _Toc385677419 �129��
Spritebank Editor Main Screen	� GOTOBUTTON _Toc385677420 � PAGEREF _Toc385677420 �129��
Main Menu	� GOTOBUTTON _Toc385677421 � PAGEREF _Toc385677421 �130��
New Bank	� GOTOBUTTON _Toc385677422 � PAGEREF _Toc385677422 �130��
Load Bank	� GOTOBUTTON _Toc385677423 � PAGEREF _Toc385677423 �130��
Save Bank	� GOTOBUTTON _Toc385677424 � PAGEREF _Toc385677424 �130��
Cut (Sprite)	� GOTOBUTTON _Toc385677425 � PAGEREF _Toc385677425 �130��
Copy (Sprite)	� GOTOBUTTON _Toc385677426 � PAGEREF _Toc385677426 �131��
Paste (Sprite)	� GOTOBUTTON _Toc385677427 � PAGEREF _Toc385677427 �131��
Add Sprite	� GOTOBUTTON _Toc385677428 � PAGEREF _Toc385677428 �131��
Write to PCX	� GOTOBUTTON _Toc385677429 � PAGEREF _Toc385677429 �132��
Palette Menu	� GOTOBUTTON _Toc385677430 � PAGEREF _Toc385677430 �132��
Load Palette	� GOTOBUTTON _Toc385677431 � PAGEREF _Toc385677431 �132��
Save Palette	� GOTOBUTTON _Toc385677432 � PAGEREF _Toc385677432 �132��
Default Palette	� GOTOBUTTON _Toc385677433 � PAGEREF _Toc385677433 �132��
Restore Palette	� GOTOBUTTON _Toc385677434 � PAGEREF _Toc385677434 �132��
Remap Sprites	� GOTOBUTTON _Toc385677435 � PAGEREF _Toc385677435 �133��
Hotspot Menu	� GOTOBUTTON _Toc385677436 � PAGEREF _Toc385677436 �133��
Increase X	� GOTOBUTTON _Toc385677437 � PAGEREF _Toc385677437 �133��
Increase Y	� GOTOBUTTON _Toc385677438 � PAGEREF _Toc385677438 �133��
Input X/Y	� GOTOBUTTON _Toc385677439 � PAGEREF _Toc385677439 �133��
Decrease X	� GOTOBUTTON _Toc385677440 � PAGEREF _Toc385677440 �133��
Decrease X	� GOTOBUTTON _Toc385677441 � PAGEREF _Toc385677441 �133��
Use Image	� GOTOBUTTON _Toc385677442 � PAGEREF _Toc385677442 �133��
Frames	� GOTOBUTTON _Toc385677443 � PAGEREF _Toc385677443 �134��
Frame	� GOTOBUTTON _Toc385677444 � PAGEREF _Toc385677444 �134��
Not Frame	� GOTOBUTTON _Toc385677445 � PAGEREF _Toc385677445 �134��
Set FPS	� GOTOBUTTON _Toc385677446 � PAGEREF _Toc385677446 �134��
Looping	� GOTOBUTTON _Toc385677447 � PAGEREF _Toc385677447 �135��
Ping-Pong	� GOTOBUTTON _Toc385677448 � PAGEREF _Toc385677448 �135��
One-Shot	� GOTOBUTTON _Toc385677449 � PAGEREF _Toc385677449 �135��
Auto Change	� GOTOBUTTON _Toc385677450 � PAGEREF _Toc385677450 �135��
Set Movement	� GOTOBUTTON _Toc385677451 � PAGEREF _Toc385677451 �135��
Effects	� GOTOBUTTON _Toc385677452 � PAGEREF _Toc385677452 �135��
Transparent	� GOTOBUTTON _Toc385677453 � PAGEREF _Toc385677453 �135��
Light	� GOTOBUTTON _Toc385677454 � PAGEREF _Toc385677454 �136��
Shadow	� GOTOBUTTON _Toc385677455 � PAGEREF _Toc385677455 �136��
Mono Shadow	� GOTOBUTTON _Toc385677456 � PAGEREF _Toc385677456 �136��
Quit	� GOTOBUTTON _Toc385677457 � PAGEREF _Toc385677457 �136��
Common	� GOTOBUTTON _Toc385677458 � PAGEREF _Toc385677458 �137��
Overview	� GOTOBUTTON _Toc385677459 � PAGEREF _Toc385677459 �137��
WAV2RAW	� GOTOBUTTON _Toc385677460 � PAGEREF _Toc385677460 �139��
Overview	� GOTOBUTTON _Toc385677461 � PAGEREF _Toc385677461 �139��
Black	� GOTOBUTTON _Toc385677462 � PAGEREF _Toc385677462 �141��
Overview	� GOTOBUTTON _Toc385677463 � PAGEREF _Toc385677463 �141��
Example Programs	� GOTOBUTTON _Toc385677464 � PAGEREF _Toc385677464 �143��
Overview	� GOTOBUTTON _Toc385677465 � PAGEREF _Toc385677465 �143��
BMP - Skull	� GOTOBUTTON _Toc385677466 � PAGEREF _Toc385677466 �143��
Buttons - Buttons	� GOTOBUTTON _Toc385677467 � PAGEREF _Toc385677467 �143��
Flic - PlayFLC	� GOTOBUTTON _Toc385677468 � PAGEREF _Toc385677468 �143��
Joy - Joy	� GOTOBUTTON _Toc385677469 � PAGEREF _Toc385677469 �143��
Paralax - Paralax	� GOTOBUTTON _Toc385677470 � PAGEREF _Toc385677470 �144��
PCX - PCX2TGA	� GOTOBUTTON _Toc385677471 � PAGEREF _Toc385677471 �144��
Setup - Setup	� GOTOBUTTON _Toc385677472 � PAGEREF _Toc385677472 �144��
�
�License Agreement
By using the Vlib software development library you agree to abide by the following license terms and conditions. If you do not agree with any term or condition please remove this software package from your computer system immediately.

Software Product License
The Vlib software development library is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. This software product is licensed, not sold.

1. Grant of License
You may install this software product on all computers that you feel are required to complete the project that you are working on, including both individual and networked systems. These systems must, however, lie in geographic proximity to one another so that you cannot install the software on machines in two different cities.
If you wish to further distribute the evaluation version of this software product, please distribute only the original archive in its entirety and unmodified. You may NOT distribute the registered version of this product excepting as directed under the above clause.
If you wish to further distribute the evaluation version of this software product, you may not charge any fees for the product itself, merely the costs of the media it will be found on and a minor charge for copying time (not to exceed a total cost of $5US per disk or $10 for distribution on CD).
Description of Other Rights and Limitations
You may not reverse engineer, decompile, or dissassemble the Vlib software development library or any included examples or utilities, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.
The Vlib software development library, its examples, and utilities are licensed as a single component. Its component parts may not be separated.
You may not rent or lease this software. You may, at your own discretion, rent or lease software that has this library linked to it if no further documentation, examples, utilities or code from this distribution accompanies your product.
If you wish to terminate this end user license agreement, simply remove the Vlib software development system from your computer.
Without prejudice to any other rights, Bifrost Creations may terminate this end user license agreement if you fail to comply with the terms and conditions of this end user license agreement. In such an event, you must destroy all copies of the Vlib software development library and all of its component parts. As well, any software you have created which has components of the Vlib software development library linked to it must be destroyed.

Limited Warranty
Bifrost Creations warrant that (a) the Vlib software development library will perform substantially in accordance with this accompanying written material in the context of software development only. Bifrost Creations makes no express or implied warrantee regarding the fitness of the Vlib software development library, its examples or its utilities in any software which uses the library or its component parts. Notification of any limitations of the library does not imply that Bifrost Creations will, in any way, undertake to resolve said limitations.

Customer Remedies
Bifrost Creations entire liability and your exclusive remedy shall be, at Bifrost Creations’ option, either (a) return of the purchase price paid to Bifrost Creations for the library, or (b) repair or replacement of the Vlib software development library.

No Other Warranties
To the maximum extent permitted by applicable law, Bifrost Creations disclaim all other warranties, either express or implied, including, but not limited to implied warranties of merchantability and fitness for a particular purpose, with regard to the Vlib software development library and the accompanying materials.

No Liability for Consequential Damages
To the maximum extent permitted by applicable law, in no event shall Bifrost Creations be liable for any damages whatsoever (including without limitation, direct or indirect damages for personal injury, loss of business profits, business interruption, loss of business information, or any other pecuniary loss) arising out of the use of or inability to use this product, even if Bifrost Creations has been advised of the possibility of such damages. In any case, Bifrost Creations entire liability under any provision of this agreement shall be limited to the amount actually paid by you for the Vlib software development library. Because some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

This software license agreement is governed by the laws of the Province of Alberta, Canada.

Registration of the VLib SDK
If you wish to sell a software package using the VLib library functions, you MUST register the library. Upon registration you will be sent a registered copy of the library which will not display a text announcement / banner at startup. The library may then be used to produce as many applications as you wish with no further payment owed for selling those applications. The cost of registering the VLib SDK is $79.95 (US) plus shipping and handling. Payment may be in the form of a cheque drawn on a Canadian financial institution for an amount equal to the current conversion rate; an international money order/travellers cheque in the appropriate amount; or a cheque drawn on a foreign bank with a $25 surchange for the bank’s processing fee.

Shipping to Canada		$10.00
Shipping to U.S.A.		$15.00
Shipping overseas		$25.00

Contacting Bifrost Creations
Bifrost Creations may be contacted by mail at:

	Bifrost Creations (Canada)
	Suite 203, 620 15 Ave S.W.
	Calgary, Alberta, Canada
	T2R 0R5

By email:

	devanden@acs.ucalgary.ca

or check out our webpage at:

	http://www.geocities.com/SiliconValley/6458/

NOTE: If you use the Vlib graphics library, please contact Bifrost Creations so that you can be informed directly and immediately about updates.

About the Manual
This manual is serves to provide an overview of each of the functions in the Vlib graphics library. The library is organized into modules of functions; those modules being detailed in alphabetical order. The functions are grouped into modules according to their operation, thus all sprite related functions are described under the heading Sprite Functions. The example programs for each module are by no means robust, rather they serve as a brief illustration of the functions in that module. Further hints and examples may be found in the sample programs of related functions. How errors are communicated by each function is explained in the section detailing that function. The example programs are lazy and neglect proper error checking for most functions. For example, the following code should be used to in your application for using the SetVideoMode() function:

if(SetVideoMode(VGA256) == FALSE)
	return;

In an example program, however, you will find:

SetVideoMode(VGA256);

This is not an endorsement of this method of programming. In utilizing the library, however, please use error checking whenever you expect that a function has a chance of failing. We excluded error checking from the example programs so that you get a clear view of the necessary steps to perform a given function and to increase the readability of the code.

You should start by reading this introductory section of the manual. Follow this by reading the reference sections for the VLib module, Screen module, VESA module and Sprite module. This will give you a good overview of the most important aspects of the library. Skimming the other reference modules will give you an overview of the whole library.

Overview of the Vlib Library
The Vlib software development library is a set of functions for use with Watcom C 10.0 (or higher) which render various types of graphics (text, lines, boxes, sprites, etc.) to a background buffer (termed the double_buffer) and then quickly transfers the contents of the background buffer to either a low or hires display in a single command. This method excels at providing high performance when changing large portions of the screen on older computers. On newer computers this method may not be required. Please see notes on direct screen access in the section covering Screen Functions for generating lightning fast code for new computer systems. In addition to graphics rendering, the Vlib library offers functions for reading FLC and FLI animations, handling mouse, joystick, and keyboard input, 46 channel sound routines which will utilize any soundblaster compatible sound card, the loading of WAV sound files, and loading/saving various picture formats.

Using The Library
Installation
Place the VLib distribution disk in drive A:, log onto that drive and type

INSTALL

and press the enter key. This will install the VLib software and examples on drive C: in the VLIB directory. In addition, it will install the library and include file in the Watcom directory.
Basics
The examples found for each module give you an excellent overview of using the Vlib graphics library. In each code file it is imperative that vlib.h� XE "vlib.h" � file is included somewhere near the beginning of the file. Important structures, defines and prototypes are found within the vlib.h file. If you separate your project into several files (one for the main loop, one for functions (routines) and one for data for instance), use the following statement at the beginning of each file:

#include <vlib.h� XE "vlib.h" �>
Resources
One important principle to keep in mind when using this library is that of resource allocation and management. You have all memory entirely at your disposal. Repeated malloc and free commands will fragment memory, however, making it less likely that you are able to allocate a large block when needed. You should try to allocate all required blocks of memory at the beginning of your program, anticipating your maximum requirements ahead of time (for the double buffer, file buffers, sprite buffer, etc.). You may free and re-allocate memory on the fly; in fact a few of the routines in the library do so, but try to keep this practice to a minimum.
Error Checking and Bugs
Error checking has been kept to a minimum with many commands, often to maintain speed. Refer to the description of a function to determine any limitations of the function and restrictions on supplied input to the function. Also, any known bugs will be reported in the overview.
Global Variables
There are many global variables used in the library. Globals are listed and explained in the documentation for the module they are defined in. For instance, information of the global variable screen_width may be found in the Screen Functions section of this documentation. You may freely read the data held in these variables but changing these variables will have unpredictable, often disastrous results! Global variables were intended for tracking various data within the functions themselves so don’t mess with them!
Compiling and Linking
Compiling and linking� XE "linking" � is fairly straight forward using the vlib graphics library. First, use wcc386 to compile each of your source file (you should specify register calling conventions when compiling - /4r or /5r depending on if you have a 486 or pentium processor). You must use the /zu option or the library will fail to function properly and should use the /wx /we options to resolve unnecessary or incorrect code sections. As well, you may compile using the /d2 option to include full debuging information. An example of compiling� XE "compiling" � for a 486 computer is:

wcc386 /d2 /wx /we /zu /4r mainloop.c
wcc386 /d2 /wx /we /zu /4r routines.c

In order to create an executable with the vlib functions present, it is necessary to link the object file with the library. Use wlink to facilitate this. An example using the proceeding sources would be:

wlink DEBUG ALL f mainloop f routines l vlib.lib n game.exe

The DEBUG ALL is optional of course. It merely includes full debugging information in your executable. The F options indicate program files to link. The L option includes the Vlib library functions and the N option names your final executable. Consult the Watcom manuals for more detailed explanations on linking� XE "linking" � and managing a project.
Vlib.h Constants
There are some constants defined within the vlib.h file to help you maintain some consistency with the library. The first three definitions are TRUE, FALSE and NULL. Following are typedefs for various types that are used in the prototypes of the Vlib library functions and are listed here for clarity.

// These are just some basic defines
#define TRUE	1
#define FALSE	0
#define NULL	0

// These extract color information from a standard palette
// pal = pointer to the palette data, o = the offset
#define RED(pal,o) (pal)[(o)*3+0]
#define GREEN(pal,o) (pal)[(o)*3+1]
#define BLUE(pal,o) (pal)[(o)*3+2]

// Reads a complete RGB value from the palette data
#define GETRGB(map, x) ((*(map + x * 3) << 16) | (*(map + 1 + x * 3) << 8) | *(map + 2 + x * 3))

#define SQUARE(x) ((x) * (x))

// Extract the low byte from a word
#define LOBYTE(value) (unsigned char)((value) & 0x00FF)
// Extract the high byte from a word
#define HIBYTE(value) (unsigned char)((value) >> 8)

// Defines for the prototypes
typedef unsigned char UBYTE;
typedef signed char BYTE;
typedef unsigned short int UWORD;
typedef short int WORD;
typedef unsigned int ULONG;
typedef int LONG;
typedef char BOOL;
typedef unsigned int FIXED;
typedef float FLOAT;
�[this page left intentionally blank]
�Module 1: BMP Module Functions
Overview
Functions in the BMP module deal with the loading and saving of Windows .BMP graphic files. Only uncompressed 8 bit (256 color) bitmaps are supported at this time.
BMP Constants
#define BI_RGB 0		Indicates uncompressed bitmap
#define BI_RLE8 1	Indicates a compressed, 256 color bitmap
BMP Global Variables
BMPHeader bmp_headeP 	Structure which holds the .BMP file header information
BMP Structures
BMPFileHeader {
 WORD type;		// MUST be 0x4d42 for .BMP files
 ULONG size;		// Total file size
 WORD reserved1;
 WORD reserved2;
 ULONG offbits;	// Offset to bitmap data
}

BMPInfo {
 ULONG size;		// Size of this header (40)
 LONG width;	// Width of bitmap
 LONG height;	// Height of bitmap
 WORD planes;	// Number of EGA planes
 WORD bitcount;	// Number of bits per pixel
 ULONG compression;	// Flag indicating compression
 ULONG sizeimage;		// Size of bitmap data
 LONG xpelspermeter;	// Width DPI
 LONG ypelspermeter;	// Height DPI
 ULONG clrsused;		// Number of colors used
 ULONG clrsimportant;	// Num. of colors important
}

BMPHeader {
 BMPFileHeader	bmpfh;
 BMPInfo		bmpih;
}

GetBMPHeader
This loads the header of a Windows .BMP file into the global BMP file header and into an optional file header that you specify.
Prototype
BOOL = GetBMPHeader(UBYTE *filename, BMPHeader *header);
Input
UBYTE *filename = a pointer to a filename
BMPHeader *header = an optional pointer to a valid BMP file header or NULL if this parameter should be ignored
Return
TRUE if the header was loaded, FALSE if there was a problem. Failure is usually because of the specified file name not existing, but could be a disk error as well.
IsBMP
Determines whether a given file is or is not a Windows .BMP file
Prototype
BOOL IsBMP(UBYTE *filename);
Input
UBYTE *filename = The filename of the file to make the determination on
Return
TRUE if the file is indeed a Windows .BMP file, FALSE if there was a problem reading or finding the file or if it is not a .BMP file.
LoadBMP
Loads a .BMP file into the specified buffer. Optionally, the palette of the picture will be loaded into the specified palette buffer. This function only handles 8 bit per pixel (ie 256 color) uncompressed bitmaps. As well, there is no bounds checking done on the size of either the bitmap or palette buffers so be sure that both buffers are of sufficient size before loading (the palette buffer should be PALETTE_SIZE bytes in size).
Prototype
BOOL = LoadBMP(UBYTE *filename, UBYTE *body_buffer, UBYTE *colormap);
Input
UBYTE *filename = A pointer to the filename of the file to load
UBYTE *body_buffer = A pointer to the buffer into which the bitmap data will be loaded
UBYTE *colormap = An optional pointer to a buffer into which the palette data will be loaded.
Return
TRUE if the file was successfully loaded, otherwise FALSE.
LoadBMPPalette
Loads the palette of the specified .BMP file.
Prototype
BOOL LoadBMPPalette(UBYTE *filename, UBYTE *colormap);
Input
UBYTE *filename = A pointer to the filename of the file to load the palette from
Return
TRUE if the palette was loaded, otherwise FALSE.
SaveBMP
Saves the specified bitmap and palette buffers out as an uncompressed .BMP file. This function only saves 8 bit per pixel (256 color) bitmaps.
Prototype
BOOL SaveBMP(UBYTE *filename, UBYTE *buffer, UWORD width, UWORD height, UBYTE *colormap);
Input
UBYTE *filename = A pointer to the filename to save the picture as
UBYTE *buffer = A pointer to the 8 bit/pixel bitmap data for the picture
UWORD width = The width of the picture in pixels
UWORD height = The number of pixels tall the picture is
UBYTE *colormap = A pointer to the palette for the picture
Return
TRUE is the picture was saved successfully, otherwise FALSE.
�[this page left intentionally blank]�Module 2: Button Functions
Overview
This module contains functions which draw and manage a collection of buttons. Buttons are available in a variety of styles and the library automatically renders them in several different states. A user may determine button “hits” with a single function call. The number of buttons that can be initialized and monitored by the library is limited only by available memory. Responsibility for removing buttons from the monitoring list and removing button imagery from the screen lies with the application. Buttons can be either push buttons or proportional sliders that “represent” a list of data.
Boolean Buttons
These are typical buttons. They have their action type set to popup. Alternately, if you want the button to respond only when the mouse button is released over it, set the hitonrelease action type as well.
Toggle Buttons
These buttons toggle between looking pressed down and looking raised when they are clicked on. They have their action type set to toggle. Alternately, if you want the button to respond only when the mouse button is released over it, set the hitonrelease action type as well. You may determine the state of the button by examining the down bit in the flag field of the button.
Slider Buttons
These are by far the most complex form of button. A button of the type slider will actually be slider bar inside of the specified button. The bar of the slider will be proportionally tall or wide according to how many data elements it represents out of an entire list. For instance, if the slider represents 12 elements in a list of 53 elements, the slider bar will be draw about 22% of the total button size (53 elements divided by 12 elements), to a minimum of the size specified in the slider structure. Users may either click on the slider bar and move it or click in the empty space beside the slider bar to “step up/down”. The orientation of the slider (left/right or up/down) is automatically determined based on the size of the button with wide sliders being oriented left to right and tall sliders being oriented up and down.
Button Constants

