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1. Introduction

1.1. Objectives
   The original purpose of this article was to cover the minimum of background theory
and concepts needed by anyone who wishes to use classical dynamics simulation to
model the behaviour of atomic collision systems using the Simulation Kit or a similar
package. However, in the writing I found that all but the introductory chapters became
very specific to the Simulation Kit, so I have changed the title to reflect this. This is not
necessarily a bad thing, since the reader can find excellent discussions of simulation
theory in the review literature (see below), and also nowadays on the World Wide Web.
   The range of particle energies considered here is 1 eV to - 100 keV. The is the range of
energies that can be simulated to varying degrees of realism by the Simulation Kit. The
lower energy limit is imposed by many-body and quantum effects, while the upper
limit is determined by both the treatment used for modelling inelastic effects, as well as
the practical difficulty of containing fast projectiles in small targets. This energy range
typically covers secondary ion mass spectrometry (SIMS) and ion scattering
spectroscopy (ISS) as well as a number of less familiar techniques and processes. The
discussion begins with a review of the theory of the binary collision, and very quickly
moves on to the task of computer implementation of many-particle simulations. The
treatment given here is more superficial and less rigorous than what is found in the
standard texts, since its objective is to get the reader going on the simulations as quickly
as possible.
   The article’s current purpose, then, is to serve as a manual of demonstration projects
for the Simulation Kit, and as a repository for other information that seemed out of place
in an on-line Help system. To a large extent, the discussion throughout the article is
built around the features offered by the Simulation Kit. Ideally, you should browse
through this article before, or while, you attempt a serious evaluation of the Simulation
Kit. Some of the diagrams are in colour, and may be better viewed on-screen than in a
monochrome printed version.
   The demonstration projects (other than the tutorial, which is not discussed here) are
designed to illustrate a range of Simulation Kit tasks. Some of them need to be more
thorough in scope in order to qualify as serious but nevertheless, the projects address
real research-level problems.
   The user will probably find that while it is easy to generate simulation data, it is
usually more difficult to extract meaningful output in the form of scattering profiles,
spectra and so forth. Given a body of simulation data, it is necessary to specify one's
informational requirements both in terms of the particle records which should be
ignored (i.e. the filtering operation), as well as the parameter which should form the
basis of spectral analysis or averaging. Normally these operations entail 2 distinct steps
(experience with databases will prove invaluable here). For example, before plotting a
spectrum of reflected projectile energies, you first need to ensure that you filter out
records that refer to (a) target particles; (b) projectiles that lodged in the target. The
exact filtering procedure required will depend on what output you chose to write at
simulation design time (in the Run file made by Spider). The subject of data
processing is discussed in greater depth in the manual for Winnow (winnow.doc)
which you can find in the docs directory of the Simulation Kit installation.
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    This article covers version 2.2 of the Simulation Kit, which differs from previous
versions in that it supports the optional inclusion of inelastic effects (Chapter 9) and
uses a system of user-editable flags to fine-tune simulation options (Chapter 10). The
article is written under severe time constraints, and I cannot pretend that even this
second edition is anywhere near complete. I would appreciate it if readers could point
out any errors of fact or omission.
   The best way to start learning about the Simulation Kit is to run the program Snook
using the tutorial and example projects provided. Most of the projects can be run
immediately by loading the input files into Snook. (With the iciss project, you first
need to view the readme.txt file found in the examples\iciss project directory.)

1.2. Sources
   A number of references to the primary and review literature are supplied in context
throughout the article. Since I anticipate that some readers of this article will be research
students from a variety of backgrounds, I have also given references to textbooks I have
used profitably myself over the years for some general topics that may not have taken
root during undergraduate days. The references may be found at the end of the article.
   There are several texts and review articles which cover the central subject matter of
this article especially well, which should be mentioned at the outset. These are by:
Smith et al.,2 Eckstein,3 Mashkova and Molchanov,4 Harrison,5 Smith and Harrison,6
Robinson7 and Niehus et al.8 The reader should get hold of as many of these key
references as possible.
   In this connection, I wish to express my gratitude to those workers in the field who
took the trouble to send me reprints of their work, or to answer my questions on
uncertain points.

1.3. Notational Conventions
   Vector quantities are written in boldface (r) whereas scalar quantities are represented
by an italic font (r), or sometimes plain font (r). I use b for the impact parameter
(designated as p or s by some writers).

1.4. Simulation Kit Components
   There is frequent reference throughout this article to the following computer
programs: Spider, Snook and Winnow. Spider is a utility whose function is to
design and generate the input data files used for the simulations. The simulation engine
itself resides in the Snook program. Winnow, finally, is the program which processes
the output data created by Snook, and turns this data into scientifically useful
information (sputter yields, energy spectra etc.). It may be helpful to new users of
Winnow to regard the Snook output files as database files; the purpose of Winnow,
then, is to process user-defined queries to this database, and to present the information
in an acceptable form.
   Users of the Simulation Kit will undoubtedly have to learn how to use both Spider
and Snook. Winnow can be ignored (except as a file conversion utility) if the user
prefers his own spreadsheet or statistical program. The programs should first be
studied by running them on the demonstration projects.



1.5. Computation Time
   Serious simulations of atomic collision phenomena make heavy demands on current-
day personal computers. Although individual simulations run quite quickly, the time
problem arises because of the need to gather adequate statistics. Sputtering simulations
need several hundred runs, while ion scattering (ISS) simulations need many
thousands. Frequently, one runs a variety of similar simulations while varying one
system parameter (e.g. the angle of projectile incidence). The total simulation time
required for a parameter-variation 'experiment' of this kind is often on the order of 1
day for publication quality data (i.e. good statistics). Even survey scans may consume a
morning or afternoon (although here you do have the choice of concentrating only on
the main features at the survey stage).
   The simulation engine, Snook, can coexist happily with other Win 95 programs, nor
does the program need to be monitored as it runs. The best time-management strategy,
therefore, is to run long simulation projects as batch jobs (in the background, so to
speak). Snook's program interface  can be 'minimised' while the computer is used for
other work. You can read about batch processing in Snook's online Help; Spider's
gadgets menu has a utility for generating  'batch definition file' templates.
   The speed of execution of Snook can be optimised by a correct setting of various of
the simulation options parameters. Again, the reader is referred to the online Help. In
brief, to speed up Snook you should: (a) disable screen output options; (b) minimise
Snook's program window; (c) close the Graph window (which displays atomic
trajectories).
   The author doubts whether ion-surface simulations will ever execute quickly in a
package of this nature. As the speed of CPUs increases, so too do one's ambitions grow.
A researcher who uses the Simulation Kit for sputtering studies in the 1990s is unlikely
to be satisfied with the 600-atom targets that formed the basis of many classical papers
in this field in the 1980s.



6

2. Classical Scattering Theory

2.1. Classical Scattering Theory
   The classical scattering theory described in undergraduate textbooks deals
predominantly with the binary collision, involving a two-body, radial potential, V(r12),
in which two interacting particles first approach each other, and later recede. (Good
graduate-level text-book treatments of scattering can be found in Goldstein,9 or in
Landau and Lifshitz.10) The strength of the interaction depends only on the separation
(r12) of the two particles. The scattering terminology applies to forces which have a finite
range and tend to zero as the separation increases. However, the decline of the potential
with separation need not be monotonic.
   More complex interaction potentials can be envisaged. For example, the interaction
might depend on the relative orientations of two interacting objects (e.g. a point charge
interacting with a fixed dipole), or it might depend on the relative orientations of three
point particles (a so-called ‘three-body’ potential): potentials involving three (or more)
bodies are required to rationalise the structures of small clusters in terms of potential
theory, for example. The force associated with the interaction of charged particles with
magnetic fields depends upon the velocity of the particle, and not just its position in the
field: this fact is exploited in mass spectrometry, for example.
   For the most part, the collisions discussed in this chapter (and in this article) will be
elastic collisions. An elastic collision is one in which the sum of the kinetic energies of
the particles after the collision, E1 + E2, is the same as it was before the collision, E0 (see
Fig. 1). Inelastic collisions are those in which energy is transferred to some internal mode
of excitation (e.g. electronic excitations) or dissipated (e.g. by friction). Chapter 9 will
describe the simulation of inelastic processes in atomic collision systems.
   The purpose of the following review is not to work through the equations of classical
scattering theory (which can be found in any mechanics textbook), but to summarise the
objectives and achievements of the classical theory which are useful in the context of
atomic collisions.

2.2. Kinematics of Binary Collision
   The classical scattering problem can be analysed at several different levels.
   At the first level, the kinematic analysis involves the application of conservation laws
(energy, momentum) to the problem, and establishes what relationships hold between
respectively the collisional energy transfer, the scattering angles and the relative masses
of the participating particles (see Fig. 1 for explanation of symbols).* These kinematic
results are obtained from a consideration of the asymptotic particle trajectories, so they
are valid for any type of central scattering potential.
   Scattering under the influence of a central potential V(r) takes place in a plane. The
geometry of the scattering process is depicted in Fig. 1, where the target is initially at
rest. This coordinate system is known as the Laboratory coordinate system (Lab system
or Lab frame), to distinguish it from the Centre-of-Mass reference frame (COM system or
COM frame) introduced for analytical convenience in the following section.