// Flags indicating the actions a button will take
BUTTON_ACTION_POPUP 1	 Popup after being hit
BUTTON_ACTION_TOGGLE 2	Toggle between being down and being up
BUTTON_ACTION_HITONRELEASE 4	This button will only report being hit when the mouse button is released over it

// These flags indicate the style that the border
// surrounding button should be rendered in
BUTTON_STYLE_RECTANGLE 0	Rectangle
BUTTON_STYLE_SMOOTH 1	Rectangle with one pixel removed from each corner
BUTTON_STYLE_ROUND 2	Rounded corners
BUTTON_STYLE_OVAL 3	Oval shaped sides
BUTTON_STYLE_MASK 0x03	This value will mask other style bits from the border style bits
// These flags indicate where text is positioned
BUTTON_STYLE_TEXTINSIDE 0	Inside the button
BUTTON_STYLE_TEXTLEFT 4	To the left of the button
BUTTON_STYLE_TEXTRIGHT 5	To the right
BUTTON_STYLE_TEXTABOVE 6	Above the button
BUTTON_STYLE_TEXTBELOW 7	Below the button
BUTTON_STYLE_TEXTMASK 0x07	This value will mast over style bits from the text style bits

BUTTON_STYLE_IMAGE 8	This is not implemented
BUTTON_STYLE_OUTLINE 16	Renders a black outline around the border of the button
BUTTON_STYLE_BORDERHI 32	This renders an additional border around the button which looks raised
BUTTON_STYLE_BORDERLO 64	This renders an additional border around the button which looks inset
BUTTON_STYLE_BORDERLESS 128	This is not implemented

//-- Flags for the type of button

BUTTON_TYPE_BOOLEAN 1	A normal push button
BUTTON_TYPE_SLIDER 2	A slider bar
BUTTON_TYPE_TOGGLE 4	A button that toggles

//-- The styles that a button may be draw in
BUTTON_STATE_NORMAL 0	This is the normal state that the button rests in
BUTTON_STATE_OVER 1	This is when the mouse pointer is over the button
BUTTON_STATE_HIT 2	This is when the mouse is clicked over the button

BUTTON_FLAG_COLORED 1	A flag indicating whether or not the button colors have been found within the current palette
BUTTON_FLAG_DOWN 2	This flag will be set if a toggle button is currently being rendered to look pressed in
Button Global Variables
Button *first_hit	A pointer to the the first button in the list of those being monitored
Button *last_hit	A pointer to the structure of the last button that was hit
UBYTE mousebuttonstatus	The status of mouse buttons the
				last time that CheckButtons() was
				called
UBYTE mousebuttonprev	The previous status of mouse buttons
				from CheckButtons()
UWORD lastmousex		The x coordinate of the mouse
pointer the last time CheckButtons()
was called
UWORD lastmousey		The y coordinate of the mouse
				pointer from CheckButtons()
Button Structures
All colors in the ButtonColors structure should be in standard RGB format where the red byte is found in bits 16-23, the green byte in bits 8-15 and the blue byte in bits 0-7 (thus 0x00RRGGBB)

ButtonColors {
 ULONG text;		 Text color in state NORMAL button
 ULONG button;	 Button color for NORMAL button
 ULONG hilight;	 Border hilight color for NORMAL
 ULONG shadow;	 Border shadow color for NORMAL
 ULONG textover;	 Text color in state OVER
 ULONG buttonover;	 Button color for OVER
 ULONG hilightover; Border hilight color for OVER
 ULONG shadowover;	 Border shadow color for OVER
 ULONG texthit;	 Text color in state HIT
 ULONG buttonhit;	 Button color in state HIT
 ULONG hilighthit;	 Border hilight color when HIT
 ULONG shadowhit;	 Border shadow color when HIT
 ULONG outlineback; Color background inside the outline
}

This structure is normally initialized for the user by the ColorButton() function. It is a table of palette offsets corresponding to the closest color match of the corresponding ButtonColors structure

ButtonClrMap {
 UBYTE text;
 UBYTE button;
 UBYTE hilight;
 UBYTE shadow;
 UBYTE textover;
 UBYTE buttonover;
 UBYTE hilightover;
 UBYTE shadowover;
 UBYTE texthit;
 UBYTE buttonhit;
 UBYTE hilighthit;
 UBYTE shadowhit;
 UBYTE outlineback;
}

The following is a structure required for each slider button

Slider {
 UWORD numentries;	Current number of entries that the slider bar represents (i.e. if the bar represents 5 our of a list of 30 maximum entries, the bar will be sized to 1/6th the size of the slider)
 UWORD currentry;	Current entry that the position of the bar represents
 UWORD maxentries;	Maximum number of entries in the list
 UWORD slideroffset;	Current offset of the slider bar from the left side of button
 UWORD minslidersize;	Minimum width of the slider bar
}

typedef struct Button {
 UWORD x;		X position of button
 UWORD y;		Y position of button
 UWORD width;		Width of button
 UWORD height;	Height of button
 Bitmap *bitmapsrc;	Not used
 Bitmap *bitmapdest;	Not used
 ButtonColors *colors;	Ptr to ButtonColors
 ButtonClrMap *clrmap;	Ptr to ButtonClrMap
 UBYTE flags;		Button flags -see constants
 UBYTE action;	Action when hit
 UBYTE style;		Style rendered in
 UBYTE type;		Type of button
 UBYTE borderwidth;	Width of the border outside the outline
 UBYTE borderheight;	Height of the border outside of the outline
 LONG id;		Id number for the button
 UBYTE *text;		Ptr to button text
 void *next;		Used internally
 void *prev;		Used internally
 Slider *slider;	Pointer to optional slider structure
} Button;
AddButton
This function adds the button to the list of buttons that will be monitored by the library. Additionally, it finds the closest colors in the present palette to match the desired colors for the buttons. Finally, it renders the button in its normal state.
Prototype
BOOL = AddButton� XE "AllocDoubleBuffer" �(Button newbutton);
Inputs
Button newbutton = pointer to the button structure to be added.
Returns
TRUE if all went well, the button was added to the list and rendered properly, otherwise FALSE.
Check Buttons
This function monitors the position of the mouse and renders buttons appropriate to users actions. If the mouse is over a button, the button is rendered in the over state. If the mouse button is clicked on, it is rendered in the hit state. The function returns the pointer to the button that was clicked on or 0 if no button was clicked upon.
Prototype
Button * CheckButtons(void)
Inputs
none
Returns
The pointer to the button clicked on or 0 if no button was clicked on.
ColorButton
This function sets the palette register entry table ButtonClrMap based on the supplied table of colors (ButtonColors). If no colormap is specified, the current palette is used. This function is normally an internal function, called from the AddButton routine.
Prototype
void ColorButton(Button *button, UBYTE *cmap)
Inputs
Button *button = pointer to the button to be remapped
UBYTE *cmap = the colormap to remap the colors to. If 0 the current colormap is used.
Returns
nothing
DrawButton
This function draws the specified button in the specified style. This function does not add the button to the list of monitored buttons. You must call AddButton() to add the button on to the list and then use DrawButton() if you need to rerender the button.
Prototype
BOOL DrawButton(Button *newbutton, UBYTE style)
Inputs
Button *newbutton = pointer to the button to be drawn
UBYTE style = style to be drawn in:
BUTTON_STATE_NORMAL Normal state
BUTTON_STATE_OVER Mouse pointer is over the button
BUTTON_STATE_HIT Mouse pointer has clicked the button
Returns
TRUE if all went well, FALSE otherwise.
RemoveButton
This function removes the specified button from the list of buttons to be monitored by the CheckButtons() function.
Prototype
void RemoveButton(LONG id)
Inputs
LONG id = I.D. number of the button to be removed
Returns
nothing
SetSliderEntry
This function calculates to appropriate current entry value for the slider structure based on the offset value in the slider structure. This function must be called if you manually set the currentry field of the slider structure.
Prototype
void SetSliderEntry(Button *slider)
Inputs
Button *slider = pointer to the slider structure to modify
Returns
nothing
SetSliderOffset
This function calculates the appropriate offset value for the slider structure based on the currentry value in the structure. This function must be called if you manually set the offset field of the slider structure.
Prototype
void SetSliderOffset(Button *slider)
Inputs
Button *slider = pointer to the slider structure to modify
Returns
nothing
�[this page left intentionally blank]
�Module : DOS Functions
Overview
This module contains functions which will manage all functions dealing with DOS / file handling. Right now the module is very limited, but its scope may be expanded to include simple file requesters.
DOS Constants
These constants are used to refer to the type of error returned by BIOS functions for DOS erros.
DOSERR_NONE 0
DOSERR_FILENOTFOUND 1
DOSERR_CREATEERROR 2
DOSERR_READERROR 3
DOSERR_WRITEERROR 4
DOSERR_SEEKERROR 5
DOSERR_PATHNOTFOUND 6
DOSERR_NOHANDLES 7
DOSERR_ACCESSDENIED 8
DOSERR_INVALIDHANDLE 9
DOSERR_NOMEMORY 10
DOSERR_BADACCESS 11
DOSERR_INVALIDDATA 12
DOSERR_INVALIDDRIVE 13
DOSERR_NOMOREFILES 14
DOSERR_WRITEPROTECTED 15
DOSERR_DRIVENOTREADY 16
DOSERR_DISKSEEKERROR 17
DOSERR_SECTORNOTFOUND 18
DOSERR_SHARINGVIOLATION 19
DOSERR_HANDLEEOF 20
DOSERR_DISKFULL 21
DOSERR_FILEEXISTS 22
DOSERR_MAKEDIRFAILED 23
DOSERR_UNKNOWN 24
DOS Global Variables
UBYTE current_dir[1024] = The current directory
UBYTE current_file[256] = The current file

BOOL dos_print_error = A flag dictating whether DOS error
messages are printed to the screen.
It defaults to FALSE.
UWORD dos_error = The error code of the last DOS error (see
constants)
UBYTE dos_error_current = A string holding the current DOS error
UBYTE *dos_error_text[] = An array holding all of the possible
				 DOS error messages
GetDirectoryf
This functions reads the specified directory and writes a formatted list of filenames into the specified buffer. The size of the buffer is unknown so the end of the buffer may be overwritten if the directory is very long. The strings written to the buffer are 23 bytes long, 12 bytes for the filename, two spaces, and 9 bytes for the file length.
Prototype
void GetDirectoryf(UBYTE *directory, UBYTE *buffer)
Inputs
UBYTE *directory = directory that should be read
UBYTE *buffer = buffer where the formatted text will be written
Returns
nothing

GetDirectory
This functions reads the specified directory and writes a formatted list of filenames into the specified buffer. The size of the buffer is unknown so the end of the buffer may be overwritten if the directory is very long. The strings written to the buffer are 12 bytes long.
Prototype
void GetDirectory(UBYTE *directory, UBYTE *buffer)
Inputs
UBYTE *directory = directory that should be read
UBYTE *buffer = buffer where the formatted text will be written
Returns
nothing
GetDOSError
This function calls a BIOS function to determine the exact error for the last DOS function call. It sets the global variable dos_error and will print the error message to the screen if the flag dos_print_error is set to TRUE.
Prototype
void GetDOSError(void)
Inputs
nothing
Returns
nothing
LargestMemBlock
This function returns the size of the largest block of memory currently available.
Prototype
ULONG LargestMemBlock(void)
Inputs
none
Returns
Size of the largest memory block (in bytes).
�[this page left intentionally blank]
�Module 4: Draw Functions
Overview
This module contains functions which draw various objects to the screen. These functions allow for the rapid development of professional looking interfaces. These objects may be simple lines, a variety of boxes or merely pixels. Care must be taken as almost none of the functions clip the object to either the screen coordinates or clipping region!
Draw Constants
#define SHAPE_RECTANGLE The object is draw with sharp corners
#define SHAPE_SMOOTH The object is draw with the pixels removed
from the four corners
#define SHAPE_ROUND The corners of the object are more rounded
#define SHAPE_OVAL The sides of the object look like brackets
Draw Structures
typedef struct Bitmap
{
 UWORD width;
 UWORD height;
 UBYTE *image;
 UBYTE *palette;
} Bitmap;

The draw module will eventually be expanded to handle the rendering of rectangular objects that are not treated as a sprite or bob by the library (such as rendering a picture that is loaded from a PCX file). This structure is for that eventual functionality.
Bline
This function renders a line using Bresenham’s algorithm. It will draw a line in the specified color between two arbitrary points. No clipping is performed on the supplied coordinates, they must be valid screen coordinates!
Prototype
void BLine(WORD x0, WORD y0, WORD x1, WORD y1, UBYTE color)
Inputs
WORD x0 = horizontal coordinate of the first point
WORD y0 = vertical coordinate of the first point
WORD x1 = horizontal coordinate of the second point
WORD y1 = vertical coordinate of the second point
UBYTE color = color register that the line should be drawn in
Returns
nothing
DrawBox
Draws an empty, rectangular (sharp cornered) box in the specified color. Clipping is performed on the coordinates so that the box is not drawn beyond the bounds of the screen size, NOT the clipping region (the clipping region exists for sprites and bobs).
Prototype
void DrawBox(WORD xleft, WORD yleft, WORD xright, WORD yright, UBYTE color)
Inputs
WORD xleft = horizontal coordinate for top left hand corner of box
WORD yleft = vertical coordinate for top left hand corner of box
WORD xright = horizontal coordinate for bottom right hand corner of box
WORD yright = vertical coordinate for bottom right hand corner of box
UBYTE color = color register that should be used to draw box
Returns
nothing
Draw3DBox
Draws an empty box in the specified shape with a 3D look to it. This is achieved by specifying different colors for the top and left sides of the box and the bottom and right sides of the box. Clipping is not performed on the coordinates so the coordinates must be valid screen coordinates.
Prototype
void Draw3DBox(UWORD x, UWORD y, UWORD endx, UWORD endy, UBYTE hilite, UBYTE shadow, UBYTE boxstyle)
Inputs
UWORD x = 		horizontal coordinate for top left hand corner of box
UWORD y = 		vertical coordinate for top left hand corner of box
UWORD endx = 	horizontal coordinate for bottom right hand corner of box
UWORD endy = 	vertical coordinate for bottom right hand corner of box
UBYTE hilite = 	color register that should be used to draw the left and top sides of the box
UBYTE shadow = 	color register that should be used to draw the right and bottom sides of the box
UBYTE boxstyle = 	style that the box should be rendered in (see constants for this module)
Returns
nothing
Draw3DBoxFilled
This function draws a box that has a 3D look and is filled with the specified color. The 3D look is achieved by specifying different colors for the top and left sides of the box and the bottom and right sides of the box. Clipping is not performed on the coordinates so the coordinates must be valid screen coordinates.
Prototype
void Draw3DBoxFilled(UWORD x, UWORD y, UWORD endx, UWORD endy, UBYTE hilite, UBYTE shadow, UBYTE boxcolor, UBYTE boxstyle)
Inputs
UWORD x = 		horizontal coordinate for top left hand corner of box
UWORD y = 		vertical coordinate for top left hand corner of box
UWORD endx = 	horizontal coordinate for bottom right hand corner of box
UWORD endy = 	vertical coordinate for bottom right hand corner of box
UBYTE hilite = 	color register that should be used to draw the left and top sides of the box
UBYTE shadow = 	color register that should be used to draw the right and bottom sides of the box
UBYTE boxcolor = 	color register that should be used to draw the inside of the box
UBYTE boxstyle = 	style that the box should be rendered in (see constants for this module)
Returns
nothing
DrawBig3DBox
DrawBig3DBoxFilled
These routines are similar to Draw3DBox() and Draw3DBoxFilled except that the corners for smoother shapes are exaggerated so that these boxes can be drawn around the boxes drawn with the former routines so as to produce outlines around boxes drawn with the former routines.
DrawFilledBox
Draws a filled, rectangular (sharp cornered) box in the specified color. Clipping is performed on the coordinates so that the box is not drawn beyond the bounds of the screen size, but NOT the clipping region (the clipping region exists for sprites and bobs).
Prototype
void DrawFilledBox(WORD xleft, WORD yleft, WORD xright, WORD yright, UBYTE color)
Inputs
WORD xleft = horizontal coordinate for top left hand corner of box
WORD yleft = vertical coordinate for top left hand corner of box
WORD xright = horizontal coordinate for bottom right hand corner of box
WORD yright = vertical coordinate for bottom right hand corner of box
UBYTE color = color register that should be used to draw box
Returns
nothing
DrawHLine
This draws a horizontal line in the specified color. This routine does not perform any clipping so the coordinates must be valid screen coordinates.
Prototype
void DrawHLine(UWORD y, UWORD xstart, UWORD xend, UBYTE color)
Inputs
UWORD y = vertical coordinate for the line
UWORD xstart = horizontal coordinate for the start of the line
UWORD xend = horizontal coordinate for the end of the line
UBYTE color = color register that should be used to draw line
Returns
nothing
DrawVLine
This draws a vertical line in the specified color. This routine does not perform any clipping so the coordinates must be valid screen coordinates.
Prototype
void DrawVLine(UWORD x, UWORD ystart, UWORD yend, UBYTE color)
Inputs
UWORD x = horizontal coordinate for the line
UWORD ystart = vertical coordinate for the start of the line
UWORD yend = vertical coordinate for the end of the line
UBYTE color = color register that should be used to draw line
Returns
nothing
GetPixel
Returns the color of the pixel at the specified screen coordinates. No clipping is performed on the coordinates, they must be valid screen coordinates.
Prototype
UBYTE GetPixel(UWORD x, UWORD y)
Inputs
UWORD x = horizontal coordinate for the pixel
UWORD y = vertical coordinate for the pixel
Returns
UBYTE = color register of the pixel at the specified location
Line
Draws a line in the specified color. It calls the DrawHLine function for horizontal lines, the DrawVLine function for vertical lines and the BLine function for everything else. This routine does not perform any clipping so the coordinates must be valid screen coordinates.
Prototype
void Line(UWORD xstart, UWORD ystart, UWORD xend, UWORD yend, UBYTE color)
Inputs
WORD xstart = horizontal coordinate of the first point
WORD ystart = vertical coordinate of the first point
WORD xend = horizontal coordinate of the second point
WORD yend = vertical coordinate of the second point
UBYTE color = color register that the line should be drawn in
Returns
nothing
SetPixel
Sets the pixel at the specified screen coordinates to the specified color. No clipping is performed on the coordinates, they must be valid screen coordinates.
Prototype
void SetPixel(UWORD x, UWORD y, UBYTE color)
Inputs
UWORD x = horizontal coordinate for the pixel
UWORD y = vertical coordinate for the pixel
UBYTE color = the color register used to draw the pixel
Returns
nothing

�Module 5: FLIC Functions
Overview
This module facilitates the loading of FLIC animation frames. There are a multitude of programs in the public domain and shareware that will construct a FLIC file from pictures. Animations with the .FLI ending are lores 256 colors. Animations with the .FLC ending may be hires as well as lores and support 256 colors. This module supports both formats. The basic proceedure behind playing a FLIC file involves four steps:
First you must install the timer interrupt and set the timer resolution to multiple of the animation speed. If you are playing an animation that should play back at 15 frames per second, you should set the timer resolution to 15, 30 or 60 etc.
Open the FLIC file and determine the number of frames. You should also set the screen mode most appropriate for the animation.
Read the next (first) frame of the animation into a buffer, call the PaceFLI() function to wait an appropriate amount of time and then display it (the PaceFLI function is found in the Time module). You should also monitor the fli_palette_changed flag to determine if you should set a new palette.
Finally, close the FLIC file when you are finished.
FLIC Constants
All FLIC module constants are for internal use only and are used to determine the type of chunk being read (or type of file being read).