                                                            
* These relationships are well-known to players of Snooker (from which Snook takes its name)
and croquet.
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Figure 2.1. Scattering geometry for a binary collision. The projectile of mass M1, and energy E0,
approaches a stationary target of mass M2 located on the x-axis. After the interaction, the
motion of the projectile is characterised by the scattering angle θ and its asymptotic energy E1,
while that of the target is characterised by the recoil angle φ and its asymptotic energy E2 (= E0 -
E1 in an elastic collision). b (the off-axis distance of the projectile trajectory) is the impact
parameter.

   The most useful equation produced by the kinematical theory is that which relates the
collisional energy transfer to the projectile scattering angle in the Lab system:

E1 = E0(M1M2/(M1+M2))2{ cos θ  ± [(M2/M1)2 - sin2 θ]½ }2 .                                          (2.1)

   Equation 2.1 simplifies considerably if θ = 90° or 180°. This equation is the basis of ion
scattering spectrometry (ISS), which involves the measurement of E1 for fixed E0, M1

and θ, and thereby allows the mass M2 of the scatterer to be deduced.
   For (M2/M1) ≥ 1, only the positive sign before the [(M2/M1)2 - sin2 θ]½  term is
applicable. Light projectiles are backscattered from heavy targets in small impact
parameter collisions, whereas heavy projectiles push light targets ahead of them, and
themselves only undergo small deflections.
   The following remarks apply to a potential which falls off monotonically with
separation. If M1 < M2, the projectile may be scattered over the entire range of θ (0-180°).
However, for a heavy projectile (M1 ≥ M2), the deflection angle θ increases as b
increases, up to a maximum value given by sin(θ) = M2/M1. This trend is illustrated by
the plot of trajectories shown in Fig. 2 (for argon scattering by a carbon atom target)
which is taken from ref. [11].

Figure 2.2. Trajectories followed by 1 keV Ar projectiles (mass 40) scattered from a carbon target
(mass 12, initial location shown as black dot). The impact parameters of the various trajectories
are separated by 0.05 Å.
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   The energy of the recoiling target particle is given by the kinematic theory as:

 E2 = E0*4M1M2 cos2 φ/(M1+M2)2 .                                                                                      (2.2)

   The angles θ and φ are related by a fairly complicated expression (it is easier to relate φ
to the scattering angle in the COM system). According to equation (2.2), the maximum
energy transferred to the target particle in an elastic collision, Emax, is:

Emax/E0 = 4M1M2/(M1+M2)2,                                                                                         (2.3)

which occurs when the impact parameter is zero: a so-called direct impact (or centre-to-
centre) collision. Equation 2.3 implies that energy transfers decline as the disparity in
masses of the particles increases. For M1 = M2, Emax/E0 = 1, whereas for M1 = 0.1M2 (or
M2 = 0.1M1), Emax/E0 = 0.33. In a proton-electron collision, Emax/E0 = 0.002.
   Gryzinski gives a very thorough review of the results of the kinematic theory,
including the cases involving an inelastic energy loss or a non-stationary target. 12

   Spider uses the equations 2.1 and 2.2 to calculate the results shown in its ‘Scattering
Relations’ window.

2. 3. Dynamics of Binary Collision
2.3.1. The Scattering Cross-Section
   The dynamical theory of scattering is concerned with the determination of particle
trajectories and scattering cross-sections for specific interaction potentials. To simplify the
discussion we assume that M1 < M2, and that the potential falls off monotonically with
separation.
   Consider an experiment in which we measure the fraction of a projectile beam of
incident intensity I which is scattered into an angular range θ to θ+δθ by two different
target potentials V1(r) and V2(r). In the first case, this scattering will be associated with
impact parameters between b1 and b1+δb1, and in the second case with impact
parameters between b2 and b2+δb2. In other words, there is a distinct mapping b → θ of a
given impact parameter to a specific scattering angle for each type of potential. In three
dimensions, the angular range θ to θ+δθ represents an annular-shaped solid angle δΩ,
as depicted in Fig. 3.

Figure 2.3. Depiction of a scattering process in three dimensions, showing how projectiles
incident within an annulus defined by impact parameters in the range b to b +δb are scattered
into a solid angle δΩ.

b+δb
 δΩθ+δθ
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   If the incident particle flux impinging on the target has a uniform cross-section, then
the number of incident particles in a small impact parameter range  would be
proportional to the area of an annulus of radius b and width b+δb, i.e 2πbδb. Due to
particle conservation, the number of particles N(Ω) scattered into the specified solid
angle δΩ (representing the area of a detector) would also be proportional to the area of
this contributing annulus of impact parameters. The scattering cross-section σ(Ω), which
can be expressed as a function of  θ (as well as E0,M1 and M2), is the factor which relates
the flux of incident particles to the number of scattered particles detected at a particular
deflection:

N(Ω) = Iσ(Ω)δΩ                                                                                                                  (2.4)

   The concept of a scattering cross-section is useful when comparing the behaviour of a
similar process in two different scattering systems: for example: ‘the cross-section for
90° scattering is higher for Cu than for Al’ (meaning, more scattered particles are
detected for Cu at this angle).
  If the potential is non-monotonic, or if M1 > M2, then scattering by an angle θ may be
associated with more than one value of b (see Fig.2, for example). Effects of the first
kind are important in determining the cross-sections of low-energy scattering processes,
where they give rise to the rainbow scattering effect.13

   The concept of a scattering cross-section is closely related to that of a collision radius (or
alternatively, the collision diameter). Some physical processes (e.g. certain kinds of
electron emission) can only be initiated if the collision impact parameter is below some
critical threshold, bmin, known as the collision radius. The cross-section for such a
process is equal to the area of the circle defined by a radius bmin. The cross-section
concept is often replaced by the idea of a yield in solid-state scattering processes (e.g. the
sputter yield, the secondary electron yield and so on): the yield is a measure of the average
detection/emission probability for a signature particle associated with the process,
referenced to the flux of stimulating particles (electrons per incident ion, etc.).

2.3.2. The Coulomb Potential
   The Coulomb potential is described by an inverse square force law (1/r2), which gives
rise to a potential energy term of the form:

U(r) = Z1eΦ = Z1Z2e2/(4πε0r),                                                                                        (2.5)

where Φ is the electrostatic potential at a distance r from a point charge Z2e, and Z1e is
the charge of the interacting projectile. (In a nuclear/atomic context, Z1 and Z2 represent
atomic numbers, while e is the charge of the proton). ε0 is the vacuum permittivity
constant (8.854x10-12 F m-1). The functional form of Φ (Z2e/(4πε0r)) is derived from
elementary electrostatic theory.14

   The equation of energy conservation for the Coulomb scattering problem in the Lab
frame is:

½ M1v12 + ½ M2v22 + Z1Z2e2/(4πε0|r1 - r2|) = E0,                                                           (2.6)

where vi (i = 1,2) is the velocity of the ith particle (= |ivx +jvy|).
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   The goal of the analysis is to predict the scattering angle as a function of the impact
parameter, b. The method of solution involves, as a first step, expressing the problem in
a new system of coordinates (R, r12) which are linear combinations of the coordinates (r1,
r2) in the Lab frame; the first of these represents the position of the system centre-of-
mass (COM):

R = (M1r1 + M2r2)/(M1+M2),                                                                                            (2.7)

while the relative particle position (r12) is given by:

r12 = r1 - r2                                                                                                                           (2.8)

   In terms of these variables, equation (2.6) can be expressed as:

½ MV2 + ½ µv122 + Z1Z2e2/(4πε0r12)  = E0,                                                                                                                  (2.9)

where V = dR/dt, v12 = dr12/dt, M(the total mass) = M1+M2, and µ (the reduced mass) =
M1M2/(M1+M2). Equation 2.9 implies the following equations of motion:

Md2R/dt2 = 0                                                                                                                     (2.10)
µ.d2r12/dt2 = -∂U(r12)/∂r12 = Z1Z2e2r12/(4πε0r123)                                                            (2.11)

   According to equation 2.10, the COM will be in uniform motion throughout the
collision, giving rise (equation 2.9) to a constant associated kinetic energy of ½ MV2. At
the start of the collision, the interaction term is negligible (r12 is large), and the target has
zero velocity (v(0)12 = 0), so equations 2.6 and 2.9 can be expressed as:

½ MV(0)2 + ½ µv(0)122  = Ecom + E12 = ½ M1v(0)12  = E0,                                                  (2.12)

where Ecom is the constant kinetic energy associated with the COM motion; E12 (the
relative energy, or energy in the COM frame), which also constant, is the energy available
for the pseudo 1-body scattering problem expressed by equations 2.9. The important
point to appreciate is that the distance of closest approach (and other features of the
collision) depends on the relative energy, E12, rather than the Lab incident energy, E0. By
using the relation:

½ MV(0)2 + ½ µv(0)122  = ½ M1v(0)12,                                                                                  (2.13)

it is not difficult to show that:

E12 = M2/(M1+M2)E0.                                                                                                        (2.14)

  Evidently, E12 approaches E0 as the target mass increases relative to the projectile mass.
Equation 2.9 can be expressed as:

 ½ µv122 + Z1Z2e2/(4πε0r12)  = E12 = M2/(M1+M2)E0.                                                        (2.15)
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   Example. A 1 MeV proton is projected at a stationary alpha particle (He nucleus).
What is the distance of closest approach (rmin) in a direct impact collision? Would it be
the same if the alpha particle were projected towards the proton with the same initial
energy?
   Solution. The distance of closest approach is reached when all of the relative kinetic
energy E12 is converted to potential energy. Hence, the first term in equation 2.15 is
zero, giving: Z1Z2e2/(4πε0r12)   = M2/(M1+M2)E0. Using Z1 = 1, Z2 = 2, e = 1.6x10-19 C,
M2/(M1+M2) = 0.8, ε0 = 8.85x10-12 F m-1, E0 = 106e J, we obtain r12 = 3.6x10-15 m. For the
case of an alpha particle projectile, the M2/(M1+M2) term is now 0.2, and the distance of
closest approach is accordingly four times larger (1.4x10- 14 m).