FLI_ID 0xAF11	This is a FLI file
FLC_ID 0xAF12	This is a FLC file
FLIC_FRAME 0xF1FA	Marks the start of a frame
FLIC_ANNOUNCE 0xF100	Marks a comment frame

// These all delineate the type of chunk following
FLI_COLOR 11
FLI_LC 12
FLI_BLACK 13
FLI_BRUN 15
FLI_COPY 16
FLI_DELTA 7
FLI_256_COLOR 4
FLI_MINI 18
FLIC Global Variables
FILE *flihandle = Pointer to the file handle of the opened file
FLIHeader fli_header = Pointer to the fli header buffer
FLIFrameHeader fli_frame = Pointer to the frame header buffer
FLIChunkHeader fli_chunk = Pointer to the chunk header buffer
UWORD fliwidth = Width of the current FLI
UWORD fliheight = Height of the current FLI
UBYTE flidepth = Pixel depth of the current FLI
BOOL fli_palette_changed = A flag as to whether a new palette was
 loaded as part of the current frame
BYTE *flidata = Pointer to the frame buffer that each compressed
		 frame is loaded into
FLIC Structures
typedef struct FLIHeader
{
 ULONG size;		// File size
 UWORD id;		// ID (type of file)
 UWORD frames;		// Number of frames in animation
 UWORD width;		// Width of the animation
 UWORD height;		// Height of the animation
 UWORD depth;		// Depth (8 bit = 256 colors)
 UWORD flags;		// Flags
 UWORD speed;		// Waiting time in 100ths of a second
 ULONG next;		// unimportant
 ULONG frit;		// unimportant
 UBYTE reserved[102];
} FLIHeader;

typedef struct FLIFrameHeader
{
 ULONG size;		// Size of this frame
 UWORD id;		// ID (type of frame)
 UWORD chunks;		// Number of chunks in this frame
 UBYTE reserved[8];
} FLIFrameHeader;

typedef struct FLIChunkHeader
{
 ULONG size;		// Size of this chunk
 UWORD type;		// ID (type of chunk)
} FLIChunkHeader;
CloseFLI
This function closes the open FLI file.
Prototype
void CloseFLI(void)
Inputs
none
Returns
nothing
IsFlic
This function determines whether the file specified is a FLI or FLC file. You need not include the file extension as this function will append .FLI or .FLC as appropriate.
Prototype
BOOL IsFlic(UBYTE *filename)
Inputs
UBYTE *filename = filename to examine
Returns
TRUE if the file is a FLI or FLC, otherwise FALSE
GetFLIHeader
Will read in the header of the specified file if it is a FLI or FLC file. You need not include the file extension as this function will append .FLI or .FLC as appropriate.
Prototype
BOOL GetFLIHeader(UBYTE *filename, FLIHeader *header)
Inputs
UBYTE *filename = filename to examine/load
FLIHeader *header = optional buffer to load the header into. This function will load the header into the global fli_header buffer as well. If you do not want to specify an optional buffer pass a value of 0.
Returns
TRUE if all went ok, otherwise FALSE
LoadFLIFrame
This function loads the next frame of the opened FLI or FLC into the specified buffer. First, the compressed frame in loaded into the buffer allocated by the OpenFLI function (flidata). Then the frame is decompressed into the specified buffer. If palette data is included as part of the frame, it is decoded into the specified palette buffer and the flag fli_palette_changed is set to TRUE.
Prototype
BOOL LoadFLIFrame(UBYTE *buffer, UBYTE *colormap)
Inputs
UBYTE *buffer = buffer for the graphics data of the frame
UBYTE *colormap = buffer for the palette data of the frame
Returns
TRUE is all went well, otherwise FALSE
OpenFLI
Opens the specified file, reads in the header if it is a FLI or FLC file and returns the number of frames in the animation. You need not include the file extension as this function will append .FLI or .FLC as appropriate. This function also uses the fli_header.speed field to set the maximum waiting period used by the PaceFLI() function to play the animation at the proper speed.
Prototype
UWORD OpenFLI(char *filename)
Inputs
char *filename = name of file to open
Returns
Number of frames in the animation, or 0 if an error occurred.
�Module 6: IFF Functions
Overview
This module contains functions for dealing with IFF files. IFF (Interchange File Format) is a standard developed in 1985 by Electronic Arts for the Amiga line of computers. Microsoft’s RIFF is very similar in design. IFF files used by the VLib library are 100% compatible with Amiga IFF’s as the VLib library maintains “backward” numeric formats in the file (WORDs and LONG WORDs are written in MSB to LSB).

All IFF files start with 4 bytes set to “FORM”. The next 4 bytes are the length of the file; the next 4 are the type of FILE. There are standard TYPES for storing things like animations, pictures and sounds. The IFF library does not contain specific commands for loading these filetypes, rather it provides you with general routines for reading, creating and writing your own IFF files. After the aforementioned header bytes, the IFF file is generally made of up chunks of varying sizes. The beauty of IFF is that you can store things like announcements and not effect the target program. Any chunks in the file that are unrecognized are should be ignored by the application.

IFF files make it easy to store information in chunks of varying lengths. The standard IFF format requires very specific chunks be used, but you are free to design additional chunks for your own files. In an RPG being developed by Bifrost Creations, we placed map/level data in chunks named L001, L002, L003 etc so that to load a level we just use the command LoadChunkSearch(“L001”, buffer) to load level one etc.

Spritebanks are stored as IFF files with many DATA chunks. Also in the spritebank is a chunk named INDX which holds a series of 36 byte records. Each record is a 32 byte sprite name followed by a LONGWORD seek offset to the chunk holding that sprite’s data. The sprite routines load the index when you open the file so sprite loading is simply a matter of seeking to the proper position using the SetIFFPosition() function and loading some data using the LoadChunk(“DATA”, buffer) command - very fast.

I’m sure that some experimenting will reveal many uses for this diverse file format.
IFFConstants
SPRITEBANK "SPBK"	// The file TYPE for a spritebank
SOUNDBANK “SNDB”	// The file TYPE for a soundbank

ChangeIFF
Opens a (presumably) existing IFF file for reading and writing. If the filename supplied cannot be opened, .IFF will be appended to it and another attempt made to open it. This function automatically updates the file length that forms part of the 12 byte header when the file is closed.
Prototype
BOOL ChangeIFF(UBYTE *filename)
Inputs
UBYTE *filename = filename to be opened
Returns
TRUE if all went well, otherwise FALSE
CheckChunk
This function begins reading from the file at its current position and ascertains whether the chunk at this positions is of the TYPE specified. The file read position is set immediately following the chunk header when this function returns (so if it is the correct chunk you can begin reading the data for this chunk).
Prototype
BOOL CheckChunk(UBYTE *typetext)
Inputs
UBYTE *typetext = TYPE of chunk expected (ie DATA etc)
Returns
TRUE it the chunk is of the TYPE specified, otherwise FALSE.
CheckIFF
This function checks the open IFF file to see if it is, first of all, an IFF and second of all, of the TYPE specified. The file read position is set immediately following the file header when this function returns.
Prototype
BOOL CheckIFF(UBYTE *typetext)
Inputs
UBYTE *typetext = TYPE of IFF file (ie SPBK, SNDB etc)
Returns
TRUE it is an IFF file and of the TYPE specified, otherwise FALSE.
CloseIFF
This function closes the IFF file and, if it was opened with CreateIFF, writes the new file length into the header.
Prototype
void CloseIFF(void)
Inputs
none
Returns
nothing
CreateIFF
This function creates a new IFF file (overwriting an existing file with the same name, if it exists). This function automatically updates the file length that forms part of the 12 byte header when the file is closed.
Prototype
BOOL CreateIFF(UBYTE *filename, UBYTE *typetext)
Inputs
UBYTE *filename = name of the file to be created
UBYTE *typetext = a 4 byte file TYPE. MUST be 4 characters or the IFF file will be corrupt and unreadable.
Returns
TRUE if all went well, otherwise FALSE
LoadChunk
This function loads the chunk at the current file position into the specified buffer.
Prototype
BOOL LoadChunk(UBYTE *typetext, void *buffer)
Inputs
UBYTE *typetext = the TYPE of chunk expected
void *buffer = the buffer to load the chunk data into
Returns
TRUE if there was a proper chunk and the data was properly loaded, otherwise FALSE.
LoadChunkSearch
This function searches the open IFF file from the beginning for the first chunk matching the specified TYPE. That chunk is then loaded into the specified buffer. This function is fairly fast as it skips chunks using the seek command to reduce the amount of data being read.
Prototype
BOOL LoadChunkSearch(UBYTE *typetext, void *buffer)
Inputs
UBYTE *typetext = the TYPE of chunk to search for
void *buffer = the buffer to load the chunk data into
Returns
TRUE if the chunk was found and the data properly loaded, otherwise FALSE.
OpenIFF
This function opens an existing IFF file for reading. If the filename supplied cannot be opened, .IFF will be appended to it and another attempt made to open it.
Protoype
BOOL OpenIFF(UBYTE *filename)
Inputs
UBYTE *filename = filename to be opened
Returns
TRUE if all went well, otherwise FALSE
ReadFromIFF
This function reads data from the current position of the IFF file. Generally this function is used after a call to the CheckChunk() function.
Prototype
BOOL ReadFromIFF(void *buffer, ULONG size)
Inputs
void *buffer = buffer for the data to be read into
ULONG size = number of bytes to be read from the IFF file
Returns
TRUE if the data was read, otherwise FALSE
SeekChunk
This function searches for the specified chunk and sets the read position to immediately following the chunk header.
Prototype
BOOL SeekChunk(UBYTE *typetext)
Inputs
UBYTE *typetext = chunk name to search for
Returns
TRUE if the chunk was found, otherwise FALSE
SetIFFPosition
This function sets current read/write position in the IFF file. It only works if you opened the file with either OpenIFF() or ChangeIFF() functions.
Protoype
void SetIFFPosition(ULONG position)
Inputs
ULONG position = the byte offset from the start of the file that you wish to seek to
Returns
nothing
WriteChunk
Writes out the specifed buffer to the open IFF file as the specified type of chunk. Note, the IFF file must have been opened with CreateIFF() or ChangeIFF() for this function to work. All chunks are an even number of LONGWORDs in length (the length is evenly divisible by FOUR) to keep data read from chunks aligned for BURST mode writes. This is a slight deviation from the IFF standard as the original specification called for chunks to merely be an even number of bytes in length.
Prototype
BOOL WriteChunk(UBYTE *typetext, void *buffer, ULONG size)
Inputs
UBYTE *typetext = TYPE of chunk to write out
void *buffer = buffer that holds the data to be written
ULONG size = number of bytes to be written
Returns
TRUE if all went well, otherwise FALSE
WriteChunks
Writes out the specifed buffers to the open IFF file. They are written one after the other to the specified type of chunk. Note, the IFF file must have been opened with CreateIFF() or ChangeIFF() for this function to work. All chunks are an even number of LONGWORDs in length (the length is evenly divisible by FOUR) to keep data read from chunks aligned for BURST mode writes. This is a slight deviation from the IFF standard as the original specification called for chunks to merely be an even number of bytes in length.
Prototype
BOOL WriteChunks(UBYTE *typetext, void *buffer, ULONG size, void *buffer2, ULONG size2)
Inputs
UBYTE *typetext = TYPE of chunk to write out
void *buffer = buffer that holds the first data to be written
ULONG size = number of bytes to be written from the first buffer
void *buffer2 = buffer that holds the second section of data to be written
ULONG size2 = number of bytes to be written from the second buffer
Returns
TRUE if both buffers were written, otherwise FALSE
�Module 7: Joystick Functions
Overview
This module contains functions which manage access to the joystick. The joystick is a rather complicated input device. To read the joystick you must time how long it takes for a charge to buildup and discharge in the joystick. It takes very little time for the x axis to discharge if one is pressing the joystick all the way to the left and very little time for the y axis to discharge if one is pressing all the way up. The time to discharge is not linear along either axis. As well, inexpensive joysticks have a dead zone, an area where, when the joystick is centered, the joystick wiggles a bit. This dead zone means that the first 10% of movement along either axis from the center is considered no movement at all. The calibration routines also create a ratio measure for movement so that calls to the JoystickPos() function elicit position values of -16 to +16 along either axis. This should give you sufficient resolution for most games and mask some of the variability prevalent in analog joysticks.
Joystick Constants
Use these two constants to specify which joystick to read the values from.
JOY1 0x0300	// specifies joystick number one
JOY2 0x0c00	// specifies joystick number two
To read from both use: (JOY1 | JOY2)
Joystick Global Variables
These first variables give the position and button status for both joysticks.

// Joystick 1 values
LONG joy1x = position along the X axis
LONG joy1y = position along the Y axis
LONG joy1button1 = status of button number one
LONG joy1button2 = status of button number two

// Joystick 2 values
LONG joy2x = position along the X axis
LONG joy2y = position along the Y axis
LONG joy2button1 = status of button number one
LONG joy2button2 = status of button number two

// This is the maximum time to wait for discharge
// Raise this for Pentium 600MHz machines or faster (
ULONG joy_max_wait = 4000;
// This is a flag that indicates if calibration has occurred
BOOL joycalibrated = FALSE;

CalibrateJoystick1
This function initiates the calibration sequence for joystick one. No visual clue as to the procedure takes place at this point so it would be pruduent to ask the user to slowly move the joystick to each of the four corner positions and press a button to continue. The function checks for the presence of a joystick before preceeding.
Prototype
BOOL CalibrateJoystick1(void)
Inputs
none
Returns
TRUE if there is a joystick present and calibrated, FALSE if there is no joystick present.
CalibrateJoystick2
This function initiates the calibration sequence for joystick two. No visual clue as to the procedure takes place at this point so it would be pruduent to ask the user to slowly move the joystick to each of the four corner positions and press a button to continue. The function checks for the presence of a joystick before preceeding.
Prototype
BOOL CalibrateJoystick2void)
Inputs
none
Returns
TRUE if there is a joystick present and calibrated, FALSE if there is no joystick present.
CheckJoystick
This function checks to see if the specified joystick is present
Prototype
BOOL CheckJoystick(ULONG joymask)
Inputs
ULONG joymask = which joystick to read (see joystick constants)
Returns
TRUE if the joystick is present, FALSE if there is no joystick present.
JoystickButtons
This function polls the both joysticks for only their buttons’ status. The appropriate global button variables are then set and may be examined.
Prototype
void JoystickButtons(void)
Inputs
none
Returns
nothing
JoystickPos
This function polls the specified joystick for its position and buttons’ status. The appropriate global variables are set and may then be examined. Before calling this function be sure to calibrate the joystick or loads it’s calibration data.
Prototype
void JoystickPos(ULONG joymask)
Inputs
ULONG joymask = which joystick to read (see joystick constants)
Returns
nothing
JoystickRaw
This function will read the raw values for the joystick position and place them in joy1x, joy1y, joy2x and joy2y. Button status is returned in the variable joyrawbuttons. This function should not be used unless you are prepared to deal with the variability inherent in analog joysticks.
Prototype
void JoystickRaw(ULONG joymask);
Inputs
ULONG joymask = which joystick to read (see constants)
Returns
nothing
LoadJoystickConfig
This function loads the joystick calibration data for both joysticks from an external file. It is prudent to save joystick calibration data after a user has calibrated once and reload the data during program initialization (saving the user from swiveling the joystick again and again). You should still have an option to recalibrate once in the game though, just in case a different joystick is used or it’s centering knobs get turned.
Prototype
BOOL LoadJoystickConfig(UBYTE *filename)
Inputs
UBYTE *filename = name of file to load calibration data from
Returns
TRUE if all went well, otherwise FALSE
SaveJoystickConfig
This function saves joystick calibration data for both joysticks into a file.
Prototype
BOOL SaveJoystickConfig(UBYTE *filename)
Inputs
UBYTE *filename = name of file that calibration data should be saved to
Returns
TRUE if all went well, otherwise FALSE

�Module 8: Keyboard Functions
Overview
This module contains functions to allow access to the keyboard at both high and low levels. If you write an application which takes control of the keyboard via interrupt and you which to get ASCII input (or use the GetText() function of the Text module), you should temporarily restore the old keyboard interrupt, use GetKey() (or GetText()/GetTextDefault()) and then re-enable the low level interrupt.