   Eqn. (2.11) is formally equivalent to the equation of motion of a particle of mass µ
moving under the influence of a Coulomb potential originating from a fixed centre. The
equation of motion 2.11 can be solved analytically. The Cartesian coordinate system is
converted to a circular system: (x12, y12) → (r12, θ). Standard texts show that the
scattering angle in this coordinate system (the COM system) can be expressed as: 9

θ π= − ⋅
⋅

− ⋅ −

∞

∫2
1

12

12 12 12
2 2

b dr

r U r E br ( ( ) / )min r12

                                                    (2.16)

where U(r12) = Z1Z2e2/(4πε0r12). This integral can be evaluated for the Coulomb
potential, as well as a few others such as the inverse square potential (the latter is quite
useful for testing simulation programs because it represents a screened Coulomb
potential).
   For the Coulomb potential, V(r12) = A/r12, equation 2.16 evaluates as:

θ* = π - 2arctan(2bE12/A),                                                                                                 (2.17)

where the asterisk (*) reminds us that the angle in question refers to the COM
coordinate system. The corresponding result for the inverse square potential, V(r12) =
A/r122 is:4

θ* = π[1 - 1/√ (1+A/b 2E12)]                                                                                              (2.18)

   The COM result, equation 2.17, can be expressed in the Lab frame by means of
transformations shown in the standard texts on mechanics, and in a similar fashion,
scattering cross-sections for the laboratory system can be derived. These are not
particularly interesting for the present discussion, so they are passed over here.
   However, it is important to emphasise that knowledge of the Lab scattering angle is
not enough to specify the particles’ trajectories in the Lab frame, although it does
specify their asymptotic Lab directions of motion. To know the trajectory, one would
have to solve for the variation of r12 with time, and express this motion in the
coordinates of the Lab frame. This is quite an involved problem, which also requires the
evaluation of the so-called time integral, which gives the interval t  between the initial
and final limits of the motion (r1, r2 respectively):
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1

2

µ µ
                                                        (2.19)

   For the Coulomb potential, this integral diverges as the initial radial separation
increases, which means that the ideal case of a projectile ‘approaching from infinity’
cannot be evaluated. Computer simulations of atomic collisions based on the binary
collision approximation (BCA) model do make use of the time integral (in conjunction
with a screened Coulomb interaction). The reader is referred to the research literature
for further discussion of this topic.2, 3, 15 In simulations of atomic scattering in solids, it is
important to be able to track the actual motion of the projectile (not just its asymptotes)
because of the need to calculate the impact parameter for a possible subsequent collision
with another target atom.

2.3.4. Other Potentials
   The integral in equation 2.16 can only be evaluated analytically for a few potentials. A
number of approximate analytical treatments have been developed in response to this.
The small-angle (or impulse) approximation introduces a number of assumptions which
simplify the scattering integral, but it is not applicable to hard (small impact parameter)
collisions.4 Another approach is to develop universal formulae based on regression fits
to parametric models (so-called ‘magic’ formulae).16 Approximate techniques of this
kind have an important role to play in simulation models based on the binary collision
approximation (BCA), where a multiple scattering process is represented as a sequence
of binary collisions. The BCA model is the basis of some well-known computer
simulation programs (TRIM, MARLOWE). The main differences between the CD and
BCA programs are that (a) the BCA programs neglect interactions between target
atoms; (b) the BCA programs rely on algorithmic prescriptions for dealing with quasi-
simultaneous scattering configurations. The BCA model will not be discussed further in
this article: see the books by Smith et al. or Eckstein for compact reviews of the model,2, 3

or the article by Robinson for a comprehensive review.7
   The ‘composite’ interaction potentials used in classical dynamics simulations of
projectile-solid collisions are described in chapter 4.

2.3.4. Many-Body Systems
   More interesting (from the viewpoint of the surface analyst) is a system in which a
projectile is scattered by two fixed centres, and where the projectile-target interaction is
governed by screened Coulomb potentials: no analytic solution is possible, but the
theoretical analysis of this system by approximate methods remains a subject of current
surface science research.17

   In the normal conception of a many-particle system, the scattering centres (target
particles) would undergo displacement as a result of interaction with each other as well
as with the projectile. Generally in this article it will be assumed that all interactions can
be expressed using pairwise potentials. An N-body system accordingly gives rise to
½N(N-1) pairwise interactions which govern motion in the system. The motion of the
ith particle in a many-particle system is then determined by the resultant of all of the
forces acting upon it, which can be expressed in the following vector equation (mai =
Fi):
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Mid2ri/dt2 = -Σ  (∂U(|ri - rn|)/∂ri)   [ = -Σ  ∇∇iU(|ri - rn|) ]                                     (2.20)

where the summation runs over the index n (n = 1...N, omitting the value i).
   Here is a concrete example of the evaluation of equation 2.20, for the case when
particle 1 is interacting via Coulomb forces with two others (i = 1, n = 2,3):*

M1d2x1/dt2 = Z1e2/(4πε0).{ Z2(x1-x2)/r123 + Z3(x1-x3)/r133 }                                        (2.21a)
M1d2y1/dt2 = Z1e2/(4πε0).{ Z2(y1-y2)/r123 + Z3(y1-y3)/r133 }                                       (2.21b)
M1d2z1/dt2 = Z1e2/(4πε0).{ Z2(z1-z2)/r123 + Z3(z1-z3)/r133 }                                        (2.21c)

   Unlike the case of the binary collision, there is no advantage in transforming
Newton’s equations to a non-Cartesian or COM coordinate system for many-particle
systems. Equations analogous to 2.1 are the starting point for computer-based classical
dynamics calculations.

                                                            
* The derivatives  are evaluated by means of  ‘chain-rules’ like the following: ∂U(r12)/∂x1 =
∂r12/∂x1*∂U(r12)/∂r12 = (x1-x2)/r12*∂U(r12)/∂r12, where r12 = ((x1-x2)2+(y1-y2)2 +(z1-z2)2)½. Terms
like (x1-x2)/r12 are known as ‘direction cosines’.
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3. Computer Implementation

3.1. Introduction
   This chapter reviews some miscellaneous ideas about the development of programs
for classical dynamics (CD) simulations of atomic collisions on personal computers
(PCs). The chapter is intended to provide a few practical tips for research students who
are commencing investigations in this area, and is not necessary reading for those who
are purely users of the Simulation Kit, who may omit this chapter entirely.
   When I first wrote this chapter, I had not seen the book by Smith et al.2 which covers
the same ground, but far more competently and thoroughly. For that reason, I have
resisted the temptation to enlarge this chapter.
   It is worth remarking that the development of PC based simulation programs is only
possible because of the rapid increase in CPU speeds which have achieved seen since
1990 or so. Robinson mentions that a CDC 7600 mainframe in ~1980 required about 1 s
for each integration timestep involving a ~1000 atom system, which is similar to the
performance of Snook 2.x running on a Pentium PC in 1997.7 However, it must be
emphasised that a fast CPU cannot compensate for a poorly implemented simulation
algorithm, which can increase computation time by several orders of magnitude.
   A first attempt at writing a simulation program will usually produce an inefficient
result; but if it runs correctly, the programmer should be encouraged, rather than
discouraged, by his creation.