You should be careful not to exit your program without restoring the system keyboard interrupt or your computer will likely hang.
Keyboard Constants
These first keyboard constants are for use by low level routines and will be generally useless to you.
KEYBOARD_INT 0x09
KEY_BUFFER 0x60
KEY_CONTROL 0x61

The following keyboard constants are scancodes returned by the keyboard interrupt for various keys

�#define KEY_ESC 1
#define KEY_1 2
#define KEY_2 3
#define KEY_3 4
#define KEY_4 5
#define KEY_5 6
#define KEY_6 7
#define KEY_7 8
#define KEY_8 9
#define KEY_9 10
#define KEY_0 11
#define KEY_MINUS 12
#define KEY_EQUALS 13
#define KEY_BKSP 14
#define KEY_TAB 15

#define KEY_Q 16
#define KEY_W 17
#define KEY_E 18
#define KEY_R 19
#define KEY_T 20
#define KEY_Y 21
#define KEY_U 22
#define KEY_I 23
#define KEY_O 24
#define KEY_P 25

#define KEY_LFT_BRACKET 26
#define KEY_RGT_BRACKET 27
#define KEY_ENTER 28
#define KEY_CTRL 29

#define KEY_A 30
#define KEY_S 31
#define KEY_D 32
#define KEY_F 33
#define KEY_G 34
#define KEY_H 35
#define KEY_J 36
#define KEY_K 37
#define KEY_L 38

#define KEY_SEMI 39
#define KEY_APOS 40
#define KEY_TILDE 41
#define KEY_LEFT_SHIFT 42
#define KEY_BACK_SLASH 43

#define KEY_Z 44
#define KEY_X 45
#define KEY_C 46
#define KEY_V 47
#define KEY_B 48
#define KEY_N 49
#define KEY_M 50

#define KEY_COMMA 51
#define KEY_PERIOD 52
#define KEY_SLASH 53
#define KEY_RIGHT_SHIFT 54
#define KEY_PRT_SCRN 55
#define KEY_ALT 56
#define KEY_SPACE 57
#define KEY_CAPS_LOCK 58

#define KEY_F1 59
#define KEY_F2 60
#define KEY_F3 61
#define KEY_F4 62
#define KEY_F5 63
#define KEY_F6 64
#define KEY_F7 65
#define KEY_F8 66
#define KEY_F9 67
#define KEY_F10 68
#define KEY_F11 87
#define KEY_F12 88
#define KEY_NUM_LOCK 69
#define KEY_SCROLL_LOCK 70
#define KEY_HOME 71
#define KEY_UP 72
#define KEY_PGUP 73
#define KEY_NUM_MINUS 74
#define KEY_LEFT 75
#define KEY_CENTER 76
#define KEY_RIGHT 77
#define KEY_NUM_PLUS 78
#define KEY_END 79
#define KEY_DOWN 80
#define KEY_PGDN 81
#define KEY_INS 82
#define KEY_DEL 83
�Keyboard Global Variables
UWORD keycode	// The last keycode read by the interrupt
BOOL keydown[]	// Table of BOOLs indicating key state
BOOL customkeyisr	// A flag as to whether a custom keyboard
// interrupt has been loaded

To use the table of BOOLs to check to see if a key is currently being pressed (for example, the arrow up key):

if(keydown[KEY_UP] == TRUE) {

	// code for arrow up key pressed here

}

or, to have your main loop continue if the escape key is not being pressed:

while(keydown[KEY_ESC] == FALSE) {

	// main loop code here

}
GetKey
This function is a high level routine that gets a keystroke from the keyboard buffer and returns its ASCII value (ie, 65 for A etc.)
Prototype
UBYTE GetKey(void)
Inputs
none
Returns
ASCII code of the next key in the keyboard buffer, or 0 if no key has been pressed.
InstallKeyboard
This function installs a custom keyboard interrupt which will monitor the keyboard and adjust the keydown array to reflect the current keyboard state.
Prototype
void InstallKeyboard(void)
Inputs
none
Returns
nothing
RestoreKeyboard
Restores the BIOS keyboard interrupt.
Prototype
void RestoreKeyboard(void)
Inputs
none
Returns
nothing
WaitKey
Waits until any key is pressed (except keys like shift, alt etc.)
Prototype
void WaitKey(void)
Inputs
none
Returns
nothing
�Module 9: Linear Frame Buffer Functions
Overview
The functions in this module allocate a selector and convert a physical address to a far pointer. This facilitates the use of a linear frame buffer, if it is available for the screen mode that you have selected. Using a linear frame buffer can DRAMATICALLY increase the speed of your application. In addition to not using the BIOS to switch between multiple banks, the linear frame buffer is positioned above the one meg memory boundary (unlike the 65K window for old VESA screen modes) and thus takes full advantage of BURST writes over the PCI bus.
Linear Frame Buffer Constants
vbeUseLFB 0x4000 // vesa mode flag to select a lfb
 // mode - OR this with your screen
 // mode to use the linear frame
 // buffer (if available)
lfbmemlimit ((4096 * 1024) - 1) // all lfbs are 4 MB in size!
Linear Frame Buffer Global Variables
void far *LFBPtr	// This is a FAR pointer to the linear frame
// buffer - this is the PROPER way to access
// the buffer.
ULONG linAddr	// This is a NEAR pointer to the buffer. Since
			// the buffer can be located anywhere in memory
			// this pointer may fail on future (or even some
			// present) video cards! If you use this,
// please provide the user some option of
// forcing FAR pointer access to the linear
// frame buffer. In the future the VLib SDK may
// provide functionality for double buffering
// using NEAR writes to the linear frame buffer.
DPMIAllocSelector
Allocates a selector.
Prototype
ULONG DPMIAllocSelector(void)
Inputs
none
Returns
Pointer to the selector
DPMIMapPhysicalToLinear
Converts a physical address to a far pointer.
Prototype
ULONG DPMIMapPhysicalToLinear(ULONG physAddr, ULONG limit)
Inputs
ULONG physAddr = physical address
ULONG limit = size of address space to convert (selector size)
Returns
Offset into selector for this physical address
DPMISetSelectorBase
Sets the base address for the selector
Prototype
void DPMISetSelectorBase(ULONG sel, ULONG linAddr)
Inputs
ULONG sel = selector
ULONG linAddr = starting linear address
Returns
nothing
DPMISetSelectorLimit
Sets the size of the selector
Prototype
void DPMISetSelectorLimit(ULONG sel, ULONG limit)
Inputs
ULONG sel = selector to modify
ULONG limit = size of the selector
Returns
nothing
GetPtrToLFB
Converts a physical address to a linear address
Prototype
ULONG GetPtrToLFB(ULONG physAddr)
Inputs
ULONG physAddr
Returns
ULONG = linear address
�[this page left intentionally blank]
�Module 10: Mouse Functions
Overview
This module contains functions which manage access to the mouse. A mouse driver must be loaded prior to using these functions as these routines access int 0x33 for mouse control. Two of the functions, UpdateMouse() and UpdateMouseBlast() use functions from the sprite library to draw a graphical mouse pointer to the viewport. There is an example program which illustrates these functions along with the use of the built in mouse pointer.
Mouse Constants
Possible values returned from ReadMouseButton():
MOUSEBUTTON_NONE 0	// nothing pressed
MOUSEBUTTON_LEFT 1	// left mouse button pressed
MOUSEBUTTON_RIGHT 2	// right button pressed
MOUSEBUTTON_BOTH 3	// both right and left buttons
MOUSEBUTTON_MIDDLE 4	// middle button pressed
Mouse Global Variables
WORD mouse_xpos = current x position of mouse pointer
WORD mouse_ypos = current y position of mouse pointer
UBYTE *mouse_buffer = this is a buffer for storing the graphic on the
 screen “under” the mouse pointer in the
 UpdateMouse() function. If this pointer is
 left NULL the first time UpdateMouse() is
 called, a block of memory the size of that
 mouse sprite is allocated. If you want to use
 larger sprites later, make sure to allocate a
 sufficient block of memory before the first call
 to UpdateMouse().
CheckMouse
This function determines whether or not a mouse is connected and if a mouse driver is loaded. This is normally called by VLibInit().
Prototype
BOOL CheckMouse(void)
Inputs
none
Returns
TRUE if there is a mouse and a driver, otherwise FALSE
FreeMouseBuffer
This function frees the memory allocated by the UpdateMouse() function.
Prototype
void FreeMouseBuffer(void)
Inputs
none
Returns
nothing
HideMouseCursor
This function hides the mouse cursor being displayed by the mouse driver. It is a good idea to use this routine if you are using your own graphical mouse pointer.
Prototype
void HideMouseCursor(void)
Inputs
none
Returns
nothing
ReadMouse
This function reads the current mouse position and returns it in the supplied pointers.
Prototype
void ReadMouse(UWORD *mousex, UWORD *mousey)
Inputs
UWORD *mousex = a UWORD to hold the mouse x position
UWORD *mousey = a UWORD to hold the mouse y position
Returns
nothing
ReadMouseButton
This function reads the status of the mouse buttons and returns which are being pressed.
Prototype
UBYTE ReadMouseButton(void)
Inputs
none
Returns
A byte containing one of the following values:
MOUSEBUTTON_NONE 0	// nothing pressed
MOUSEBUTTON_LEFT 1	// left mouse button pressed
MOUSEBUTTON_RIGHT 2	// right button pressed
MOUSEBUTTON_BOTH 3	// both right and left buttons
MOUSEBUTTON_MIDDLE 4	// middle button pressed
RelMouse
Reports the mouse position relative to the last time this function was called. It reports how much the mouse has moved in the x and y directions since the last call.
Prototype
void RelMouse(WORD *mousex, WORD *mousey)
Inputs
UWORD *mousex = a UWORD to hold the amount of mouse x movement
UWORD *mousey = a UWORD to hold the amount of mouse y movement
Returns
nothing
SetMouseCursor
This function sets the shape of the driver’s mouse cursor. It requires you to set up an array of 16 pairs of WORDs (a 16 bit word because the sprite is 16 bits wide) and 16 pairs of WORDs because a sprite is 16 pixels tall. The array is pairs of WORDs, the first WORD being a mask to be applied to the screen to clear certain pixels and the second WORD being the actual data of the sprite. This array is a little clearer with experimentation.
Prototype
void SetMouseCursor(UWORD *cursor)
Inputs
UWORD *cursor = pointer to the array defining cursor shape
Returns
nothing
ShowMouseCursor
This function will show the mouse driver’s cursor.
Prototype
void ShowMouseCursor(void)
Inputs
none
Returns
nothing
UpdateMouse
This function draws the specified sprite at the current position of the mouse. The mouse position defaults to 0, 0 when the library is initialized and is updated via RelMouse() each time this function is called. The mouse position may not go into negatives, nor may it exceed the screen width and height. This function makes a copy of the screen pixels under where the mouse sprite is to be drawn. It then draws the mouse sprite and updates the screen via DoubleBufferRect() so that only the dirty rectangle is updated (see the screen module for further explanation) and finally the area where the mouse sprite was drawn is restored. This will automatically update the display and have the mouse “float” over anything on the screen which is usually the desired effect.
Prototype
void UpdateMouse(UWORD mousesprite)
Inputs
UWORD mousesprite = the sprite number which should be drawn
Returns
nothing
UpdateMouseBlast
This function draws the specified sprite at the current position of the mouse. The mouse position defaults to 0, 0 when the library is initialized and is updated via RelMouse() each time this function is called. The mouse position may not go into negatives, nor may it exceed the screen width and height. This function does not manipulate the screen, nor does it call any DoubleBuffer() function, it merely renders the mouse sprite.
Prototype
void UpdateMouse(UWORD mousesprite)
Inputs
UWORD mousesprite = the sprite number which should be drawn
Returns
nothing
UpdateMouseCoords
This function merely updates the global mouse coordinates by adding the relative movement reported by RelMouse().
Prototype
void UpdateMouseCoords(void)
Inputs
none
Returns
nothing
WaitMouse
This function waits for any mouse button to be pressed and then waits for it to be released.
Prototype
void WaitMouse(void)
Inputs
none
Returns
nothing
�[this page left intentionally blank]�Module 11: Palette Functions
Overview
This module has a collection of functions dealing with managing and altering the palette. It has functions for changing the computer palette, loading and saving a palette to and from disk, and a function for finding the closest match to a specific color. The functions are fairly robust and intuitive. The functions deal in colormap arrays which are arrays of UBYTEs, 768 entries long consisting of three UBYTEs to define each color (red, green and blue) and 256 colors (3 x 256 = 768).

NOTE: All palettes are stored internally as if they contained 256 shades of red, green, and blue not 64 shades as normal for VGA graphics.

Colors are usually specified either via an index into the colormap (if it is of UBYTE size) or as an actual 24 bit color value - a ULONG where three BYTEs are significant, one byte representing the red shade (rr), one byte representing the green shade (gg) and one byte representing the blue shade (bb) so that the ULONG is constructed as 0x00rrggbb.
Palette Constants
The following are VGA registers for working with the palette. They are of little benefit to the normal user.
PALETTE_MASK 		0x3C6
PALETTE_REGISTER_RD	0x3C7
PALETTE_REGISTER_WR	0x3C8
PALETTE_DATA		0x3C9

These constants should be used where appropriate
PALETTE_SIZE	768 the size (in bytes) of a full VGA palette
PALETTE_ENTRIES	256 the number of entries in a full VGA palette
Palette Global Variables
UBYTE mouseptrdata[] is an array holding the bitmap for a mouse pointer for use with the library
UBYTE colormap[] is an array to hold the current palette
UBYTE defaultcolormap[] an array representing the default palette
Bitmap mouseptr is a bitmap structure holding size, bitmap and palette information for the mouse pointer

CopyPalette
This function copies the contents of one array of palette entries to another.
Prototype
void CopyPalette(UBYTE *colormap, UBYTE *oldcolormap)
Inputs
UBYTE *colormap is a pointer to the destination colormap
UBYTE *oldcolormap is a pointer to the source colormap
Returns
None
FindColor
Searches the supplied colormap array for the closest color to the one specified. Remember, since all colormaps are kept in 8-bit format (not the regular 6 bit for VGA) you must supply a standard 8-bit red/8-bit green/8-bit blue value to search for. This function tries to match intensity as well as color.
Prototype
UBYTE FindColor(UBYTE *colormap, ULONG color);
Inputs
UBYTE *colormap is a pointer to a colormap array
ULONG color = color to search for (in 0x00rrggbb format)
Returns
The offset to the color register which is closest to the desired color (it may not be all that close!)
GetPaletteRegister
Returns the color in a specific palette register.
Prototype
ULONG = GetPaletteRegister(UBYTE index);
Inputs
UBYTE index is which palette register to check
Returns
A ULONG representing the color in 24-bit format
LoadRAWPalette
Loads a palette from palette file (a 768 byte file containing a colormap array).
Prototype
BOOL = LoadPalette(UBYTE *filename, UBYTE *colormap);
Inputs
UBYTE *filename is a pointer to the filename to load
UBYTE *colormap is a pointer to a colormap array to hold the palette
Returns
TRUE if it could open and read the file, otherwise FALSE
RecolorImage
This function remaps a bitmap image so that it will display properly with a different palette. If source and destination images are the same you will not be able to remap a second time.
Prototype
void RecolorImage(UBYTE *destpal, UBYTE *sourcepal, UBYTE *destimage, UBYTE *sourceimage, UWORD width, UWORD height)
Inputs
UBYTE *destpal is a pointer to the new palette to be displayed in
UBYTE *sourcepal is a pointer to the original colormap for the image
UBYTE *destimage is a pointer to a buffer to hold the remapped image
UBYTE *sourceimage is a pointer to the buffer holding the initial image
UWORD width is the width of the image in pixels
UWORD height is how many pixels tall the image is
Returns
nothing
SavePalette
Saves the indicated colormap array to a file.
Prototype
BOOL SavePalette(UBYTE *filename, UBYTE *colormap);
Inputs
UBYTE *filename is a pointer to the filename
UBYTE *colormap is a pointer to the colormap array to be saved
Returns
TRUE if all went well, otherwise FALSE
SetPalette
Sets all of the VGA card registers to the colors in the supplied colormap array and sets that colormap array as the new default palette.
Prototype
void SetPalette(UBYTE *colormap);
Inputs
UBYTE *colormap is a pointer to a colormap array
Returns
None
SetPaletteRegister
Sets one of the VGA palette registers to the specified color.
Prototype
void SetPaletteRegister(UBYTE index, UBYTE red, UBYTE green, UBYTE blue);
Inputs
UBYTE index, the offset of register to change
UBYTE red, green, blue the shades to change the register to (in 8 bit format)
Returns
None
�Module 12: PCX Functions
Overview
This module contains functions which manage the reading and writing of PCX graphic files. As well, palette loading from a PCX is supported. This, along with other graphic file formats, are better supported through the Pic module where you need not specify the type of format in order to load a picture or palette.
PCX Global Variables
PCXHeader pcx_header = pointer to the header for current PCX file
FILE *pcxhandle = pointer to the file handle of the PCX file
PCX Structures
typedef struct PCXHeader {
	char manufacturer;
	char version;
	char encoding;
	char bits_per_pixel;
	short int x,y;
	short int width,height;
	short int horz_res;
	short int vert_res;
	char ega_palette[48];
	char reserved;
	char num_color_planes;
	short int bytes_per_line;
	short int palette_type;
	char padding[58];
} PCXHeader;
IsPCX
This function determined whether or not the specified filename is a PCX graphic file.
Prototype
BOOL IsPCX(UBYTE *filename)
Inputs
UBYTE *filename = name of file to examine
Returns
TRUE if the file is a PCX file, otherwise FALSE
GetPCXHeader
This function loads the header information from a PCX file into the global PCX header buffer and, additionally, into a buffer you specify (if any).
Prototype
BOOL GetPCXHeader(UBYTE *filename, PCXHeader *header)
Inputs
UBYTE *filename = name of the PCX file
PCXHeader *header = pointer to your own buffer or 0.
Returns
TRUE is all went well, otherwise FALSE
LoadPCX
This function loads the specified PCX file into the specified buffer, and loads the palette into a buffer at the callers option.
Prototype
BOOL LoadPCX(UBYTE *filename, UBYTE *body_buffer, UBYTE *palette_buffer)
Inputs
UBYTE *filename = name of PCX file to load
UBYTE *body_buffer = pointer to a buffer for the decompressed image
UBYTE *palette_buffer = optional pointer to a buffer for the PCX file’s palette or 0 if you do not want the palette loaded
Returns
TRUE if all went well, otherwise FALSE
LoadPCXPalette
This function loads the palette information from a PCX file into the specified buffer.
Prototype
BOOL LoadPCXPalette(UBYTE *filename, UBYTE *colormap)
Inputs
UBYTE *filename = name of file to load palette from
UBYTE *colormap = pointer to a buffer to store palette in
Returns
TRUE if all went well, otherwise FALSE
SavePCX
This function saves the specified buffer to disk as a run length encoded PCX picture file.
Prototype
BOOL SavePCX(UBYTE *filename, UBYTE *buffer, UWORD width, UWORD height, UBYTE *colormap)
Inputs
UBYTE *filename = name of destination PCX file
UBYTE *buffer = pointer to the graphics data to be saved
UWORD width = the width of the image in pixels
UWORD height = the height of the image in pixels
UBYTE *colormap = pointer to the palette to be saved with image
Returns
TRUE if all went well, otherwise FALSE
�[this page left intentionally blank]�Module 13: Picture Functions
Overview
The functions in the picture module allow seemless access to a variety of picture formats. Current the VLib SDK supports PCX (run length encoded and raw), BMP (uncompressed bitmap) and TGA (uncompressed bitmap) formats, both in loading and saving. Currently only 256 color bitmaps are supported.
Picture Constants
The following constants are filled into type field of the pic_info structure when the function GetPicInfo() is called:

PICTYPE_UNKNOWN 0
PICTYPE_PCX 1
PICTYPE_TGA 2
PICTYPE_BMP 3
PICTYPE_PALETTE 4
PICTYPE_FLI 20

Picture Global Variables
The structure used to store information on a picture is the pic_info structure, defined as:

PicInfo pic_info;
Picture Structures
The module uses a structure called pic_info to communicate information about the picture queried to the user.

typedef struct PicInfo
{
 UWORD width, height;	// width and height of picture
 UBYTE depth;		// number of bitplanes in picture
// (8 = 256 colors)
 UBYTE type;			// type of pic (see constants)
} PicInfo;

GetPicInfo
This function examines the specified file to determine the file type and then loads pertinent information from the file header. Upon returning, the caller may examine the pic_info structure for information about the file.
Prototype
BOOL GetPicInfo(UBYTE *filename)
Inputs
UBYTE *filename = pointer to the name of the file to examine
Returns
TRUE if all goes well, otherwise FALSE
LoadPalette
This function determines the type of file being dealt with and loads it’s palette appropriately.
Prototype
BOOL LoadPalette(UBYTE *filename, UBYTE *palette)
Inputs
UBYTE *filename = name of file to load palette from
UBYTE *palette = pointer to the buffer to receive the palette data
Returns
TRUE if all goes well, otherwise FALSE
LoadPic
This function determines the file type and calls the appropriate function to load the image and palette data.
Prototype
BOOL LoadPic(UBYTE *filename, UBYTE *buffer, UBYTE *palette)
Inputs
UBYTE *filename = pointer to the name of the file to be loaded
UBYTE *buffer = pointer to a buffer to receive the palette data
UBYTE *palette = pointer to the buffer to receive the palette data
Returns
TRUE if all goes well, otherwise FALSE
�Module 14: Screen Functions
Overview
The screen module is perhaps the heart of the library and deserves close attention. Functions in the screen module of the library manage and manipulate various screen buffers. In addition you will find commands for getting and setting the screen mode and waiting for a vertical blank. In general you should initialize buffers at the beginning of your program, making them a sufficient size to accommodate your largest screen size. For example, if your game runs at 640 x 480, but your help/title screens will be 800 x 600 pixels, your double buffer should be 800*600 bytes in size. Alternately, you may with to allocate a double buffer suitable for 640 x 480 and a triple buffer sized for 800 x 600. You may then load your help screens directly into the triple buffer and display them from there.
Principles of Use
The basic principle behind the library is that all drawing functions write to the memory area pointed to by viewport. If you allocate the double buffer, viewport will point to the double buffer. The double buffer is an offscreen buffer which is moved to video RAM via the DoubleBuffer() function. Alternately, you can redirect output to another destination by reassigning the viewport pointer. For instance, to draw to the second offscreen buffer (and hence the third buffer) you could use:

viewport = triple_buffer;

To write directly to mode 0x13’s (lores) video RAM you would redirect with the statement:

viewport = (UBYTE *)0xA0000;

If you indiscriminately copy data to video RAM you may experience something called shearing or glitches/flashing in the display. This is unacceptable in a commercial product and is easily avoided. You should always call WaitVbl() to wait for a vertical blank to begin before starting your screen refresh. For smooth animation, you should reprogram the timer to a suitable resolution and wait a certain number of frames before starting your screen refresh. This is the same principle as pacing the display of individual frames in an animation.

The library often makes use of the word “frame”. This is not analogous to the update of the video display by the beam in the monitor (as on a TV). It refers to a given instance of a call to the DoubleBuffer() function and the time until the DoubleBuffer() function is called again. An application running 35 frames per second on a lores display (which updates the tube at 70 updates per second) calls the DoubleBuffer() function 35 times in a second. The monitor, however, is being refreshed 70 times per second, every two refreshes having the same data on the screen.

Finally, the drawing routines of the library create a dirty rectangle. This is a rectangular region on the screen which exactly encompasses the top left to bottom right coordinates of all data written to the screen since the last DoubleBuffer() call. You may use this to accelerate screen updates since only that portion of the screen which has changed will be updated.
Screen Constants
// These are some defines for using the SetVideoMode command.
// Please, please, please don't use this command for VESA modes any more. // Instead channel all hires screen requests through FindVesaMode() OR
// FindBestVesaMode

#define SVGA400 0x100 // 640 x 400 x 8
#define SVGA480 0x101 // 640 x 480 x 8
#define SVGA800 0x103 // 800 x 600 x 8
#define SVGA1024 0x105 // 1024 x 768 x 8
#define VGA256 0x13 // This is vesa mode 0x13
#define TEXT80 0x03 // This is the default 80 x 25 text mode
Screen Global Variables
// The flag automatically uses the dirty rectangle coordinates to
// update the screen no matter which double buffer routine is
// used.
BOOL auto_dirty_rectangle = FALSE;

// A flag as to whether or not the screen should be interlaced
// Interlacing here is more of a venetian blind effect where every
// second line is skipped as the offscreen buffer is copied. If
// you want the same effect with lfb modes you should double the
// screen_height variable
BOOL interlaced_screen = FALSE;

// A flag as to whether or not the screen should be scan doubled
// Scan doubling is a process where each scanline in the offscreen
// buffer is written twice (consecutively) to the screen. This is
// supported in lores only.
BOOL double_scan = FALSE;

UBYTE *double_buffer; // ptr to an offscreen buffer
UBYTE *triple_buffer; // ptr to another offscreen buffer
UBYTE *viewport; // buffer that all drawing routines
				 // write to

// These four variables define the dirty rectangle that must be
// updated in order for the screen to reflect all changes since
// the last frame. This is automatically done in all VLib drawing
// routines.
UWORD drawxmin, drawymin, drawxmax, drawymax;

UWORD video_mode; // the current video mode
ULONG yoffset[1280]; // ptr offsets for each line of the
 // offscreen buff

ULONG screen_width; // current width of the screen
ULONG vram_width; // width of the vesa frame buffer
ULONG screen_height; // current height of the screen
ULONG screen_depth; // number of BYTES defining each pixel
ULONG screen_size; // total size of the screen
LONG clip_startx; // These four globals define the
LONG clip_starty;		 // clipping region
LONG clip_endx;
LONG clip_endy;
AllocDoubleBuffer� XE "AllocDoubleBuffer" �
Allocates memory for a double buffer. This must be done at the beginning of your program before you attempt to use any drawing or sprite routines. After all drawing is complete and you wish the user to see the screen you call the DoubleBuffer() command.
Prototype
BOOL AllocDoubleBuffer� XE "AllocDoubleBuffer" �(ULONG size);
Inputs
ULONG size = the desired size of the buffer (make this as big as your largest screen size)
Returns
TRUE if all went well and memory was allocated, otherwise FALSE (not enough memory)
AllocTripleBuffer� XE "AllocTripleBuffer" �
Allocates memory for a triple buffer. This is not a triple buffer is the traditional sense (in that it will not smooth animation). It is merely another offscreen buffer that you can using for rending to, loading to, etc. This should be allocated at the beginning of your program, before you use it for the first time.
Prototype
BOOL = AllocTripleBuffer� XE "AllocTripleBuffer" �(ULONG size);
Inputs
ULONG size = the desired size of the buffer
Returns
TRUE if all went well and memory was allocated, otherwise FALSE (not enough memory)
ClearDirtyRectangle
This function clears the coordinates of the dirty rectangle so that no portion of the screen will be subject to update until further drawing routines are called.
Prototype
void ClearDirtyRectangle(void)
Inputs
none
Returns
nothing
CopyRect
This function copies a rectangular region of memory from the area pointed to by viewport to the specified destination. If the supplied coordinates are outside of the bounds of the current screen size, the coordinates will be clipped resulting in a smaller memory copy. This function ignores the global clipping variables.
Prototype
void CopyRect(WORD xstart, WORD ystart, UWORD width, UWORD height, UBYTE *dest)
Inputs
WORD xstart = top left hand horizontal coordinate of rectangle
WORD ystart = top left hand vertical coordinate of rectangle
WORD width = the width of the rectangle in pixels
WORD height = the height of the rectangle in pixels
UBYTE *dest = pointer to the destination to store rectangle
Returns
nothing
DoubleBuffer
Copies the contents of the double buffer to screen memory (thus displaying the double buffer). If the current screen mode is a vesa mode, multiple pages are copied, showing the whole screen. If the auto_dirty_rectangle flag is set to TRUE, only the modified portion of the display is updated.
Prototype
void DoubleBuffer(void);
Inputs
none
 Returns
nothing
DoubleBufferRect
This functions copies a section of the offscreen buffer to a section of the screen. The same coordinates used for the source area will be the destination coordinates on the screen. If you call DoubleBufferRect(16, 8, 256, 100) a block of memory from those coordinates will be copied to the same coordinates on the screen. You MUST supply valid screen coordinates to this function as no error checking or clipping is performed!
Prototype
void DoubleBufferRect(UWORD xleft, UWORD yleft, UWORD xright, UWORD yright)
Inputs
UWORD xleft = top left horizontal coordinate to copy from/to
UWORD yleft = top left vertical coordinate to copy from/to
UWORD xright = bottom right horizontal coordinate to copy from/to
UWORD yright = bottom right vertical coordinate to copy from/to
Returns
nothing
FreeDoubleBuffer
Frees the memory taken up by the double buffer. It is good practice to free all the memory allocated at the end of the program (even though the DPMI DOS4G/W seems to do this for you).
Prototype
void FreeDoubleBuffer(void);
Inputs
none
Returns
nothing
FreeTripleBuffer
Frees the memory taken up by the triple buffer. It is good practice to free all the memory allocated at the end of the program (even though the DPMI seems to do this for you).
Prototype
void FreeTripleBuffer(void);
Inputs
none
Returns
nothing
GetVideoMode
Gets the current video mode number. NOTE: this may not return the proper video mode if you are currently in a vesa mode.
Prototype
UWORD GetVideoMode(void);
Inputs
None
Returns
An unsigned word which is the current video mode (e.g. 0x03, 0x13, etc.)
OverlayBuffer
Copies the specified buffer over top of the viewport. All pixels in the specified buffer which are color 0 will not be written into the viewport, simulating transparency. This process copies a number of bytes equal to the current screen size so it may be quite slow when compared to drawing a sprite. For this reason, you should use this command only when time is not critical or when absolutely necessary.
Prototype
void OverlayBuffer(UBYTE *buffer);
Inputs
UBYTE *buffer = pointer to the buffer holding the data to overlay
Returns
nothing
RestoreRect
This function copies a block of memory to a rectangular region of the viewport. It performs clipping of the coordinates so that the region written will not fall outside of viewport memory. As well, it updates the dirty rectangle to include this region.
Prototype
void RestoreRect(WORD xstart, WORD ystart, UWORD width, UWORD height, UBYTE *block)
Inputs
WORD xstart = top left hand horizontal coordinate of destination
 rectangle
WORD ystart = top left hand vertical coordinate of dest rectangle
WORD width = the width of the rectangle in pixels
WORD height = the height of the rectangle in pixels
UBYTE *block = pointer to source of data to restore to the viewport
Returns
nothing
ScreenFill
Fills the viewport with the chosen color. A number of bytes equal to the current screen size will be set to that color.
Prototype
void ScreenFill(UBYTE color);
Inputs
An unsigned byte indicating the color register to fill with.
Returns
None
SetClippingArea
This function sets the position of the sprite clipping area. Any sprite data destined to fall outside of this area is not rendered. Be careful not to set the upper coordinates to the screen_height or screen_width as these values are one higher than the corresponding screen coordinates.
Prototype
void SetClippingArea(UWORD x1, UWORD y1, UWORD x2, UWORD y2)
Inputs
x1 = upper left horizontal coordinate of clipping area
y1 = upper left vertical coordinate of clipping area
x2 = lower right horizontal coordinate of clipping area
y2 = lower right vertical coordinate of clipping area
Returns
nothing
SetVideoMode
Sets the current video mode. This routine also tracks and updates various variables such as screen_size� XE "screen_size" �, screen_width� XE "screen_width" �, screen_height� XE "screen_height" � etc. as well as automatically checking for and configuring vesa modes when requested. As well, this function sets up a table of offsets corresponding to the distance of each y offset from the beginning of screen memory in the array yoffset. Please use this function only for setting MCGA (mode 0x13) or restoring the default text mode and use FindVesaMode() or FindBestVesaMode() for all VESA modes.
Prototype
BOOL SetVideoMode(UWORD mode);
Inputs
An unsigned word which is the video mode requested.
Returns
TRUE if the video mode was set, otherwise FALSE
UpdateDirtyRectangle
This function takes the supplied coordinates and extends the dirty rectangle to encompass the coordinates if appropriate.
Prototype
void UpdateDirtyRectangle(UWORD x1, UWORD y1, UWORD x2, UWORD y2)
Inputs
x1 = upper left horizontal coordinate of new graphic
y1 = upper left vertical coordinate of new graphic
x2 = lower right horizontal coordinate of new graphic
y2 = lower right vertical coordinate of new graphic
Returns
nothing
WaitVbl
Waits for the end of the next vertical blanking period. Use this command to begin drawing to the screen just after the vertical blank in order to avoid flicker.
Prototype
void = WaitVbl(void);
Inputs
none
Returns
nothing
�[this page left intentionally blank]
�Module 15: Serial Functions
Overview
This module contains functions which manage data communication to and from the PC’s various serial ports. These functions have been somewhat tested and should prove reliable for computer to computer cable connections, however, the modem routines present have been tested very little and are essentially provided as is for now. If there is sufficient demand we may work on developing more reliable and robust modem and serial functions.
Serial Constants
// These constants indicate numeric return codes from the modem
MODEM_USER_ABORT -1

MODEM_OK 0
MODEM_CONNECT 1
MODEM_RING 2
MODEM_NO_CARRIER 3
MODEM_ERROR 4
MODEM_CONNECT_1200 5
MODEM_NO_DIALTONE 6
MODEM_BUSY 7
MODEM_NO_ANSWER 8
MODEM_CONNECT_0600 9
MODEM_CONNECT_2400 10
MODEM_CARRIER_2400 11
MODEM_CONNECT_4800 12
MODEM_CONNECT_9600 13

// This is simply a constant for the number of modem responces
NUM_MODEM_RESPONSES 14

// These are bad constants as my bad programming assumes a timer
// rate of 18.2 Hhz
DELAY_1_SECOND 18
DELAY_2_SECOND 36
DELAY_3_SECOND 55

// These constants are offsets to serial port registers, not
// useful to the end user
SERIAL_RBF 0
SERIAL_THR 0
SERIAL_IER 1
SERIAL_IIR 2
SERIAL_LCR 3
SERIAL_MCR 4
SERIAL_LSR 5
SERIAL_MSR 6
SERIAL_DLL 0
SERIAL_DLH 1

// These constants set the pacing speed for various communication
// speeds
SERIAL_BAUD_1200 96
SERIAL_BAUD_2400 48
SERIAL_BAUD_4800 24
SERIAL_BAUD_9600 12
SERIAL_BAUD_14400 8
SERIAL_BAUD_19200 6
SERIAL_BAUD_28800 4
SERIAL_BAUD_57600 2
SERIAL_BAUD_115200 1

// These constants are to set various other parameters of the port
SERIAL_STOP_1 0
SERIAL_STOP_2 4

SERIAL_BITS_5 0
SERIAL_BITS_6 1
SERIAL_BITS_7 2
SERIAL_BITS_8 3

SERIAL_PARITY_NONE 0
SERIAL_PARITY_ODD 8
SERIAL_PARITY_EVEN 24

SERIAL_DIV_LATCH_ON 128

SERIAL_GP02 8

// The addresses of the com ports
COM_1 0x3F8
COM_2 0x2F8
COM_3 0x3E8
COM_4 0x2E8

// Interrupt registers
PIC_IMR 0x21
PIC_ICR 0x20

// Serial Interrupts
INT_SERIAL_PORT_0 0x0C
INT_SERIAL_PORT_1 0x0B

SERIAL_BUFF_SIZE 1024

MODEM_DTR_ON 0
MODEM_DTR_OFF 1

// Modem response strings
BYTE *modem_strings[]={"OK",
 "CONNECT",
 "RING",
 "NO CARRIER",
 "ERROR",
 "CONNECT 1200",
 "NO DIALTONE",
 "BUSY",
 "NO ANSWER",
 "CONNECT 0600",
 "CONNECT 2400",

 "CARRIER 2400", // experimental response strings
 "CONNECT 9600",
 "CONNECT 4800"};

// Default modem control strings
BYTE predial[16] = "ATDT";
BYTE postdial[16] = "^M";
BYTE modinit1[16] = "ATZ^M";
BYTE modinit2[16] = "ATL1M1S11=55^M";
BYTE dtrctrl[16] = "AT&D2^M";
BYTE protctrl[16] = "ATQ0^M";
BYTE answerstr[16] = "ATA^M";

Serial Global Variables
UBYTE serial_buffer[SERIAL_BUFF_SIZE]	// serial i/o buffer

ULONG serial_end = current end offset for serial buffer
ULONG serial_start = current start offset of serial buffer
ULONG serial_ch = current character being read from port
ULONG char_ready = how many characters yet in buffer
ULONG old_int_mask = which interrupts used to be enabled
ULONG open_port = current port number being used

BOOL extrainit = flag for additional modem initialization strings
BOOL usedtr = flag to use dtr to hang up
BOOL redial = flag to redial until connection established;
DialNumber
This function dials the specified phone number with the modem. The serial port for the modem must have been opened and initialized prior to ANY modem command being issued.
Prototype
ULONG DialNumber(UBYTE *number)
Inputs
UBYTE *number = pointer to the phone number to be dialed
Returns
Modem result code
DropDTR
This function drops the DTR line on the open serial port. This has the effect of disconnecting any established modem connection.
Prototype
void DropDTR(void)
Inputs
none
Returns
nothing
ModemInit
This functions sends all defined initialization strings to the modem. The serial port for the modem must have been opened and initialized prior to ANY modem command being issued.
Prototype
ULONG ModemInit(void)
Inputs
none
Returns
The numeric modem result code (0 if ok)
ModemResult
This function reads a text result string from the modem and interprets that string into a numeric code.
Prototype
ULONG ModemResult(void)
Inputs
none
Returns
The numeric modem result code (0 if ok)
SerialClose
This function closes the open serial port and restores interrupts to how they were prior to the SerialOpen() function being called.
Prototype
void SerialClose(void)
Inputs
none
Returns
nothing
SerialFlush
This function clears the serial buffer of all characters waiting to be processed.
Prototype
void SerialFlush(void)
Inputs
none
Returns
nothing
SerialOpen
This functions opens the specified port with the specified parameters. This function MUST be called before any other serial function is called. Inappropriate configuration options or baud rates or port_base may cause the application to hang.
Prototype
void SerialOpen(LONG port_base, LONG baud, LONG configuration)
Inputs
ULONG port_base = base address of the port
ULONG baud = the desired baudrate
ULONG configuration = additional configuration parameters
Returns
nothing
SerialPrint
This function outputs the specified string to the serial port, one character at a time.
Prototype
void SerialPrint(BYTE *string)
Inputs
BYTE *string = pointer to the string to be printed
Returns
nothing
SerialRead
This function reads one character from the serial buffer and adjusts the buffer accordingly.
Prototype
ULONG SerialRead(void)
Inputs
none
Returns
The ASCII value of the character or 0 if the buffer was empty
SerialReady
This function reports whether there is data in the serial buffer yet to be read.
Prototype
ULONG SerialReady(void)
Inputs
none
Returns
number of characters remaining in buffer (0 if empty)
Serial Write
This function writes the specified character to the serial port.
Prototype
void SerialWrite(BYTE ch)
Inputs
BYTE ch = the character to be written to the port
Returns
nothing
WaitForConnection
This function waits for a connection result to be returned from the modem.
Prototype
LONG WaitForConnection(void)
Inputs
none
Returns
Actual modem result code received

�Module 16: Sound Functions
Overview
This module contains all functions dealing with initializing Soundblaster or compatible hardware and for playing sounds. Currently the module only supports sounds in Microsoft’s .WAV format. As well, it only supports mono, 8 bit sound files. It is capable of playing back 64 simultaneous sounds, however. Before playing a sound, you must initialize the sound hardware. Before you exit your application you must free the sound hardware or the system will hang. The module supports playing sounds that are preloaded or the playing of sounds 8K at a time (for very long samples that won’t fit into memory). The latter is referred to as spooling.
Sound Constants
VOLUME_MAX 255	Maximum volume a sound may be played at

// These flags signify the type of sound sample and various
// attributes of the sample.
SNDFLAG_8BIT 1 If 0 this is a 16 bit sound
SNDFLAG_MONO 2 If 0 this is a stereo sound

SNDFLAG_SPOOL 8 0 means do not spool
SNDFLAG_NEEDMORE 16 Flag to load more of the spooled file
SNDFLAG_LOOP 32 Flag to loop the sample
Sound Structures
// This structure contains data necessarily stored on disk
typedef struct DiskSoundData
{
 BYTE *data;	This is the pointer to the sound data
 ULONG length;	This is the length of the sound data
 UWORD id;		This is an id number for the sound effect
 UWORD rate;		This is the sampling rate
 UBYTE flags;	These are the sound flags
} DiskSoundData;

// This structure holds all sound effect data (disk and extra)
typedef struct
{
 struct DiskSoundData;
 UBYTE pad;		Padding byte
 ULONG offset;	Offset into buffer to start playing at
 FILE *filehandle;	For spooled sounds
} Sound;

typedef struct
{
 Sound *sound;	Current sound effect being played
 ULONG volume;	Volume for this voice
 LONG curpos;	Current offset from sound start
 BOOL done;		Flag to indicate when done
} Voice;