3.2. Computer languages and tools
   Traditionally, CD programs have mostly been developed in Fortran, or to a lesser
extent in C. (Examples of such programs can be found at many Internet web sites.)
There are good reasons (e.g. portability) for continuing to work in these languages
when command-line mainframe programs are being developed. For a PC based
application, these languages can also be used, but they suffer the drawback that they
are not particularly well-supported by the mainstream compiler manufacturers, and so
lack the sophisticated ‘rapid application development’ (RAD) features for visual
development associated with C++ and Pascal products.
   Visual programming and user interface development is not a normal feature of most
computer courses for scientists. It is probably wise to write early simulation routines as
simple command-line Dos applications. Success in this task will increase motivation to
tackle the visual programming hurdle. This is particularly important if you plan to pass
on the fruits of your labours to others. Be warned that today’s PC users may simply
ignore a scientific program that lacks a menu-driven user interface! Fortunately, with a
compiler product like Delphi or C++ Builder it is almost child’s play to develop a
minimal interface. (Version 2.2 of the Simulation Kit was built and compiled using
Delphi 3.0).
   C++ and Pascal (in most commercial implementations) are object-oriented languages
which take most of the labour out of designing windows, menus, dialog boxes and
other visual objects. Although it is not difficult to link together object files built from
different languages, most programmers  would presumably prefer to develop and
debug their programs from within a single, integrated environment. (For C, this can of
course be achieved with a C++ compiler.)
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   The prominent names in compiler technology today are Watcom, Microsoft and
Borland. Modern compiler products feature a high degree of integration between the
code editor, the compiler, and various supporting tools (including, hopefully, a debugger
and profiler). For scientific applications, it is very important to have (a) the capability of
inserting assembly language statements into the body of high-level language code; (b) a
debugger which allows you to view the registers of the numeric coprocessor. (You may
not use assembly language now, but you may eventually.) You may have to buy a tool
for (b) separately (if you have Delphi 2 or 3, for example, you will need Turbo Debugger
32).
   If you plan to distribute your program, you may need to develop a context-sensitive,
online Help system for it. For Windows environments, the use of a help-authoring tool is
recommended for this task. You can find shareware products in the \winhelp
directories of Simtelnet’s win95 and win31 collections.*
   The final class of tools I want to mention comes under the description of memory
checkers for instance HeapAgent (http://www.microquill.com) and
BoundsChecker (http://www.numega.com). These are fantastically expensive tools,
but you can download and use them for a limited period to run over your final
program, which they will check for various kinds of memory and resource allocation
errors.

3.3. Performance issues
   It is meaningless to argue along lines such as ‘Fortran is faster than C++’: the relative
performances of two programs depend on how the compiler manufacturers have
chosen to implement floating point operations at the assembly language level. The
relative performances can also vary according to the hardware, operating environment
and compilation options. Borland Pascal 7, for example, used a very slow
implementation of the exp() function, but the same function in its 32 bit successor
(Delphi 2) is as tight and fast as the coprocessor architecture allows. Essentially,
performance has to be determined by empirical investigation.
   A code profiler (such as Turbo Profiler) may be shipped with your compiler, though
these seem to be rare and expensive for the Windows 95 environment. This type of tool
allows you to determine the ‘hot-spots’ or ‘time-eaters’ of your program, and thereby
develop strategies for performance optimisation. For example, a CD simulation
program spends most of its time either computing the Morse forces, or building the
neighbour lists. You can use a profiler to identify the critical statements which you need
to (a) rewrite in a high level language or in assembly language, or (b) replace by a faster
algorithm (the preferred method).
   Program precision is likewise dependent on low-level language and hardware details,
rather than the choice of high-level language. The double-precision IEEE floating point
types used by Fortran, C, C++ and Pascal are identical. However, hardware (numeric
processor) performance varies from manufacturer to manufacturer.

3.4. Programming tips
3.4.1. Programming style
   From the outset, you should write your code in the expectation that it will have to be
modified many times. This means choosing meaningful variable names, and
                                                            
* http://www.simtel.net/pub/simtelnet/
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documenting the logic of obscure algorithms (Fortran and C users take note!). As far as
possible, you should compile and run the program as soon as each new
function/subroutine is completed: this may involve writing some temporary skeleton
code which calls the new function for testing purposes. (The ability of PC compilers to
integrate editing/compilation/debugging operations is a major advantage over
mainframe development environments.) In this respect, the fast compilation time of
Pascal is a major advantage over C++.

3.4.2.  Operating systems
   Since PC operating systems and compilers change so quickly nowadays, it is essential
to separate the code for your user interface (‘front end’) from that for your simulation
routines (‘back end’ or ‘engine’). For example, the simulation engine used by Snook
consists of one big function (subroutine) contained in a module of its own which is
called by the main program:
...
Simulate(TrgFile, PrjFile,...);
...
   The same function can be used with minor modifications by a Dos program or by a
Windows 95 program. Once the simulation is running, the main difference between
these two platforms is in the way user inputs (e.g. Ctrl-Break) and screen outputs (e.g.
messages) are handled. Instead of executing your chosen input/output method
directly, you should create a procedure for the purpose:
...
Msg := ‘Output information’;
WriteScreen(Msg)
...

    Now when you change OS platforms, only the WriteScreen() routine has to be
changed.

3.4.3. User input
   Input data should be validated as much as possible at the time of entry (in the
Simulation Kit, most data validation is handled by Spider). Modern visual
development environments provide dialog box ‘objects’ which can automate a wide
variety of data validation tasks (e.g. validating the range and format of floating point
and integer numbers).
   Avoid ‘hard-coding’ data into your simulation routines as much as possible. It is
tempting to do this when you are the sole user of the program, because you can always
change the data and recompile the program as you wish.  However, in the author’s
experience, this procedure tends to introduce errors. If you find yourself changing hard
coded constants, it is better to provide some method of inputting them into the program
from an external source.
  Ideally, input should be in the form of data stored in files, rather than data entered via
the keyboard. File-based data mean less work for the user, and are self-archiving.
However, for small programs (such as the cone utility) it may be too pedantic to insist
on file-based inputs.

3.4.4. Dynamic memory issues
   You can write small simulation programs without using pointers and dynamic
memory allocation. But eventually you may wish to do so. In a Dos/Win 3
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environment, one quickly exhausts the 64 k array size limitation, which applies
regardless of your machine’s physical RAM. Under Windows 95/NT, more memory is
available, but it has to be shared with other programs.
   In general, dynamic memory allocation and deallocation is an area of programming
which always requires special attention:
   (a) Failure to deallocate memory will cause memory ‘leaks’. The easiest way to check
for these is to continuously monitor memory usage. You can see that both Snook 1.2
and 2.x offer options of this kind, in the form of visual memory meters. These are used
by the author for debugging purposes. After running a simulation, the memory
allocation should return to its original value. For a variety of reasons, such as pointer
management overheads, this does not usually occur precisely. However, apparent leaks
due to legitimate overheads will saturate after the routine has been run 2 or 3 times,
unlike true leaks which will continue to deplete the memory pool ad infinitum.
   (b) Failure to allocate sufficient memory (e.g. for arrays whose length is set at run-
time) is another source of dangerous bugs, particularly the well-known ‘out-by-one’
error that plagues C programmers. Such bugs (memory overwrites) will not necessarily
be indicated (by a general protection fault) even in a protected mode environment, so it
is good practice to examine the contents of arrays (or at least, their first and last
elements) in the ‘Watch’ window of a debugger as you step through the program. Once
things are running, it is a good idea to temporarily modify the program so that that you
are deliberately under-allocating memory, in order to see what behaviour this produces.
   (c) Most non-trivial program errors are associated with illegal pointer operations. To
keep these to a minimum, it is a good idea (a) to assign pointers to nil (or null) both
on program start-up, and after deallocating dynamic memory; (b) to allocate or
deallocate memory for a given pointer in only one place in the program.  The definition
of a pointer error depends in part on the operating system. Under Windows 95 an
attempt to read unallocated array elements may generate an exception, whereas this is
legal under Dos.

3.4.5. Compiler bugs
   Know your compiler well: most libraries and compilers released by compiler vendors
contain dozens of bugs. (Lists of these can be found on Internet sites and in Usenet
groups comp.lang.xxx devoted to that compiler.) For this reason, you need to
ascertain that your compiler package contains the source code for all libraries, so that
you can debug them if necessary.

3.4.6. Data structures and algorithms
   For classical dynamics simulations, the main data structures you will use are the 1-
and 2-dimensional arrays. 1-dimensional arrays are used to hold vector components
(x[n], y[n], z[n]), while 2-dimensional arrays are used for holding neighbour lists and
possibly force components (depending on the integration algorithm you use). Do not
use container classes (objects) to store vector quantities, because access to their elements
is needlessly slow.
   In Dos, it is useful to be able to size 2-dimensional arrays (a) beyond the 64 k barrier,
and (b) to do this at runtime.  A data structure which can do this is declared and
implemented as follows.



Introduction to the Simulation Kit18

type
  float = double;
  PFloatArray = ^TFloatArray;
  TFloatArray = array[1..8000] of float;
  PFloatMatrix = ^TFloatMatrix;
  TFloatMatrix = array[1..8000] of PFloatArray;
var
  F: PFloatMatrix;
  n, ncells, mcells: integer;
begin
  { allocate memory for an array of size ncells*mcells}
  { ncells, mcells must each be < 8000 in this example }
  ncells := 1000;
  mcells := 100;
  { total memory allocation is ncells*mcells*4 bytes }
  GetMem(F,ncells*SizeOf(PFloatMatrix));
  for n := 1 to ncells do GetMem(F^[n],mcells*SizeOf(PFloatArray));
  { initialise first cell }
  F^[1]^[1] := 0.0;
  { initialise last cell }
  F^[ncells]^[mcells] := 0.0;
  { free memory }
  for n := 1 to ncells do FreeMem(F^[n],mcells*SizeOf(PFloatArray));
  FreeMem(F,ncells*SizeOf(PFloatMatrix));
end;

   CD simulations do not usually require an in-depth knowledge of computer science
algorithms beyond what can be gleaned from numerical analysis texts like Numerical
Recipes.18 A possible exception is range-searching algorithms (for improving the
efficiency of neighbour list construction).2,19,20

3.5. Program structure
   In this section I want to highlight some fragments of code extracted from Snook for
two purposes. First, the code fragments will shed light on the internal structure of the
simulation routine. Also, they may be of interest for those who plan to develop their
own routines. I have simplified the appearance of the code by replacing dereferenced
pointers by static variables (in practice, memory for all array variables is allocated
dynamically), and by removing any details of minor interest.
   It should be appreciated that the bulk of the code in Snook’s simulation routine (i.e.
excluding the user interface and event handling system) is devoted to initialisation
processes, namely (a) memory allocation, (b) data input/validation, and (c) assignments
to variables. The initialisations performed in (b) and (c) can be divided into two types:
those that must be initialised once only (such as the potential parameters), and those
that have to be initialised for every new run, i.e. every new projectile trajectory (for
example, the target atom coordinates).
   Although the bulk of the programming effort is devoted to the initialisation routines,
the bulk of execution time is spent in computing the forces and in updating the
neighbour lists. Most optimisation efforts will be focussed on these routines, and it is
these sections which have to be constructed most carefully.

3.5.1. The integration loop
   The code fragment shown below implements the ‘velocity form’ of the Verlet
integration algorithm:



Computer Implementation 19

rn+1 = rn + vn∆t + ½ Fn∆t2/m                                                                                (3.1)

vn+1 = vn + ½ (Fn+1 + Fn)∆t/m                                                                             (3.2)

   On entry to the procedure, some useful composite constants are prepared, and the
arrays, which on exit hold the force components (from the current and preceding
timesteps), are initialised. The forces are summed by calling the GetForce()
procedure, and finally the particle velocities are updated.

Procedure Get_rv_Verlet(NoOfAtoms:longint;ti:float);
var
  i,j,k: longint;
  Fx, Fy, Fz: float; // used to hold forces
  ti2div2,tidiv2,CutOff2: float; // composites
  kr,kv: float; // Composites
  ArraySize: longint;
begin                     // Get_RV_Verlet
  ti2div2 := 0.5*sqr(ti); // ti is the timestep
  tidiv2 := 0.5*ti;
  CutOff2 := sqr(CutOffDistance);

  for i := 0 to NoOfAtoms do // FNew gets value of Force from prev. step
    begin
      FNewX[i] := FOldX[i];
      FNewY[i] := FOldY[i];
      FNewZ[i] := FOldZ[i];
    end;
  ArraySize := (NoOfAtoms+1)*SizeOf(float);
  FillChar(FOldX,ArraySize,0);  // zero out all elements
  FillChar(FOldY,ArraySize,0);
  FillChar(FOldZ,ArraySize,0);

  // Calculate predictor for r
   for i := 0 to NoOfAtoms do    // Calculate drift during dt
    begin
      kr := ti2div2/mass[i]; // = ti^2/2m
      x[i] := x[i] + vx[i]*ti + FNewX[i]*kr;
      y[i] := y[i] + vy[i]*ti + FNewY[i]*kr;
      z[i] := z[i] + vz[i]*ti + FNewZ[i]*kr;
    end;

  // Evaluate forces at new r
  for i := 0 to NoOfAtoms do
    begin
      k := 0;
      j := partner[i][k];  // j is partner #k of i
      while  (j <> EndOfList) do   // EndOfList is end of partner list
        begin   // j is always > i in the partner array
          if (sqr(y[i]-y[j])+sqr(x[i]-x[j])+sqr(z[i]-z[j]) <= CutOff2) then
            begin
              Get_Force           // at r[n+1]
              (Fx,Fy,Fz, // <-- outputs these force components
               x[i],x[j],  // interaction of #i with its k_th partner
               y[i],y[j],  // which is particle #j
               z[i],z[j],
               i,j);
               FOldX[i] := FOldX[i] + Fx;
               FOldY[i] := FOldY[i] + Fy;
               FOldZ[i] := FOldZ[i] + Fz;
               FOldX[j] := FOldX[j] - Fx;
               FOldY[j] := FOldY[j] - Fy;
               FOldZ[j] := FOldZ[j] - Fz;
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            end;
          inc(k);
          j := partner[i][k] // Break when j = EndOfList
        end;     // while j
    end; // i

  for i := 0 to NoOfAtoms  do  // update velocity
    begin
      kv := tidiv2/mass[i];
      vx[i] := vx[i] + (FNewX[i] + FOldX[i])*kv;
      vy[i] := vy[i] + (FNewY[i] + FOldY[i])*kv;
      vz[i] := vz[i] + (FNewZ[i] + FOldZ[i])*kv;
    end;     // for i
end; // Get_rv_Verlet

   Each atom, #N, has a list of potential neighbours or collision partners which is stored
in the partner array (the ‘neighbour lists’). Thus, the partners of atom #N are stored as
integer indexes as the array elements partner[N][0], partner[N][1],
partner[N][2] and so on, until a negative index signals the end of the list for atom
#N. This arrangement means that time is not wasted in checking the location of all
atoms in the lattice. The neighbour lists are updated periodically. To speed things
further, the only atoms included in the neighbour list of an atom of index #N are those
whose indices are greater than N. This means, for example, that F31 (the force acting on
particle #3 due to interaction with #1) is computed at the time that F13 is computed,
exploiting the fact that F13 = -F31.
   The GetForce routine returns the force components calculated from the particle
vectors. Indices (i, j) identifying the particles are also passed to the routine. Based on
these indices, the routine can decide whether the force should be calculated from the
projectile-target or target-target potential parameters respectively.

3.5.2. The timestepping loop
   The main loop of the program has a very simple structure. As shown in the simplified
fragment below, this loop repeatedly calls the integration algorithm discussed in the
preceding section. The loop also has responsibility for initiating rebuilds of the
neighbour lists (see next section), and for updating the timer (time elapsed), the
timestep and the interaction sheath (‘test range’) respectively.

// Perform various initialisations of variables (deleted)
// Start main loop
  Repeat

    if (NeighbourListTimer = UpdateTime) then
       begin
         CorrectTestRange; // Shld be called before GetNeighbours
         GetNeighbours(NoOfAtoms);    // build neighbour list
         NeighbourListTimer := 1;     // reset counter
         if UserAborted then break;   // break from Repeat..until
       end
    else inc(NeighbourListTimer);     // increase counter

    Get_rv_Verlet(Lattice,NoOfAtoms,ti)

    TimeElapsed := TimeElapsed + ti;  // update elapsed time counter
    inc(TimeStepsExecuted);           // update timesteps counter
    CorrectTimestep;                  // Update ti, V0 (fastest atom velocity)
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Until TerminationConditionsMet;       // time & energy conditions

3.5.3. The neighbour lists
   The routine below shows how neighbour lists are built up in Snook by the ‘brute
force’ method. For a given atom i, the algorithm prepares a list of those atoms j,k,l...
which lie within a certain range. Some work is saved by using a projective technique to
filter out particles which are found to be out of range along a particular axis. However,
for large lattices, this is not the fastest way to build up the lists. Snook offers a second
option for building the neighbour lists (the ‘cell index' or 'box' method), which will not
be presented here, as its algorithmic details are rather tedious.2, 20

Procedure GetNeighbours(NoOfAtoms:longint);
var
  i,j,k: integer;
  range:float;
begin
  // User key-presses/mouse clicks are processed here (not shown)

  range := sqrt(TestRange2);  // range = width of interaction sheath
  for i := 0 to NoOfAtoms do  // i must run over ALL particles
    begin
      k := 0;
      Partner[i][0] := EndOfList;   // Partner = i,j,k,..EndOfList)
      for j := i+1 to NoOfAtoms do    // Ignore j <= i
        if (abs(x[i]-x[j]) > range) // This condition filters out
        or (abs(y[i]-y[j]) > range) // the majority of atoms in the lattice
        or (abs(z[i]-z[j]) > range) then  // do nothing
        else if (sqr(x[i]-x[j])+sqr(y[i]-y[j])+sqr(z[i]-z[j]) <
TestRange2)then
            begin
              Partner[i][k] := j;
              inc(k);
              if (k = NoOfPartners) then  // Stop! (not shown)
            end;           // for j
          Partner[i][k] := EndOfData;
    end;       // for
end;           // GetNeighbours

3.6. Program validation
   It is difficult to formally prove the correctness of a classical dynamics simulation
program.  The program should, of course, conserve energy, and linear and angular
momentum (provided inelastic energy loss effects are not included in the simulation).
   Program validation should begin with a study of the kinematics and dynamics of the
binary collision, for which it is easy to calculate (for example) the correct apsidal
distance by hand (see the 'Gadgets' menu in Spider). Three-body systems in
symmetric or linear configurations can also be analysed in a similar fashion. The cone
program, which ships with the Simulation Kit, is a useful benchmark for the correctness
of binary collision simulations (cone uses the slow but accurate Runge-Kutta
algorithm, and was programmed quite independently of the Simulation Kit).11

   There are relatively few benchmarks available in the literature which serve to test
program performance and accuracy under realistic running conditions. Gärtner et al.
recently reported the results of a round robin comparison of 6 established classical
dynamics (CD) programs.21 The various programs were used to calculate the elastic
energy loss and angular deflection suffered by a projectile passing through a thin
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crystalline target. (The reader is referred to the original source for specific details of the
simulation problems.) The results from the round robin are compared with the
corresponding results calculated using Snook in Table 3.1. The agreement between
Snook and the round robin results is generally satisfactory, although two of the angular
deflections fall just outside the range reported by the contributors to the round robin
study.