CloseCuedFile
This function closes a sound file that has been spooled off of disk.
Prototype
void CloseCuedFile(Sound *sound)
Inputs
Sound *sound = pointer to the sound structure of the file
Returns
nothing
CueFurtherSound
This function determines if more of the spooling sound effect must be loaded from the drive. It returns right away if nothing more of the file is needed or loads the next 4K of the file and returns.
Prototype
void CueFurtherSound(void)
Inputs
none
Returns
nothing
CueSoundfile
This file opens a disk file sound effect for spooling. The file must be a RAW sound file (use the included WAV2RAW utility for conversion as necessary) and various fields of the Sound structure must be set manually. When a sound is spooled, an 8K buffer is allocated for the data to be loaded in to. This buffer is filled via a double buffering scheme 4K at a time so that samples of any length may be played. Spooled sounds will not loop. Normal use of the sound system may occur in parallel to spooling sounds (up to 64 channels of sound). After allocating a buffer, you should cue the sound file before it’s actually needed. It may take quite a while (up to a second or two) to open a file one some devices, like a CD-ROM. This should probably not be done at the start of the program since it leaves the file open for reading. You should then use the PlaySound() function to start the sound playing (as you would any other sound effect). Then, periodically and regularly, make calls to the CueFurtherSound() function to double buffer further portions of the file to be played. A 4K buffer will allow almost one twentieth of a second to pass before the next portion of the file MUST be loaded (at typical playback rates) so unless your game is running slower than 5 frames per second you can call CueFurtherSound() from within your main loop.
Prototype
Sound * CueSoundfile(UBYTE *filename)
Inputs
UBYTE *filename = pointer to filename to open
Returns
Sound *sound = pointer to the sound structure of the sound or 0 is an error occurred
FreeSound
This function frees the memory being taken by the sound structure and the sound itself. In the case of a spooled sound, the 8K buffer is freed.
Prototype
void FreeSound(void)
Inputs
none
Returns
nothing
FreeSoundSystem
This function frees up the sound system and restores previous interrupts. You MUST call this function before exiting your application or the system will hang.
Prototype
void FreeSoundSystem(void)
Inputs
none
Returns
nothing
InitSoundSystem
This function initializes the sound system for use. You must call this function before using any other sound commands.
Prototype
BOOL InitSoundSystem(ULONG rate)
Inputs
ULONG rate = the sampling rate to initialize the sound system to
Returns
TRUE if a Soundblaster or compatible was found and sufficient memory was available, otherwise FALSE.
LoadSound
This function loads a .WAV file from disk and initializes the specified sound structure. Only .WAV files are supported at this time.
Prototype
Sound * LoadSound(UBYTE *name)
Inputs
UBYTE *name = filename of the file to load
Returns
Sound *sound = pointer to the sound structure for the sound or 0 on error.
PlaySound
This function starts the specified sound effect playing (as long as a channel remains unused).
Prototype
void PlaySound(Sound *sound, UBYTE volume)
Inputs
Sound *sound = pointer to the sound structure for the sound to be played
UBYTE volume = the volume to be played at (0 - 255 with 255 as the loudest)
Returns
nothing
SoundPlaying
This function determines whether a sound of the given id number is playing. Before you start playing a sound, make sure that there is a unique id number in the structure’s ID field.
Prototype
BOOL SoundPlaying(UWORD id)
Inputs
UWORD id = id number of the sound to search for
Returns
TRUE if it is (still) playing, otherwise FALSE
StopSound
This function stops the specified sound from further play.
Prototype
void StopSound(UWORD id)
Inputs
UWORD id = id number of sound(s) to stop playing
Returns
nothing
�[this page left intentionally blank]
�Module 17: Sprite Functions
Overview
This module contains all functions dealing with sprites and bobs. Sprites are defined as bitmaps of any size that, when rendered, are cookie-cut to the screen so that color 0 turns out to be transparent. Bobs are defined as bitmaps of any size that are moved to the screen as a rectangle. Before you use any sprite/bob adding or loading commands you must allocate a sprite buffer with AllocSpriteBuffer()! Bobs and sprites are assigned numbers as they are put into the sprite buffer. The numbers are automatically assigned and start from 0. Sprites and bobs may be added to the spritebank using the AddSprite(), AddBob(), and LoadSprite() fuctions. Sprites and bobs may be stored in a single file called a spritebank. There they may be loaded using the LoadSprite() function by refering to their name. You may create and edit a spritebank with the supplied spritebank editor (SEd.exe). Spritebanks may contain up to 8000 sprites and may be up to 30 MB in size (limited by your computer’s RAM).

If you are using sprite animation or movement, a given sprite should only be drawn once per “frame” - i.e. once between each call to the DoubleBuffer() function. If you want more than one sprite on the screen that appear similar to each other, you should use the CloneSprite() function to create a new instance of that sprite and draw each separately (this takes little extra memory).

Sprites (but not bob) may alternately be translated to different colors as they are drawn. This requires an array of 256 UBYTEs which hold the actual color that should be rendered in place of the original color. For instance, if color 0 should be rendered as color 0, the 0th UBYTE of the array should hold a 0. If the 127th color should be rendered as color 23, the 127th UBYTE of the array should hold the value of 23. You may use the BuildTranslationTable() function to build such a table for you.

Sprites may be drawn so that they are drawn offset from the actual specified position. By setting the hotx and hoty fields of the spritedata structure you can offset where the sprite is actually drawn. The sprite is rendered at the specified screen position minus the hotx and hoty values. In animating sprites (see below), the master sprite’s x/y position are used, but the current frame’s hotx/hoty are subtracted from it.

Sprites may be automatically animated as they are drawn. SEd contains the functionality to allow you to specify the order of frames in the animation, the speed of each frame (how long it is displayed) and how the animation will loop (if at all). Frames are cells of an animation attached to a master sprite. Whenever the master sprite is drawn and its SPRFLAG_ANIMATE flag is set, the system clock will be queried and the appropriate frame of the sprite animation will be displayed instead of the master sprite. You MUST be sure to call the GameTimer() function to install a timer interrupt before any sprite animation will occur (see section 19: Time Functions for more information).

Sprites may be automatically moved as they are drawn. Any value in the movex and movey fields of the spritedata structure will be added to the sprite’s specified position and then the sprite will be rendered. If a frames is being drawn, the frames movex and movey fields are added to the master sprites xpos and ypos fields before rendering. The sprites are moved at a rate equal to the spritefps setting (the same as the animation speed).

Finally, sprites may be rendered as transparent over the background, as light sources over the background, or shadows over the background. The assumption is that the palette used for the display is the same as the palette for the sprite itself. Sprites may be a varying degree of transparency, lightness or darkness. As well, the sprite may be a single degree of darkness (mono shadow).
Sprite Constants
MAX_SPRITES 3000	// The maximum number of sprites you
					// can store in the sprite buffer
MAX_SPRITES_FILE 8000	// The maximum number of sprites
					// allowed in a spritebank

// Following are sprite flags
SPRFLAG_COMPRESSED 1	// This feature is not yet supported
SPRFLAG_RLE 2	// This feature is not yet supported
SPRFLAG_ISAFRAME 4	// This indicates the sprite is a frame
				// See the animation note above
SPRFLAG_PALETTE 8	// This feature is not yet supported

SPRFLAG_CLONE 64	// This indicates that the sprite is a
// clone of another sprite
SPRFLAG_ANIMATE 128	// Flag indicating sprite should animate
SPRFLAG_MOVE 256	// Flag indicating sprite should auto move

SPRFLAG_REMAP 512	// This flag indicates that the sprite is
				// transparent, a light or a shadow

// These are the three types of frame animation supported
SPRANIM_LOOPING 0	// After last frame is played the
// animation loops back to the master
// sprite
SPRANIM_PINGPONG 1	// After the last frame is played the
				// frames are played in reversed order.
SPRANIM_ONESHOT 2	// The animation only plays once

// These are the various drawing modes for sprites
SPR_NORMAL 0	// Draw it normally
SPR_FLIP_X 1	// Draw it horizontally flipped
SPR_FLIP_Y 2	// Draw it vertically flipped
SPR_FLIP_XY 3 // Draw it flipped in both directions
Sprite Global Variables
FILE *spritehandle = pointer to the file handle of the spritebank
LONG sprite_buffer_offset = offset into sprite buffer for next
 sprite
LONG num_sprites = current number of sprites in buffer
LONG sprite_buffer_size = size of the current sprite buffer
UBYTE *sprite_buffer = pointer to the current sprite buffer

SpriteData spritedata[] = array of sprite info
DiskSpriteData spritedatadisk = a single record of sprite info
Index sprindex[] = the index of a spritebank
Sprite Structures
typedef struct DiskSpriteData
{
 UWORD xsize; // width of object in pixels
 UWORD ysize; // height of object in pixels
 ULONG bitmapsize; // size of the object's bitmap data
 UWORD programsize; // size of the object's program data
 UWORD palettesize; // size of the object's palette data
 UWORD translatesize;// size of the object's translation data
 ULONG size; // total size of the object's data
 WORD hotx; // x axis position of the object's hotspot
 WORD hoty; // y axis position of the object's hotspot
 UWORD flags; // sprite flags (see defines)
 UWORD spritefps; // speed that sprite animates in frames per
 // second
 UBYTE numframes; // number of frames attached to this sprite
 UBYTE animtype; // type of animation this sprite does (see
 // defines)
 BYTE movex; // how much to move sprite in x position when
 // drawn
 BYTE movey; // how much to move sprite in y position when
 // drawn
 UWORD attached; // link to next attached sprite
 UWORD progcounter; // offset into program for next instruction
 UWORD loopcounter; // loop counter for sprite program
 UWORD returnsprite; // sprite that "called" this sprite drawing
 UWORD pad[8];
} DiskSpriteData;

typedef struct SpriteData
{
 struct DiskSpriteData;
 WORD xpos; // x position of object on screen
 WORD ypos; // y position of object on screen
 UBYTE currentframe; // current frame number in animation
 BYTE direction; // direction of next frame in animation
 UBYTE pad[2]; // padding
 ULONG nextframetime; // time that next frame will occur
 UBYTE *bitmapptr; // pointer to bitmap data
 UBYTE *programptr; // pointer to program data
 UBYTE *paletteptr; // pointer to the object's palette
 UBYTE *translateptr; // pointer to the object's translation
 // table(s)
} SpriteData;

typedef struct Index
{
 UBYTE name[32];	// sprite name
 LONG offset;		// offset of sprite in spritebank
} Index;

AddBob
Adds a bob to the sprite buffer. As the bob is added to the sprite buffer, it’s bitmap data is copied from the supplied buffer to the sprite buffer.
Prototype
WORD AddBob(UWORD xsize, UWORD ysize, UBYTE *spriteptr);
Inputs
UWORD xsize = the width of the bob in pixels
UWORD ysize = the height of the bob in pixels
UBYTE *spriteptr = pointer to the bitmap data for the bob
Returns
-1 if an error occurs, or a number ranging from 0 to 2999 indicating which number the bob was assigned.
AddSprite
Adds a sprite to the sprite buffer. As the sprite is added to the sprite buffer, it’s bitmap data is copied from the supplied buffer to the sprite buffer.
Prototype
WORD AddSprite(UWORD xsize, UWORD ysize, UBYTE *spriteptr);
Inputs
UWORD xsize = the width of the sprite in pixels
UWORD ysize = the height of the sprite in pixels
UBYTE *spriteptr = pointer to the bitmap data for the sprite
Returns
-1 if an error occurs, or a number ranging from 0 to 2999 indicating which number in the bank the sprite was assigned
AllocSpriteBuffer
Allocates a sprite buffer of the indicated size. This buffer will not grow to accommodate more sprites if it fills up.
Prototype
BOOL AllocSpriteBuffer(ULONG size);
Inputs
ULONG size = the size of the sprite buffer in bytes
Returns
TRUE if there was enough memory, otherwise FALSE
AnimateSprite
This function sets the animation flag for the specified sprite so that it will no animate when subsequently drawn (if it has a frame attached to it).
Prototype
void AnimateSprite(UWORD sprnum)
Inputs
UWORD sprnum = the assigned number of the sprite you want to animate
Returns
nothing
BuildTranslationTable
This function builds a translation table so that sprites (but not bobs) may have their actual colors translated to new colors while they are being rendered. The colortable is an array of ULONGs that is an even number in length (so that there are pairs of colors). The first ULONG in a pair represents the original color, the second ULONG is the color to substitute in its place. For example, if you wanted to replace all bright red colors in the sprite with bright purple, the pair would be 0x00ff0000, 0x00ff00ff. End the table with two ULONGs set to 0. This function uses the FindColor() function to find the closest match in the palette so it may take a while to execute. This should not be used in the main loop of your application.
Prototype
void BuildTranslationTable(ULONG *colortable, UBYTE *offsettable, UBYTE *palette)
Inputs
ULONG *colortable = pointer to an array of original colors paired with new color values
UBYTE *offsettable = an array of 256 color offsets
UBYTE *palette = a pointer to the sprites palette (or the current palette)
Returns
nothing
ClearSpriteBuffer
This command clears the sprite buffer of some or all sprites.
Prototype
void ClearSpriteBuffer(WORD number);
Inputs
The number variable is the number that the next sprite or bob added should be assigned. For example, if 0, the bank will effectively be empty as the next sprite loaded/added will become sprite number 0. If you wanted to delete all but the first two sprites, number would be 2 (sprites 0 and 1 remain in bank).
Returns
None
CloneSprite
This function creates a new sprite or bob in all ways similar to the specified sprite. The difference is that the sprite data is NOT added to the sprite buffer again. If the original of a cloned sprite is deleted from the buffer, the clone sprite will not display properly!
Prototype
WORD CloneSprite(WORD spritenum)
Inputs
WORD spritenum = the number of the sprite to be cloned
Returns
The number assigned to the new sprite or -1 if the bank is full or the original sprite number does not exist.
CloseSpritebank
This function closes the previously opened sprite bank file.
Prototype
void CloseSpritebank(void)
Inputs
none
Returns
nothing
DeleteSprite
This function deletes a sprite from the sprite or bob from the sprite buffer. Sprite data found behind it in the buffer will be copied down and sprite pointers will be adjusted so this function may take a little while to return. This should not be called as part of a game loop! If the sprite is a master sprite (i.e. having frames), all frames will be deleted. If the sprite is a frame, it and all subsequent frames will be deleted and the master frame will be updated to represent the correct number of remaining frames. If the sprite is an original with clones of it remaining, the clones will not render properly. As well, sprites loaded after the deleted sprite will no longer have proper sprite numbers. All assigned numbers must be reduced by the actual number of sprites deleted from the buffer (1 or more).
Prototype
void DeleteSprite(WORD number)

Inputs
WORD number = the number assigned to the sprite you wish to delete
Returns
nothing
DrawBob
Draws the specified bob number in the specified style.
Prototype
void DrawBob(UWORD bobnum, UBYTE mode)
Inputs
UWORD bobnum is the number of the bob to draw
UBYTE mode = style to draw bob in (see sprite constants)
Returns
None
DrawFlippedBob
Draws the specified bob number in the specified style but flipped from left to right (flipped on it’s Z axis)
Prototype
void DrawFlippedBob(UWORD bobnum, UBYTE mode)
Inputs
UWORD bobnum is the number of the bob to draw
UBYTE mode = style to draw bob in (see sprite constants)
Returns
None
DrawFlippedScaledBob
Draws a bob in the specified mode but stretched or shrunk to the new size and flipped left to right (on its Z axis)
Prototype
void DrawFlippedScaledBob(UWORD bobnum, UBYTE mode, UWORD width, UWORD height)
Inputs
UWORD bobnum is the number of the bob to draw
UBYTE mode = style to draw bob in (see sprite constants)
UWORD width = new width of the bob in pixels
UWORD height = new height of the bob in pixels
Returns
None
DrawFlippedScaledSprite
Draws a sprite in the specified mode but stretched or shrunk to the new size and flipped left to right (on its Z axis)
Prototype
void DrawFlippedScaledSprite(UWORD sprnum, UBYTE mode, UWORD width, UWORD height)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UWORD width = new width of the sprite in pixels
UWORD height = new height of the sprite in pixels
Returns
None
DrawFlippedScaledSpriteTranslate
Draws a sprite in the specified mode but stretched or shrunk to the new size and flipped left to right (on its Z axis) and translated to new colors
Prototype
void DrawFlippedScaledSpriteTranslate(UWORD sprnum, UBYTE mode, UWORD width, UWORD height, UBYTE *transtable)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UWORD width = new width of the sprite in pixels
UWORD height = new height of the sprite in pixels
UBYTE *transtable = translation table
Returns
None
DrawFlippedSprite
Draws the specified sprite number in the specified style but flipped from left to right (flipped on it’s Z axis)
Prototype
void DrawFlippedSprite(UWORD sprnum, UBYTE mode)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
Returns
None
DrawFlippedSpriteTranslate
This functions draws a sprite in the specified style, but flipped from left to right (on it’s Z axis) and translated to a new set of colors.
Prototype
void DrawFlippedSpriteTranslate(UWORD sprnum, UBYTE mode,
UBYTE *transtable)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UBYTE *transtable = the translation table
Returns
nothing
DrawScaledBob
Draws a bob in the specified style but stretched or shrunk to the new size.
Prototype
void DrawScaledBob(UWORD bobnum, UBYTE mode, UWORD width, UWORD height)
Inputs
UWORD bobnum is the number of the bob to draw
UBYTE mode = style to draw bob in (see sprite constants)
UWORD width = new width of the sprite in pixels
UWORD height = new height of the bob in pixels
Returns
None
DrawScaledSprite
Draws a sprite in the specified style but stretched or shrunk to the new size
Prototype
void DrawScaledSprite(UWORD sprnum, UBYTE mode, UWORD width, UWORD height)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UWORD width = new width of the sprite in pixels
UWORD height = new height of the sprite in pixels
Returns
None
DrawScaledSpriteTranslate
Draws a sprite in the specified style but stretched or shrunk to the new size and translated to different colors
Prototype
void DrawScaledSpriteTranslate(UWORD sprnum, UBYTE mode, UWORD width, UWORD height, UBYTE *transtable)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UWORD width = new width of the sprite in pixels
UWORD height = new height of the sprite in pixels
UBYTE *transtable = the translation table
Returns
nothing
DrawSprite
Draws a sprite in the specified mode.
Prototype
void DrawSprite(UWORD sprnum, UBYTE mode)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
Returns
None
DrawSpriteTranslate
Draws a sprite in the specified mode and with the colors translated via the specified translation table
Prototype
void DrawSpriteTranslate(UWORD sprnum, UBYTE mode, UBYTE *transtable)
Inputs
UWORD sprnum is the number of the sprite to draw
UBYTE mode = style to draw sprite in (see sprite constants)
UBYTE *transtable = the translation table
Returns
None
FreeSpriteBuffer
This frees the memory taken by the sprite buffer.
Prototype
void FreeSpriteBuffer(void);
Inputs
None
Returns
nothing
GetSpritePos
Read a sprite’s position from the spritebank and place it in the specified variables
Prototype
void GetSpritePos(WORD sprnum, UWORD *x, UWORD *y)
Inputs
WORD sprnum = the number assigned to the sprite in question
UWORD *x = pointer to a variable to contain the x position
UWORD *y = pointer to a variable to contain the y position
Returns
None
LoadSpritebankPalette
This function reads the main palette from the spritebank into the specified buffer. The spritebank must have been previously opened by a call to the OpenSpritebank() function.
Prototype
BOOL LoadSpritebankPalette(UBYTE *palette)
Inputs
UBYTE *palette = pointer to the buffer to load palette data into
Returns
TRUE if the palette was present and loaded, otherwise FALSE.
LoadSprite
This function loads the named sprite from the previously opened sprite bank.
Prototype
WORD LoadSprite(UBYTE *name)

Inputs
UBYTE *name = pointer to the sprite’s name
Returns
A word indicating what number in the sprite buffer it was assigned.
OpenSpritebank
This function opens the specified sprite bank file for reading.
Prototype
BOOL OpenSpritebank(char *filename)
Inputs
UBYTE *filename = the name of the file to open
Returns
TRUE if the file was present and was a spritebank, otherwise FALSE.
RemapSprite
Remaps the bitmap of a sprite, matching its colors in the old palette with the closest match in the new palette
Prototype
void RemapSprite(UWORD spritenum, UBYTE *oldpalette, UBYTE *newpalette)
Inputs
UWORD spritenum = the number assigned to the sprite
UBYTE *oldpalette = pointer to the sprite’s current palette
UBYTE *newpalette = pointer to the desired palette
StillSprite
This function clears the animation flag for the specified sprite so that it will no longer animate.
Prototype
void StillSprite(UWORD sprnum)
Inputs
UWORD sprnum = the assigned number of the sprite you want to “still”
Returns
nothing
UpdateSprite
This function copies the contents of the specified buffer to the sprite buffer, changing the appearance of the specified sprite. This may be done to actually change a sprite’s appearance or to restore the sprite’s original data to remap it to a different palette (after having remapped it already).
Prototype
WORD UpdateSprite(WORD spritenum, UBYTE *buffer)
Inputs
WORD spritenum = number of the sprite to be changed
UBYTE *buffer = pointer to a buffer holding the new sprite pixel data
Returns
The spritenum if all went ok, -1 if the sprite doesn’t exist in the sprite buffer.
�Module 18: Text Functions
This module combines all functions relating to text and fonts. At the moment the library supports the 8x8 pixel ROM font.
Text Constants
The following constants are used internally by the text module

FONT_BITPACKED 1	// Letters are stored one bit per pixel
FONT_MONO_BITMAP 2	// Letters stored as bytes but monochrome
FONT_COLOR_BITMAP 4	// Letters stored as 256 colors
FONT_FIXED_WIDTH 8	// Each letter the same width
FONT_STARTAT32 16	// First 31 ASCII characters are missing

ROMFONT_ADDRESS (UBYTE *)0xffa6e
ROMFONT_HEIGHT 8
ROMFONT_WIDTH 8
ROMFONT_TYPE FONT_BITPACKED | FONT_FIXED_WIDTH

Text Global Variables
Font *current_font = a pointer to the current font’s structure
Font romfont = a pointer to the ROM font’s structure

Text Structures

typedef struct Font
{
 UBYTE *address; // address of font bitmap data
 UWORD *widths; // table of widths for each letter
 ULONG *offsets; // table of offsets for each letter
 UWORD height; // (maximum) height of font in pixels
 UWORD width; // (maximum) width of font in pixels
 UBYTE type; // font type
} Font;

GetText
This function inputs text on a graphics screen (allowing editing with the backspace key) and returns when ENTER is pressed. Screen position MUST be valid screen coordinates
Prototype
void GetText(WORD xpos, WORD ypos, UBYTE *text, UBYTE length, UBYTE backclr, UBYTE textclr)
Inputs
WORD xpos = horizontal position of text input area
WORD ypos = vertical position of text input area
UBYTE *text = pointer to string buffer for text
UBYTE length = maximum length of string
UBYTE backclr = color offset for background behind text
UBYTE textclr = color offset for the text color
Returns
Inputted text in the UBYTE *text string
GetTextDefault
This function inputs text on a graphics screen (allowing editing with the backspace key) and returns when ENTER is pressed. Text already in the *text pointer will be displayed and may be edited. Screen position MUST be valid screen coordinates
Prototype
void GetTextDefault(WORD xpos, WORD ypos, UBYTE *text, UBYTE length, UBYTE backclr, UBYTE textclr)
Inputs
WORD xpos = horizontal position of text input area
WORD ypos = vertical position of text input area
UBYTE *text = pointer to string buffer for text
UBYTE length = maximum length of string
UBYTE backclr = color offset for background behind text
UBYTE textclr = color offset for the text color
Returns
Inputted text in the UBYTE *text string
Text
Prints text on the screen at the specified position. The screen position MUST be valid screen coordinates as only primitive clipping is performed.
Prototype
void Text(UWORD xpos, UWORD ypos, UBYTE *text, ULONG color)
Inputs
UWORD xpos = horizontal position of text
UWORD ypos = vertical position of text
UBYTE *text = pointer to the text to be printed
ULONG color = color that the text should be rendered in
Returns
nothing
�Module 19: TGA Functions
Overview
This module contains functions which manage the reading and writing of TGA graphic files. As well, palette loading from a TGA is supported. This, along with other graphic file formats, is better supported through the Pic module where you need not specify the type of format to load a picture or palette.
TGA Global Variables
TGAHeader tga_header = pointer to the header for current TGA file
TGA Structures
typedef struct TGAHeader {
 UBYTE idlen;		// extra data length
 UBYTE palettetype;	// type of palette
 UBYTE imagetype;		// type of image
 UWORD paletteindex;	// offset into palette
 UWORD palettelen;		// length of palette data
 UBYTE entrysize;		// size of each palette entry
 UWORD xpos;			// screen x pos
 UWORD ypos;			// screen y pos
 UWORD width;		// width of image
 UWORD height;		// height of image
 UBYTE pixelsize;		// number of planes (8 = 256 color)
 UBYTE descriptor;		// how bitmap is stored
} TGAHeader;
IsTGA
This function determined whether or not the specified filename is a TGA graphic file.
Prototype
BOOL IsTGA(UBYTE *filename)
Inputs
UBYTE *filename = name of file to examine
Returns
TRUE if the file is a TGA file, otherwise FALSE
GetTGAHeader
This function loaded the header information from a TGA file into the global TGA header buffer and, additionally, into a buffer you specify.
Prototype
BOOL GetTGAHeader(UBYTE *filename, TGAHeader *header)
Inputs
UBYTE *filename = name of the TGA file
TGAHeader *header = pointer to your own buffer or 0.
Returns
TRUE is all went well, otherwise FALSE
LoadTGA
This function loads the specified TGA file into the specified buffer, and loads the palette into a buffer at the callers option.
Prototype
BOOL LoadTGA(UBYTE *filename, UBYTE *body_buffer, UBYTE *palette_buffer)
Inputs
UBYTE *filename = name of TGA file to load
UBYTE *body_buffer = pointer to a buffer for the image
UBYTE *palette_buffer = optional pointer to a buffer for the TGA file’s palette or 0 if you do not want the palette loaded
Returns
TRUE if all went well, otherwise FALSE
LoadTGAPalette
This function loads the palette information from a TGA file into the specified buffer.
Prototype
BOOL LoadTGAPalette(UBYTE *filename, UBYTE *colormap)
Inputs
UBYTE *filename = name of file to load palette from
UBYTE *colormap = pointer to a buffer to store palette in
Returns
TRUE if all went well, otherwise FALSE
SaveTGA
This function saves the specified buffer to disk as an uncompressed TGA picture file.
Prototype
BOOL SaveTGA(UBYTE *filename, UBYTE *buffer, UWORD width, UWORD height, UBYTE *colormap)
Inputs
UBYTE *filename = name of destination TGA file
UBYTE *buffer = pointer to the graphics data to be saved
UWORD width = the width of the image in pixels
UWORD height = the height of the image in pixels
UBYTE *colormap = pointer to the palette to be saved with image
Returns
TRUE if all went well, otherwise FALSE
�[This page left intentionally blank]�Module 20: Time Functions
Overview
This module contains functions to dealing with and controlling PC timers. Timer interrupts may be installed, the timer resolution modified, and delays as accurate as the timer resolution are possible. Care should be taken to restore the original 18.2 period of the timer before the application exits. As well, the original timer interrupt must be restored or the system will hang.
Time Constants
These constants are used to define the period of the timer.
TIMER140HZ 0x214a	// 140 ticks per second
TIMER120HZ 0x26d7	// 120 ticks per second
TIMER105HZ 0x2c63	// 105 ticks per second
TIMER70HZ 0x4295	// 70 ticks per second
TIMER60HZ 0x4dae	// 60 ticks per second
TIMER35HZ 0x852b	// 35 ticks per second
TIMER30HZ 0x965c	// 30 ticks per second
TIMER18HZ 0xffff	// 18.2 ticks per second
Time Global Variables
ULONG fps_frames = number of calls to the DoubleBuffer() function since the application began
ULONG time_count = number of ticks since the GameTimer was installed
FLOAT timer_rate = the current frequency of the timer
ChangeTimer
This function changes the resolution of the timer. You are responsible for restoring the timer speed when your program exits. If you do not, the system time will become increasingly erroneous.
Prototype
void ChangeTimer(ULONG period)
Inputs
Desired period to reflect the resolution desired (see constants)
Returns
nothing
GameTimer
This function installs a timer interrupt that counts the ticks since its installation. You need to install the game timer if you wish sprite animation/movement as well as several other functions of the library to occur!
Prototype
void GameTimer(void)
Inputs
none
Returns
nothing
InitFPS
This function initializes a Frames Per Second counter and should be called immediately preceding the section of code you wish to time (i.e. the game loop).
Prototype
void InitFPS(void)
Inputs
none
Returns
nothing
OldTimer
This function restores the original timer interrupt.
Prototype
void OldTimer(void)
Inputs
none
Returns
nothing
PaceFLI
This function will pause if necessary such that an FLI will play back at the proper speed. The desired speed is setup by calling the SetFLISpeed() function. This function is called when you open the flic file with OpenFLI(). The GameTimer() function must have been previously called and the timer should have been set to a resolution which is a multiple of the speed of the FLI.
Prototype
void PaceFLI(void)
Inputs
none
Returns
nothing
PaceMainLoop
This function will pause if necessary such that the main loop of your application executes at a consistent speed. The desired speed is setup by calling the SetMainloopSpeed() function. The GameTimer() function must have been previously called and the timer should have been set to a resolution which is a multiple of the speed you wish the mainloop to execute at.
Prototype
void PaceMainLoop(void)
Inputs
none
Returns
nothing
ReportFPS
This function reports the time elapsed, the number instances of the DoubleBuffer() function and the approximate frames per second speed of the application. It renders this information only on a text display so you should be sure to restore a text screen mode before calling this function.
Prototype
void ReportFPS(void)
Inputs
none
Returns
nothing
SetFLISpeed
This function sets the pacing speed for an FLI. It should be called prior to any call to the PaceFLI().
Prototype
void SetFLISpeed(ULONG fps)
Inputs
ULONG fps = the number of frames per second you wish the animation to play at.
Returns
nothing
SetMainloopSpeed
This function sets the pacing speed for the main loop of the application. It should be called prior to any call to the PaceMainloop().
Prototype
void SetMainloopSpeed(ULONG fps)
Inputs
ULONG fps = the number of iterations per second you wish the main loop to execute at.
Returns
nothing

�Module 21: VESA Functions
Overview
This module contains all functions pertinent to the setup and management of various VESA modes. All rendering functions of the library will work with ANY 256 color VESA mode. In addition, the module will, at the users discretion, automatically try to use VESA 2.0 functions (32 bit functions) and the Linear Frame Buffer if present. Applications using the Linear Frame Buffer can often run almost three times the speed as applications using VESA 1.2! In accordance with VESA 2.0 specifications, screen modes are a thing of the past. Instead the list of supported VESA modes is queried for the most appropriate VESA mode. You may end up getting a screen mode somewhat larger than what you ask for. To ensure your application can accommodate this fact, your double buffer should be the same dimensions as your screen and your software should compensate for the extra space (if any) by enlarging graphics (scaling), drawing additional graphics or centering the graphics on the screen.
VESA Constants
These constants are flags for types of screen modes and are used internally
vbeMdAvailable 0x0001
vbeMdColorMode 0x0008
vbeMdGraphMode 0x0010
vbeMdNonBanked 0x0040
vbeMdLinear 0x0080

Vesa Global Variables
VesaInfo far *vesa_info = FAR pointer to the vesa info structure

VesaModeData far *vesa_mode_data = FAR pointer to the VESA data struct

UWORD vesa_version = VESA version split between the bytes (such that 1.2 would be 0x0102 or 2.0 would be 0x0200)
LONG vesa_granularity = granularity of the window
LONG vesa_page = current page number
LONG vesa_bits_per_pixel = bits in each pixel
BOOL vesa_checked = flag, has VESA info been checked
BOOL using_lfb = flag, are we using the linear frame buffer
BOOL vbedone = flag, had address for LFB been determined

WORD mode_list[] = array of screen modes (ends with 0)

VESA Structures
typedef struct VesaInfo
{
 BYTE Signature[4];
 UWORD Version;
 UWORD OEMNameOffset;
 UWORD OEMNameSegment;
 UBYTE Capabilities[4];
 ULONG VideoModePtr;
 UWORD TotalMemory;

 // VBE 2.0 Extentions
 UWORD OEMSoftwareRev;
 ULONG OEMVendorNamePtr;
 ULONG OEMProductNamePtr;
 ULONG OEMProductRevPtr;
 UBYTE reserved[222];
 UBYTE OEMData[256];
} VesaInfo;

typedef struct VesaModeData
{
 UWORD ModeAttributes;
 UBYTE WindowAAttributes;
 UBYTE WindowBAttributes;
 UWORD WindowGranularity;
 UWORD WindowSize;
 UWORD StartSegmentWindowA;
 UWORD StartSegmentWindowB;
 void (*WindowPositioningFunction)(LONG page);
 UWORD BytesPerScanLine;

//Remainder of this structure is optional for VESA modes in
//v1.0/1.1, needed for OEM modes.

 UWORD PixelWidth;
 UWORD PixelHeight;
 UBYTE CharacterCellPixelWidth;
 UBYTE CharacterCellPixelHeight;
 UBYTE NumberOfPlanes;
 UBYTE BitsPerPixel;
 UBYTE NumberOfBanks;
 UBYTE MemoryModelType;
 UBYTE SizeOfBank;
 UBYTE NumberOfImagePages;
 UBYTE Reserved1;

 // VBE 1.2 Extentions

 UBYTE RedMaskSize;
 UBYTE RedFieldPosition;
 UBYTE GreenMaskSize;
 UBYTE GreenFieldPosition;
 UBYTE BlueMaskSize;
 UBYTE BlueFieldPosition;
 UBYTE ReservedMaskSize;
 UBYTE ReservedFieldPosition;
 UBYTE DirectColourModeInfo;

 // VBE 2.0 Extentions
 ULONG PhysBasePtr;
 ULONG OffScreenMemOffset;
 UWORD OffScreenMemSize;
 UBYTE Reserved2[206];
} VesaModeData;

CheckVesa
This function queries the system to determine if VESA BIOS extensions are present and what version is present. This function need only be called once and will automatically be called if you attempt to set a VESA screen mode.
Prototype
UWORD CheckVesa(void)
Inputs
none
Returns
WORD = high byte of WORD is the major version number, low byte is the revision number (like vesa_version global variable).
FindBestVesaMode
This function finds the VESA mode that best matches the characteristics you require and sets the screen to that mode. Info on that mode will automatically be obtained and relevant global variables will be set.
Prototype
BOOL FindBestVesaMode(LONG width, LONG height, LONG pixelbits, BOOL lfbflag)
Inputs
LONG width = minimum width of the screen in pixels
LONG height = minimum height of the screen in pixels
LONG pixelbits = exact number of bits per pixel (8 for 256 colors)
BOOL lfbflag = flag as to whether or not to attempt a linear frame buffer mode
Returns
TRUE if a mode was found that is the required size or larger (and the screen was set), otherwise FALSE (no mode close to the parameters exists)
FindVesaMode
This function attempts to set the screen to a VESA mode exactly matching the characteristics you require. Info on that mode will automatically be obtained and relevant global variables will be set.
Prototype
BOOL FindVesaMode(LONG width, LONG height, LONG pixelbits, BOOL lfbflag)
Inputs
LONG width = width of the screen in pixels
LONG height = height of the screen in pixels
LONG pixelbits = number of bits per pixel (8 for 256 colors)
BOOL lfbflag = flag as to whether or not to force a linear frame buffer mode
Returns
TRUE if all went ok (and the screen was set), otherwise FALSE (the mode does not exist)
FreeVesa
This function frees the small buffer used by VESA routines to hold various structures. It should be called only once in the cleanup routines of your application (before you exit).
Prototype
void VesaFree(void)
Inputs
none
Returns
nothing
GetVesaModeInfo
This function gets detailed information on the requested VESA mode and stores that information in the global vesa_mode_data structure. The linear frame buffer (if present) will be “found”. This function is automatically called when you set the screen to a given mode (including though the FindVesaMode() and FindBestVesaMode() functions).
Prototype
BOOL GetVesaModeInfo(UWORD vmode)
Inputs
UWORD vmode = VESA mode to examine
Returns
TRUE if that mode exists and all buffers were allocated, otherwise FALSE
SetDisplayStart
This function sets the offset into video RAM that the display should start at. This is used for hardware scrolling. The parameters must be positive coordinates. No bounds checking is performed and you will get unpredictable results if the display card encounters the end of video RAM.
Prototype
void SetDisplayStart(UWORD column, UWORD row)
Inputs
UWORD column = desired column offset
UWORD row = desired row offset
Returns
nothing
SetVesaMode
This function will set the screen to the specified VESA mode. You should NOT use this function directly! VESA modes CAN CHANGE! Your program will die on some video cards in the future! People will hunt you down! Bad karma will be yours! Ok, you’ve been warned...
Prototype
BOOL SetVesaMode(UWORD mode)
Inputs
UWORD mode = mode to set
Returns
TRUE if ok, otherwise FALSE
SetVesaPage
This function sets the current VESA page for displays using VESA 1.2 or 2.0 screen modes which are banked.
Prototype
void SetVesaPage(LONG vpage)
Inputs
LONG vpage = page number to set
Returns
nothing
VesaDoubleBuffer
This functions copies the contents of the offscreen buffer to video RAM. It is automatically called by the DoubleBuffer() function (see Screen Modules) and DoubleBuffer() should be used!
Prototype
void VesaDoubleBuffer(void)
Inputs
none
Returns
nothing
VesaDoubleBufferRect
This function copies a rectangular section of the offscreen buffer to a corresponding rectangular region of the screen. It supports normal and interlaced screens. This function is automatically called by the DoubleBufferRect() function (see Screen modules) and the DoubleBufferRect() function should be used.
Prototype
void VesaDoubleBufferRect(UWORD xleft, UWORD yleft, UWORD xright, UWORD yright)
Inputs
UWORD xleft = top left horizontal coordinate to copy from/to
UWORD yleft = top left vertical coordinate to copy from/to
UWORD xright = bottom right horizontal coordinate to copy from/to
UWORD yright = bottom right vertical coordinate to copy from/to
Returns
nothing
VesaDoubleBufferInterlaced
This function copies a rectangular section of the offscreen buffer to a corresponding rectangular region of the screen. As it copies, it skips every second line to create an interlaced effect.
Prototype
void VesaDoubleBufferInterlaced(UWORD xleft, UWORD yleft, UWORD xright, UWORD yright)
Inputs
UWORD xleft = top left horizontal coordinate to copy from/to
UWORD yleft = top left vertical coordinate to copy from/to
UWORD xright = bottom right horizontal coordinate to copy from/to
UWORD yright = bottom right vertical coordinate to copy from/to
Returns
nothing

�[this page left intentionally blank]�Module 23: VLib Functions
Overview
This module has only two functions. The functions serve a quick and easy way to initialize and free up the various resources of the library. In one command you can set up timers, take the keyboard, select a screenmode, initialize the Soundblaster and allocate a spritebank.
VLib Constants
These are the flags for difference resources in the library to be initialized (used by InitVLib()).
INIT_VESA 1
INIT_MOUSE 2
INIT_JOYSTICK 4
INIT_KEYBOARDISR 8
INIT_SOUND 16
INIT_TIMER 32
INIT_SCREEN 64
INIT_SPRITES 128