Table 3.1. Calculation by Snook of the average elastic energy losses (∆E) and root mean
square angular deflections (∆θ) suffered by projectiles passing through thin crystalline
targets, compared with the results of a round robin study.21

System ∆E (eV) ∆E (eV), ref. [21] ∆θ (°) ∆θ (°), ref. [21]
0.2 keV B-Si(100) 66.1 63.1 - 68.4 35.2 32.6 - 34.5
0.5 keV B-Si(100) 64.6 55.9 - 65.1 25.7 22.1 - 25.1
1.0 keV Ar-Cu(100) 424.9 412.1 - 428.4 19.6 19.1 - 19.8

   Nevertheless, it is still puzzling to observe the relatively large discrepancies which
exist between different MD programs, e.g., the variation of 9eV in the ∆E  values
reported for 0.5 keV B-Si(100) (Table 3.1). Such discrepancies are far greater than the
typical average energy conservation errors expected from the integration algorithm (~ 1
eV for a 0.5 keV system). Probably the only way to understand discrepancies at this
level is for the authors of different programs to compare the results of integrating
individual trajectories.*

                                                            
* Some evidence that the discrepancy is not due to integration errors is furnished by the
observation that the different algorithms available in Snook give rise to practically identical
results.
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4. The Physical Model

4.1 Introduction
   This chapter will review the physical model and assumptions underlying the
simulations performed by the Simulation Kit program Snook. All simulation models are
founded upon a multitude of assumptions. To use and interpret the results from a
simulation, one must understand the limitations of the simulation as well as its
capabilities.
   It is extremely difficult to prove the physical (as opposed to computational)
correctness of any particular simulation model. The observation of individual projectile
trajectories or the ensuing collision cascades is not experimentally feasible, so only
average quantities derived from simulations can be checked empirically. Effectively, the
information generated by simulations for a 6N-dimension phase space is mapped onto a
6-dimension space for purposes of experimental comparison. Any simulation which
produces an experimentally-corroborated mean distribution of particles in phase space
will thus appear to correctly represent the physical system, even if it is correct “by
accident.”* Furthermore, many experimental scattering techniques sample a phase
space of limited dimensionality: e.g. ion scattering spectroscopy samples only px and pz

(and possibly py), and therefore only tests a restricted number of the simulated phase
space averages.
   As it executes a simulation, Snook writes real-time output to the screen in a manner
which reflects the user's preferences (i.e. degree of verbosity). The meaning of this
output should be broadly clear, but it is explained in the tutorial file, which ships with
the Simulation Kit  (c\sk22\tutorial\tutorial.doc). The collision dynamics can
also be viewed graphically. Verbose output and graphical views are extremely useful
when fine-tuning a simulation project. During a production run, however, you should
switch these options off, and 'minimise' the Snook main window, in order to obtain
maximum performance.
   In the following brief review, I have tried to address the issues which I think will be
most important for an understanding of the design of the Simulation Kit. I hope that
readers will point out omissions to me. I have not attempted to discuss competing
classical dynamics simulation models (e.g. those incorporating many-body potentials).

4.2. Initial conditions
4.2.1. Lattice structure
   The lattice structure used by Snook is derived from the Target file (*.TRG) which is a
listing of coordinates and other information about the particles in the target. The xy
plane of the coordinate system is parallel to the surface, while the z-axis corresponds to
the surface normal. The negative z-direction corresponds to movement into the lattice.
The projectile approaches the surface in the xz plane if the azimuthal angle is set to zero
(in the Run file), starting from the +x direction, and moves in the negative x-direction
towards the location of the anchor atom (see below).
   If thermal displacements are selected (in the Model file), then at run-time Snook will
add appropriate (random, Gaussian, Debeye-Waller) thermal displacements, including

                                                            
* One can draw a rough analogy here with the ambiguity which sometimes arises in interpreting
LEED patterns purely on the basis of the kinematic theory.
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any surface effects specified by the user. In this case, the user also has an option (under
Snook’s Options|Simulation menu) to add an average kinetic energy of 3/2kT to the
lattice atoms (which is derived from a Maxwellian distribution of velocities). If this
option is not selected, the lattice atoms are stationary at the start of the simulation (the
normal case for keV scattering). Chapter 8 discusses the implementation of thermal
vibration effects in more detail.

4.2.2. Projectile coordinates
   The starting position of the projectile is referenced to the coordinates of an anchor atom
in the target (see fig. 4.1): these are the coordinates listed in the first line of the Target
file (i.e. the coordinates prior to application of thermal displacements). For small impact
parameters, the anchor atom is the projectile’s first collision partner. By default, in all
lattices generated by Spider, the anchor atom is located at the origin (0,0,0) of the
coordinate system.* The vertical projectile position relative to the anchor atom is
determined by the z0 parameter (normally 3 Å) in the Impact file. The (x, y) coordinates
of the projectile are determined (a) by the impact parameters (along the x- and y-
directions) for the current run (trajectory), which are listed in the Impact file; (b) by the
projectile altitudinal and azimuthal angles of incidence.‡ The angles in (b) also
determine the relative magnitudes of the projectile starting velocity components.

Figure 4.1. Starting geometry for a simulation run. The uppermost particle (red) is the projectile,
which is located at a vertical distance z0 above the anchor atom (green, third from the left) in the
target lattice. The lateral displacement of the projectile relative to the anchor atom is determined
by (a) the impact parameter for that run, (b) the projectile angles of incidence. See the Spider
on-line Help for more information on this subject.

   The arrangement just described has the advantage that it allows the same set of input
files to be used for similar scattering systems with different altitudinal directions of
projectile incidence (with the sole difference that the particular  altitudinal angle
involved has to be specified in the Run file).

4.2.3. Particle masses
   The isotopic distributions of the target atoms are not known by the program (Spider)
which generates the Target file (the target particles are assigned the user-specified
                                                            
* If you rotate the lattice in the yz or zx planes you will normally have to edit (cut/paste) the
resulting Target file to ensure that your desired anchor atom coordinates are found in the first
line of the new file.
‡ The projectile altitudinal angle of incidence is a “polar” angle which takes values between +90°
(normal to surface) and 0° (parallel to surface). The projectile azimuthal angle of incidence is the
angle subtended around the z-axis in the xy plane; it is zero for incidence parallel to the x-axis,
and 90° for incidence parallel to the y axis. The angular convention used by Winnow (and
Spider’s “User-Defined” Run file output option) uses (unlike here) a strict sign convention
based on the direction (sign) of vector components. You should consult the Winnow on-line Help
for details.

z0
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average mass), but it is possible (although tedious) to modify the atomic mass data in
the Target file by manual editing of each entry. The projectile mass is likewise fixed at
the value stipulated in the Projectile file.

4.2.4. Initial conditions data
   If you want to examine the state variables (position, momentum and others) which
were actually applied at the start of the simulation, there is an option in Snook which
causes them to be dumped to a file inivars.snk, from which they can be regenerated
by Winnow’s Process|Convert command.

4.2.5. Reduced impact zone
   A simulation project typically consists of a large number (102 - 105) of simulations of
independent projectile trajectories, often referred to as ‘runs’ in the Simulation Kit
documentation. The trajectories are directed towards a representative region of the
surface of the target lattice which the author calls the reduced impact zone. Other terms
are in use in the literature.2
   The reduced impact zone is an area of the periodic surface sized in such a way that
every possible incident trajectory on the surface can be mapped to a symmetrically
equivalent trajectory directed into that zone. The dimensions of the reduced impact
zone depend on the surface orientation, and the symmetry inherent in the collision
problem (i.e.  the direction of projectile incidence). Fig. 4.2 illustrates the reduced impact
zone for a FCC (111) crystal surface. The reduced impact zone is always smallest at
normal projectile incidence.

Figure 4.2. Projection of the “representative region” or “reduced impact zone” for projectiles
normally incident onto a FCC (111) surface. The atoms at the corners of the zone lie in 3
different layers of the target. (These data are taken from the TRG and IMP files found in the
\examples\ne-ag111 directory of the Simulation Kit installation.)

   The Impact file of a Snook simulation project contains the impact coordinates which
collectively define the dimensions of the reduced impact zone. The Spider online Help
includes an extensive discussion on the topic of reduced impact zones, and includes
templates for the most common surfaces.
   For an ideal lattice, there is no error introduced by using a reduced impact zone which
is, for example twice or four times as large as the true zone. However, this can be
inefficient in computational terms, as it may introduce redundancies in the output data.*

                                                            
* However, even under these circumstances, redundancies do not generally occur in the Impact
files generated by Spider, because of the character of the underlying generating algorithm (see
Spider Help for more on this topic). Here is a simple numeric illustration. For 5 impacts along
an axis of length a, the impact points generated by Spider will be 0, a/5, 2a/5, 3a/5, 4a/5 while
for 5 impacts along an zone axis of length 2a the impact points will be: 0, 2a/5, 4a/5, 6a/5, 8a/5;
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The problem of collision containment also encourages the use of a restricted impact
zone.
   The introduction of randomly-applied thermal vibration effects has two consequences
in connection with the impact zone; (a) each target configuration is unique when
vibrational effects are included in the simulation, so every simulation will yield
different results; (b) the thermal displacements blur the notion of symmetrically
equivalent trajectories (indeed, the same projectile starting coordinates will generally
give rise to different collision cascades, because of the different displacements of the
target atoms).
   It is sometimes convenient to use an impact zone that is larger (by an integral factor)
than the reduced impact zone. A typical example occurs during the simulation of
processes as a function of projectile altitudinal angle, where one may prefer (for the
sake of simplicity) to use the same impact zone (i.e. Impact file) at normal incidence as
was used for the simulations at oblique angles of incidence. (The preceding paragraph
and its footnote explain why even this case will be free of redundancies in simulations
that include vibrational effects.)

4.3. Interaction potentials
4.3.1. Interaction Model
   Atomic interactions modelled in the Simulation Kit are based on analytic pair-potential
functions as specified in the Model file.
   The Simulation Kit user is required to select the type of potential employed by the
simulations. There are two broad choices: (a) screened Coulombic potential; (b)
composite potential. Potential (a) always applies to the projectile-target interaction. The
user may select either (a) or (b) for target-target interactions. In both cases the potential
is cut-off at a finite distance specified by the user (normally between the 1st and 2nd

nearest neighbours, or between the 2nd and 3rd nearest neighbours).
   The Morse and screened Coulombic potentials, although fairly well established, are
not the only potentials being used for contemporary simulation research, nor are they
the most realistic. Their main advantage lies in their suitability for a “universal”
approach to simulation, such as that adopted by the Simulation Kit.* Most pair potentials
are fitted to equilibrium state properties, so they presumably are most realistic for the
undisturbed lattice.
   Coulombic potential at small internuclear separations, a Morse potential at large
internuclear separations, and a cubic spline function which connects the two in the
intermediate region. The spline function is computed automatically, based on the user’s
specification of the spline region limits.

                                                                                                                                                                                    
if the lattice repeat length is a, the latter series is equivalent to: 0, 2a/5, 4a/5, a/5, 3a/5, i.e. there
is no redundancy when the impact points are folded back inside the true reduced impact zone.
* A future development of the Simulation Kit (mid-1998?) should include support for embedded
atom potentials.
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Figure 4.3. Composite potential, V(R), for Cu-Cu interaction. In the region shown, the potential
consists of a cubic spline function (1.5-2.1 Å) joined to a Morse potential (R > 2.1 Å).

   Fig. 4.3 shows the attractive part of the default composite Cu-Cu potential generated
by Spider’s Model option. The corresponding screened Coulombic potential for Cu-
Cu (not shown) decreases far less slowly towards zero in the region shown, and lacks
any attractive potential well. The form of the attractive potential is only significant in
collisions in which the apsidal distance falls outside the core region described by the
screened Coulombic potential. (For Cu-Cu, for example, this corresponds to Lab
collision energies below ~100 eV.) The explanation for this is that the scattering integral
function (equation 2.16) is singular at the collision apsis, and so is largely determined by
the force function in its vicinity. A recent round robin study demonstrated that the
scattering of projectiles of a few hundred eV energy was independent of the form of the
potential used for modelling target-target interactions. 21

4.3.2. Screened Coulombic potential
   The short range potential used by Snook is classified as a screened Coulombic
potential. There are 3 variants in common use, which are named after their developers:
the (Ziegler-Biersack-Littmark) ZBL potential, the Moliere-Firsov potential and the
Moliere-Lindhard potential. The screening length correction is an adjustable parameter
which may be used to modify the range of these potentials to improve their accuracy.
   The user of the Simulation Kit has to select: (a) one form of screened Coulombic
potential to represent the projectile atom-target atom interaction; (b) one form of
screened Coulombic potential to represent the target atom-target atom interaction; (c)
two 'screening length adjustment' factors which typically fall in the range 0.7-1.0 (1.0 is
normal for the ZBL potential). The target-target and projectile-target interactions do not
have to be of the same form or have the same screening length correction.
   The analytic form of a screened Coulombic potential for interacting atoms of atomic
number Z1, Z2 respectively, is as follows:

 V(r) = Z1Z2e2.χ(r/a)/4πε0r                                                                                             (4.1)

   The screening function χ(r/a) has the properties χ(0) = 1, χ(∞) = 0. It is normally
represented in the general form:
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 χ(r/a) = Σi α[i].exp(-β [i].r/a),                                                                                    (4.2)

where the index i runs from 1-3 (Moliere potentials) or 1-4 (ZBL potential), and the α[i]
and β[i] are coefficients (the former satisfying Σ α[i] = 1); a is the screening length
(defined below).

The Moliere potentials and the ZBL potential  define their respective parameters (α[i],
β[i] and a)  in various different ways.*
   The Moliere potential has two variants, according to the way in which the screening
length (a, in A) is chosen:

 a = 0.4685/(Z10.5+Z20.5)2/3        (Firsov form)                                                                (4.3a)
 a = 0.4685/(Z10.33+Z20.33)0.5      (Lindhard form)                                                          (4.3b)

   In practice this distinction is irrelevant since (judging from the literature) every user of
this potential seemingly adds his or her own screening length correction. The screening
length correction is a 'correction' factor (< 1.0) which is used to scale the screening
length parameter in screened Coulombic potentials, particularly the Moliere potential.
A typical value for this correction for the Moliere potential would be 0.8, usually chosen
by fits to experimental data e.g. impact collision ion scattering spectrometry.
   The screening length (a, in A) for the ZBL potential is defined as:

 a = 0.4685/(Z10.23 + Z20.23)                                                                                              (4.3c)

   For the ZBL potential, you would normally choose a value of 1.0 for the screening
length correction, unless you have reason to do otherwise.
   You should be wary of changing the screening length correction parameter arbitrarily,
as it has enormous effects on the potential and unrealistic values could conceivably
undermine the credibility of the simulations.
   Which screened Coulombic potential is best? This question cannot be answered with
rigour. However, if you are not going to search for an optimum screening length
correction, the ZBL potential is probably the easiest choice because it is normally used
in 'unadjusted form', i.e. with a screening length correction of 1.0.# Nevertheless, in a
particular case, the Moliere potential with an optimally adjusted screening length may
well be closer to reality than the unadjusted ZBL potential.
   The problem is knowing what correction to apply to the Moliere screening length. The
well-known MD studies of the Ar-Cu system by D.E. Harrison's group in the late 1970’s
were mostly carried out using the Moliere potential (with a screening length correction
of around 0.85). In early work a factor of 0.8-0.9 was typical, but more recently even
values < 0.7 seem not to excite comment: e.g. 0.68 was used for 4 keV Ar-Ni in ref. [22].

                                                            
* These coefficients of the screened Coulombic potentials can be found in the review articles
cited in the Introduction, or in the Spider online Help.
# In Chapter 6 a case is made out for adjusting the screening length in the He-Cu ZBL
interaction.
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   Correction factors have an enormous effect on the potential, because they involve
exponentiation. In fact, the effect of the corrections may be more significant than some
of the terms in the original potential!
   The ZBL potential is generally used without any screening length correction, and this
fixed form may be regarded as an advantage or a disadvantage, depending on how
highly you rate the potential. For the Ar-Cu system at least, this author notes that the
ZBL potential fits closely the ab initio potential calculated by Broomfield et al.23

   Nordlund et al. compared the ZBL potential for C-C, Si-Si, N-Si and H-Si with Hartree-
Fock (HF) potentials; 24 they found agreement typically to within ca. 3% for V(r) < 5
keV, and ca. 5% for V(r) < 10 keV. The worst agreement was for the C-C system (~5% at
3 keV).
   The conclusion must be that in any serious study of an ion-surface collision one
should experiment a little with the potential, to see whether this has any influence on
the outcome of the simulation averages.