INIT_MOST INIT_VESA | INIT_MOUSE | INIT_SOUND |
 INIT_TIMER | INIT_SCREEN | INIT_SPRITES
INIT_ALL 65535
VLib Global Variables
If you wish the init function to use difference values
ULONG desired_sampling_rate 		Default sampling rate (22050)
ULONG desired_spritebuffer_size 	Default spritebank size (1MB)
ULONG desired_screen_width		Default screen width (640)
ULONG desired_screen_height		Default screen height (480)

BOOL vlibinit = FALSE;
BOOL mousepresent = FALSE;
BOOL joystickpresent = FALSE;
BOOL soundpresent = FALSE;
BOOL screenpresent = FALSE;
InitVLib
This function initializes the resources in the VLib library according to the flags set when calling the function. If you change the global default variables, you may change how the resources are initialized. Various flags (see VLib Global Variables) are set according to the various hardware/software found.
Prototype
void InitVLib(UWORD flags);
Inputs
UWORD flags = flags for various options (see constants)
Returns
nothing
FreeVLib
This function frees resources allocated via the InitVLib() function and other functions of the library (like AllocDoubleBuffer() etc). It also restores the screenmode to 0x03 (80x25 text mode).
Prototype
void FreeVLib(void)
Inputs
none
Returns
nothing
�Module 24: Wave Functions
Overview
This module deals with loading Microsoft .WAV files.
Wave Global Variables
UBYTE snd_size = SND_8BIT		Default sound size
UBYTE snd_format = SND_SIGNED	Default sound type, if this is made to be SND_UNSIGNED, WAV files will not be transformed
WAVHeader wav_header;			Global WAV header structure
Wave Structures
typedef struct WAVHeader {
 UBYTE rID[4]; // "RIFF"
 ULONG rLen; // length of data in this chunk

 UBYTE wID[4]; // "WAVE"

 UBYTE fID[4]; // "fmt"
 ULONG fLen; // length of chunk
 UWORD wFormatTag; // format of sound
 UWORD nChannels; // number of channels, 1 = mono, 2 = stereo
 ULONG nSamplesPerSec; // playback frequency
 ULONG nAvgBytesPerSec; // nChannels * nSamplesPerSec * (nBitsPerSample/8)
 UWORD nBlockAlign; // nChannels * (nBitsPerSample / 8)
 UWORD nBitsPerSample; // number of bits per sample

 UBYTE dID[4]; // "data"
 ULONG dLen; // data size;
} WAVHeader;
GetWAVHeader
This function loads the header of the specified .WAV file into the global header buffer and additionally into the specified buffer.
Prototype
BOOL GetWAVHeader(UBYTE *filename, WAVHeader *header)
Inputs
UBYTE *filename = name of file
WAVHeader *header = pointer to optional header buffer (in addition to the global header)
Returns
TRUE if all went all right, otherwise FALSE
IsWAV
This functions determines whether the specified file is a .WAV file or not.
Prototype
BOOL IsWAV(UBYTE *filename)
Inputs
UBYTE *filename = name of file to examine
Returns
TRUE if it is a .WAV file, otherwise FALSE
LoadWAV
This function loads the specified .WAV file into the specified buffer. Additionally the sound data are transformed from unsigned .WAV data to signed data appropriate for playback on Soundblaster cards.
Prototype
BOOL LoadWAV(UBYTE *filename, UBYTE *buffer)
Inputs
UBYTE *filename = name of file
UBYTE *buffer = pointer to the buffer to load data into
Returns
nothing

�

VLib SDK Utilities
��
Spritebank Editor
��
Common palette generator
��
Wave to RAW file converter
��
��Spritebank Editor
Overview
The spritebank editor is a graphical program to facilitate the building of large collections of sprites into one file. You may easily rearrange sprites and set various parameters within the sprite structure. As well, you may orchestrate sprite animations by defining a series of sprites as being frames of a master sprite. Thereafter, each time the master sprite is drawn, the appropriate frame is drawn in it’s place. Finally sprites may be made to be transparent, lights, or shadows.
Spritebank Editor Main Screen
� EMBED Word.Picture.6 ���Figure 1.1: Spritebank editor main display

There are 5 sections to the spritebank editor main display.
1. Current sprite display
The current sprite is prominently displayed in the top left corner of the display.
2. Current sprite information
Various data on the current sprite is displayed to the right of its image. The data includes: sprite name, dimensions (width and height), sizes of various data associated with the sprite (not all are currently utilized), hotspot information, flags, animation information (speed in frames per second, number of frames attached to the master sprite and the style of animation) and the amount of movement for this sprite.
3. Sprite strip
The current sprite and the four proceeding sprites are displayed in this area.
4. Sprite selection slider
The two buttons and the slider allow you to select the current sprite.
5. Menu area
The current selection of options and/or input area is found toward the bottom of the screen.
Main Menu
This is where you’ll find buttons to select various other parts of the program. To move through the different sprites found in the bank, use the < or comma key to decrease the number of the current sprite and > or the period key to increase the number of the current sprite. Alternately, click and hold down the left mouse button over the scroll bar and move through the sprite bank.
New Bank
Keyboard shortcut = (shifted) n
This option clears the spritebank and resets the palette to the default palette.
Load Bank
Keyboard shortcut = l
This option loads a spritebank into memory.
Save Bank
Keyboard shortcut = s
This option saves the current spritebank to disk. It will prompt you for a name and, if the spritebank has already been named, will default to the current name.
Cut (Sprite)
Keyboard shortcut = (ctrl) x
This option will move the current sprite from the spritebank into the clipboard. The clipboard will only hold a sprite up to 786,432 bytes in size (including remapping tables).

Cutting out a frame will cut out any frames proceeding it. Cutting out the master sprite will remove all of its frames.
Copy (Sprite)
Keyboard shortcut = (ctrl) c
This option will copy the current sprite to the clipboard and leave the original in the bank. Again, be aware of the clipboard size of 786,432 bytes.
Paste (Sprite)
Keyboard shortcut = (ctrl) v
This option will paste the contents of the clipboard into the spritebank immediately preceding the current sprite. It will then prompt you to name the sprite, defaulting to the name of the source sprite. Remember to give it a new name if it is a “copy” of another sprite.

Pasting a sprite in the middle of a sequence of frames will corrupt the program’s knowledge of which frames are attached to the master. Paste new sprites after any existing frames and then set the frame flag for that new sprite.
Add Sprite
Keyboard shortcut = a
This function will add a new sprite to the spritebank. The source of the new sprite will be a picture file. After clicking this button you will be prompted to enter a filename of the source picture. The picture will then be loaded and crosshairs drawn on the screen. You may move the crosshairs with the mouse and the current coordinates of the crosshairs are displayed. Pictures up to 1024 x 768 pixels are supported. Pictures may be in PCX, BMP or targa file formats, but only pictures containing 256 colors are supported. Move the crosshairs to one corner of the section you wish to cut out. Press and hold down the left hand mouse button. The crosshairs now become a box and the box size (along with the current “opposite corner” location) is displayed. Drag the mouse to the point of the opposite corner of the area you wish to cut out and release the mouse button. The area you selected will be trimmed of any background color pixels surrounding it so you need not be that precise when cutting. You will then be prompted to name the sprite. The name must be unique to this bank of sprites.
Write to PCX
Keyboard shortcut = w
This option saves the current sprite as a PCX picture file. You will be prompted to enter a filename for the image, which will default to the name of the sprite.

Palette Menu
Keyboard shortcut = p
This option takes you to the palette menu.

In section 2 of the spritebank editor display, where information for the current sprite is usually displayed you will find 3 sliders and a line of data. In section 1 of the spritebank editor display, where the current sprite is usually depicted, you will find 16 columns of 16 palette entries, totaling the 256 colors of the current palette. The currently selected color has a white box around it. To select another color, simply click on it. To change the currently selected color, move the slider bars to the right, altering the color’s red, green and blue components.
Load Palette
Keyboard shortcut = l
This option allows you to load a palette from disk. It will load a raw (768 byte file) palette, or load a palette from a PCX, TGA or BMP file. If you have sprites in the bank already, you will have to remap them to this new palette.
Save Palette
Keyboard shortcut = s
This option will save out the current spritebank palette as a raw (768 byte) palette file.
Default Palette
Keyboard shortcut = d
This will change the current spritebank palette to the editor’s default palette. If you have sprites in the bank already, you will have to remap them to this new palette.
Restore Palette
Keyboard shortcut = o
This option will restore the palette that was present when this menu was first displayed (undoing changes/loading etc).
Remap Sprites
Keyboard shortcut = r
This option remaps all sprites in the bank from the previous palette to the current palette.

Hotspot Menu
Keyboard shortcut = h
This option takes you to the hotspot menu.
The hotspot is the relative topleft corner of the sprite. The hotspot will offset where precisely the sprite will be drawn. The hotspot values are subtracted from the desired screen position to obtain the final destination for the spite.
Increase X
Keyboard shortcut = (shifted) x
Increase the x value of the hotspot
Increase Y
Keyboard shortcut = (shifted) y
Increase the y value of the hotspot
Input X/Y
Keyboard shortcut = i
Will prompt you to enter both the x and y position of the hotspot.
Decrease X
Keyboard shortcut = x
Decrease the x value of the hotspot
Decrease X
Keyboard shortcut = y
Decrease the x value of the hotspot
Use Image
Keyboard shortcut = u
This function will display the sprite on a clear screen. Crosshairs that may be moved with your mouse are drawn over the sprite. You may then select the hotspot for the sprite by moving the crosshairs to the appropriate position and pressing the left mouse button.

Frames
Keyboard shortcut = f
This option takes you to the frames menu.

Frames are a way of specifying cells of a sprite’s animation. For instance, if, in your bank, sprite 3 is a master sprite and sprites 4-7 are frames of that master, you have the basis for an animation. For each frame you must specify the time it is to remain on the screen. To keep this value independent of the timer resolution, it is specified in the number of times per second this sprite would be displayed if only this sprite were being drawn. For example if a given frame (or master) should be displayed for ¼ of a second, you would give it a speed of 4 fps. If you wanted it displayed for 1/10th of a second, you would give it a speed of 10 fps. The maximum speed you can specify is 70 fps. Finally, you may choose one of three different styles of animation: looping, ping-pong and one-shot. A looping animation will play through all frames and then repeat, going back to the master frame and advancing. If the above sprites were used the sequence would be 3-4-5-6-7-3-4-5-6-7-3-4-5... A ping-pong animation advances from the master sprite to the last frame and then moves from the last frame back to the master. Using the above example the sequence would be 3-4-5-6-7-6-5-4-3-4-5-6-7... Finally, one-shot will display the frames from the master, to the last frame and then shut off the animation, thereafter only displaying the master frame.
Frame
Keyboard shortcut = f
This option will make the current sprite into a frame. The program will search backward for a master frame and increase it’s number of frames field.
Not Frame
Keyboard shortcut = n
This option will make the current sprite not a frame. Any frames after this sprite will also be severed from the master sprite. Be careful not to use this option on a sprite that is not already a frame (such as a master sprite).
Set FPS
Keyboard shortcut = s
This sets the length of time that this particular sprite is displayed (for a frame) and/or the length of time before the sprite moves again (see Auto changing movement below). See the Frame Menu overview for a discussion on how a FPS speed is translated into time.
Looping
Keyboard shortcut = l
Using this option on a master sprite will make this sprite animate as a looping animation.
Ping-Pong
Keyboard shortcut = p
Using this option on a master sprite will make this sprite animate as a ping-pong animation.
One-Shot
Keyboard shortcut = o
Using this option on a master sprite will make this sprite animate as a one-shot animation.

Auto Change
Keyboard shortcut = c
This option takes you to the autochange menu.
Set Movement
Keyboard shortcut = s
Using this option you may move a sprite automatically every so often. The number of times every second it is moved the specified amount is equal to the value found in the Sprite FPS field (set in the Frames menu). If you wish the sprite to move 15 times a second, set it’s sprite fps speed to 15 etc.
This option will prompt you for the amount of X and Y movement for this sprite. Values must be between -127 and 127 pixels on either axis.

Effects
Keyboard shortcut = e
This option takes you to the effects menu. Any sprite with an effect applied to it is remapped by the program and so may look very strange while in the sprite editor.
Transparent
Keyboard shortcut = t
This option will make the current sprite transparent. The program will prompt you for the amount of transparency, the lower the value, the more opaque the sprite will be (the higher the value, the more transparent). The esthetic quality of this option will depend, largely, on the palette at the time the effect is invoked. If very few suitable colors are available this effect can look quite bad.
Light
Keyboard shortcut = l
This option turns the current sprite into a light. When this option is selected you are prompted for a minimum and maximum light levels. The destination pixel’s red, green and blue components are increased by the difference between the maximum and minimum light levels divided by 256. The pixel is then further lighted by the amount of the minimum light level. Some experimentation with these values may be necessary to produce the desired effect.
Shadow
Keyboard shortcut = s
This option turns the current sprite into a shadow of varying dimness. When this option is selected you are prompted for a minimum and maximum darkness levels. The destination pixel’s red, green and blue components are decrease by the difference between the maximum and minimum light levels divided by 256. The pixel is then further darkened by the amount of the minimum shadow level. Some experimentation with these values may be necessary to produce the desired effect.
Mono Shadow
Keyboard shortcut = n
This option will first prompt you for the average shadow level. It then generates a 2 color version of the current sprite and makes pixels beneath the color potion of the sprite a number of shades darker equal to the average shadow level.

Quit
Keyboard shortcut = (shifted) q
This option quits immediately from the spritebank editor.

�Common
Overview
This utility will scan all PCX files in the current directory and build a palette of the most popular colors found among those pictures. If an optional number is specified in the command line, only that number of the most popular colors will be included in the palette. The palette file written out will be a RAW palette file with the name COMMON.PAL.
�[this page left intentionally blank]
�WAV2RAW
Overview
This utility will convert a WAV sound file to a RAW sound file suitable for direct use with Soundblaster and compatible cards.
�[this page left intentionally blank]
�Black
Overview
This function will load every PCX file in the current directory. If the current background color is something other than black, it will be made black and the image will be converted. As well, a one pixel outline around the image will be removed to negate any anti aliasing in rendered images. To suppress the removable of the outline (for none anti-aliased images) use the -n command line option.
�[this page left intentionally blank]
�Example Programs
Overview
In the Examples directory you will find several subdirectories of example programs. To compile all of the examples, use the MAKEALL batch file in the Examples directory. The examples are explained below.
BMP - Skull
This program is rather simple. It will set the computer to mode 0x13 (lores, 256 colors), allocate a double buffer, load a .BMP file into the double buffer and then wait for a keypress before exiting.

It displays minimal error checking. You should be using at least this level of error checking. Preferably, text strings indicating the kind of error should be printed.
Buttons - Buttons
This simple program displays 6 different buttons on the screen. The first three are various styles of toggle buttons, followed by a typical boolean button, a boolean button to quit the program and finally a slider. The program shows you how to quit upon detecting the quit button being hit. As well, it has a simple function to read the current slider position and report on it.
Flic - PlayFLC
This is a rather more complicated example program. This program will read and display a flic animation file. It can also, concurrently, play a sound file in accompaniment to the animation. An example animation and sound effect (albeit slightly rough quality) are included. Simply type:
Playflc explode explode
at a DOS prompt.

The program illustrates several key features of the library. First of all, it demonstrates how to load and play back a flic animation file. Another key feature is how it dynamically selects the most suitable screen mode for any given animation. Finally, it also gives an example of how to load and play a sound effect.
Joy - Joy
This program is fairly simple and demonstrates how to check for a joystick configuration file before recalibrating the joystick. It will then pole the joystick and print the values being returned until a key is pressed. Finally, it saves the calibration data for both joysticks to a file.
Paralax - Paralax
This program demonstrates the most important aspect of the library, the sprite handling functions. First, several sprites are loaded from a spritebank. You will note that it is very easy to load the man, his shadow and all associated frames. Next, the ground image is set to a paralax image - an image where every single line is offset horizontally from other lines. Every line is set to “scroll” at 24 256ths of a pixel faster than the line previous, so that lines toward the top of the image will appear to scroll slower than lines further down. The main loop of the code simply clears the screen and draws the bobs and sprites. The bob which is an image of hills scrolls only every 8 frames. The program will exit with a keypress.
PCX - PCX2TGA
This simple program loads a PCX picture, displays it on the screen, waits for a keypress, and then saves the picture out as a TGA file.
Setup - Setup
This program illustrates important interface building techniques. It will create a mock setup interface using text and buttons. It dynamically searches out colors closest to those it desires (dynamically because a graphic image is used as a background to the interface). It again shows how to monitor changing slider values and how to exit a program when appropriate.

VLIB Game Programming Library

VLIB Game Programming Library

�PAGE �34�

�PAGE �i�

�PAGE �xi�

VLIB Game Programming Library
Introduction

VLIB Game Programming Library
Introduction

� PAGE �33�

VLIB Game Programming Library
BMP Functions

VLIB Game Programming Library
BMP Functions

VLIB Game Programming Library
Button Functions

VLIB Game Programming Library
Button Functions

VLIB Game Programming Library
DOS Functions

VLIB Game Programming Library
DOS Functions

VLIB Game Programming Library
Draw Functions

VLIB Game Programming Library
Draw Functions

VLIB Game Programming Library
FLIC Functions

VLIB Game Programming Library
FLIC Functions

VLIB Game Programming Library
IFF Functions

VLIB Game Programming Library
IFF Functions

�PAGE �142�

� PAGE �143�

VLIB Game Programming Library
Joystick Functions

VLIB Game Programming Library
Joystick Functions

VLIB Game Programming Library
Keyboard Functions

VLIB Game Programming Library
Keyboard Functions

VLIB Game Programming Library
Keyboard Functions

VLIB Game Programming Library
Keyboard Functions

VLIB Game Programming Library
Linear Frame Buffer Functions

VLIB Game Programming Library
Linear Frame Buffer Functions

VLIB Game Programming Library
Mouse Functions

VLIB Game Programming Library
Mouse Functions

VLIB Game Programming Library
Palette Functions

VLIB Game Programming Library
Palette Functions

VLIB Game Programming Library
PCX Functions

VLIB Game Programming Library
PCX Functions

VLIB Game Programming Library
Picture Functions

VLIB Game Programming Library
Picture Functions

VLIB Game Programming Library
Screen Functions

VLIB Game Programming Library
Screen Functions

VLIB Game Programming Library
Serial Functions

VLIB Game Programming Library
Serial Functions

VLIB Game Programming Library
Sound Functions

VLIB Game Programming Library
Sound Functions

VLIB Game Programming Library
Sprite Functions

VLIB Game Programming Library
Sprite Functions

VLIB Game Programming Library
Text Functions

VLIB Game Programming Library
Text Functions

VLIB Game Programming Library
TGA Functions

VLIB Game Programming Library
TGA Functions

VLIB Game Programming Library
Time Functions

VLIB Game Programming Library
Time Functions

VLIB Game Programming Library
VESA Functions

VLIB Game Programming Library
VESA Functions

VLIB Game Programming Library
VLib Functions

VLIB Game Programming Library
VLib Functions

VLIB Game Programming Library
Wave Functions

VLIB Game Programming Library
Wave Functions

VLIB Game Programming Library
Utility Programs

VLIB Game Programming Library
Utility Programs

VLIB Game Programming Library
Spritebank Editor

VLIB Game Programming Library
Spritebank Editor

VLIB Game Programming Library
Common

VLIB Game Programming Library
Common

VLIB Game Programming Library
Wav2Raw

VLIB Game Programming Library
Wav2Raw

VLIB Game Programming Library
Black

VLIB Game Programming Library
Black

VLIB Game Programming Library
Example Programs

VLIB Game Programming Library
Example Programs