4.3.3. Morse and spline potential
   The Morse potential V(r) is defined by:

    V(r) = D{ exp-2α (r-r0) - 2exp-α (r-r0) } .                                                                        (4.4)

   The parameters D, α and r0 are derived from fits to bulk solid state properties,25 and
may vary somewhat from author to author, depending on the assumptions (especially
the range of action) involved. This pair potential has a minimum when r = r0, at which
point V(r0) = -D. The parameter r0 is of the same order, but greater than, the lattice
nearest neighbour distance (rNN), unless the interaction is cut off at rNN, in which case r0

= rNN.
   The Morse potential, or any simple pair potential, is not particularly well suited for
modelling polyatomic processes that are rigorously directional in character, e.g.
covalent bonding in a material like diamond or silicon. This does not mean that such
solids cannot be modelled via a Morse potential, only that effects which depend on
directional bonding cannot be modelled. Such effects include equilibrium state
properties such as defect formation energies.
   The Morse parameters derived for a crystalline element are not the same as those
applicable to a diatomic molecule of the same element. This is a recognised failing of the
pair potential model.26

   The degree of validity of the centre-to-centre (pair potential) model of interatomic
forces (in the equilibrium solid) can be assessed by consideration of the elastic constants
of the solid of interest. If the centre-to-centre model holds, then it can be shown for
cubic crystals that the elastic constants C12 and C44 (also known as Cxxyy and Cxyxy)
should be identical.25 Here are C12/C44 ratios for some elemental solids: Fe (1.15); Cu
(1.61); Ni (1.12); Ag (2.02); Al (2.18) diamond (0.22); Si (0.8); Ge (0.72).25,27 This
comparison indicates that the centre-to-centre force model holds better according to this
criterion for Si and Ge than it does for Cu, but that it breaks down badly in the case of
diamond.
   If you choose to include a Morse potential, Snook will also calculate the cubic spline
function required to join the Morse potential to the screened Coulombic potential. You
can preview the composite potential (screened Coulombic + spline + Morse) in Spider.
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Note: this spline potential is recalculated by Snook at run-time: no explicit information
about it is written to the Model file.
   If you choose not to use a Morse potential, the simulations will use the screened
Coulombic potential up to the range specified by the potential cut-off. This is adequate
for ISS simulations, for example, because (a) the interaction time is short; (b) the process
being modelled involves short-range interactions. Robinson gives a good discussion on
this subject.7
   The projectile-target potential used by Snook is always a screened Coulombic
potential, regardless of whether or not you have selected the Morse potential option.
   If the Morse potential option is selected, a cubic spline function will be used to join it
to the screened Coulombic potential between the limits you specify in the Model file.
The objective is to choose spline limits that give a smooth transition between the two
potentials (no unphysical minima or maxima). The limits are chosen by trial and error.
The composite potential will always show a smooth fit at the spline function limits.
However, the force function will normally have a discontinuity in gradient at the upper
and lower limits of the range covered by the spline function. The type of discontinuity
to avoid is one which introduces a spurious maximum or minimum at one or both of
the spline limits.
   If, for some reason, you wish to employ a cubic (spline) potential all the way up to the
cut-off distance, you can do so effectively by specifying a tiny separation between the
high spline limit and the cut-off distance (e.g. cut-off distance = 3.8 Å, high spline limit
= 3.7999 Å).
   A restriction you need to be aware of is that the spline limits should both be greater
than or equal to 1.0 Å. This restriction relates to the way in which the Morse look-up
tables are implemented. The condition is enforced by Spider and checked by Snook at
run-time.
   See the Spider online Help for further comments about Morse parameters.

4.3.4. Surface and bulk binding energies
   A surface binding energy correction would not be needed in a classical dynamics
simulation if the pair interaction potential completely described the system dynamics.
Many workers have argued for the inclusion of a surface binding energy term (planar
surface potential or barrier) to describe the non-local, long-range interaction between an
escaping atom and the free electrons of the lattice.7 This kind of model (which is
vaguely reminiscent of the pseudo-potential approach in solid state quantum theory 27)
views the atom-lattice interaction as a superposition of pair potential effects, plus effects
caused by a 3-dimensional “potential well.” Trajectories are only influenced by the
continuum potential when particles cross the potential barrier, e.g. in sputtering.
   By contrast, Harrison argues that in a classical dynamics simulation the surface
binding energy correction is unnecessary, because its influence is implicit in the Morse
potential deduced from solid state properties.5
   It is apparent that theoretical models describing "structureless media," or those which
neglect interactions between target atoms (e.g. BCA programs) can benefit from the
introduction of a surface binding energy term, since there are no point sources of
potentials. However, it is far from easy to decide on an appropriate value for the surface
binding energy term in a classical dynamics simulation which already incorporates a
Morse potential. There are theoretical grounds for expecting the total surface binding
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energy (Morse + planar potential) to be roughly the same as the bulk cohesive energy
U0.*

   If you wish to include a surface binding energy term (ES) in your simulation, you can
specify its magnitude in the Model file of your Simulation Kit project. In the current
implementation of Snook (version 2.2), any required corrections to ejected particle
trajectories will be made at the moment when the particle leaves the surface. This is in
contrast to previous versions of the program, in which the correction was made only at
the end of a simulation run. The Simulation Kit additionally allows you to specify (in the
Model file) a 'bulk' binding energy term which is applied in a similar fashion to particles
which attempt to exit the target by any of its side faces.
   [Tip for advanced users: surface and bulk binding energy corrections are only applied
to the motion of a particle if its ofEmitted and ofNotContained option flags are not
yet set (see Chapter 10).]
   The surface/bulk binding energy (ES) correction implemented by Snook takes the
form of reducing the appropriate velocity component of any particle (including the
projectile) which is found to be emitted from the lattice, such that its kinetic energy falls
by ES. In cases where ½mvZ2 < ES, the energy deduction is not carried out: instead, the
sign of the velocity component is reversed, and the particle suffers a reflection at the
internal surface of the target. The definition of 'emitted' or 'not contained' in this context
is that (a) the particle separation from the bounding surface is greater than the cut-off
distance of the potential, and (b) the velocity component is in a direction incident on the
surface. A binding energy correction is applied only once (if at all) to any given
escaping particle. But a non-escaping particle may be reflected internally at the surface
many times.
   Thus, to sum up, the net effect of the correction is to apply either a 'reflection' or a
'refraction' to the trajectories of particles that cross the surface. Note that the
implementation of this feature does not conserve linear momentum. for those particles
that are reflected or refracted at the surface.
   You should specify a value of 0.0 for the Surface (Bulk) Binding Energy (the default
value) if you don't want to include a surface (bulk) energy correction. If you choose to
include a non-zero binding energy, you will have to select a suitable value based on
literature sources external to the Simulation Kit. None of the example projects discussed
in this article incorporated such binding energy effects.

4.3.5. Image potential
   A charged particle approaching the surface of a conductor experiences a classical
image potential V(r) = e2/16πε0r, where r is the particle-surface separation.14 If r is
expressed in Å, then V(r) = 3.6/r eV. Since most primary projectiles are charged
particles, there is clearly some possibility that image potential effects can influence the
trajectories of slow projectiles. This would take the form of an acceleration towards the
surface along the z-direction, with a corresponding increase in projectile kinetic energy
(on the order of a few eV).

                                                            
* The reasoning is as follows.7 (a) The energy required to break N bonds and remove a single
atom from the bulk into the gas phase should be roughly twice the cohesive energy, since atom
formation by bulk vaporisation creates on average two gas phase atoms for every N broken
bonds, where N is the coordination number (i.e. EB ~ 2U0); (b) the surface binding energy should
be roughly half of the bulk binding energy (i.e. Es = 0.5EB). Hence, ES ~ U0.
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   The Simulation Kit does not yet implement the handling of image potential effects.
This subject is rarely discussed in the literature of scattering simulation, although it may
be important in connection with the angular distribution of secondary ions, for
example.28 A complicating factor is the strong likelihood that charged particles will be
neutralised at distances of 2-3 Å from the surface, thereby eliminating the image
potential.8 However, if you plan to run simulations involving projectiles of less than
~100 eV energy, you should at least be aware of the possibility of image potential
effects, which will tend to increase the projectile velocity in the z-direction, and thereby
increase the effective bombardment energy.
   This topic will be given a better coverage in a future release of this article.

4.3.6. Many-body potentials
   A number of many-body potentials have been developed for metals which describe
their state properties better than pair potentials can. The Sutton-Chen potential is
among them.29 The Morse and Sutton-Chen (SC) potentials should yield similar
cohesive (potential) energies for the equilibrium lattice configuration. However, the
cohesive energies of a disturbed atomic configuration are anticipated to diverge with
increasing lattice disorder.
   Fig. 4.5 illustrates the time evolution of the total lattice cohesive energy in a single
collision cascade in Cu (where the dynamics are governed by a Morse interaction),
using both the Morse and SC potentials. The purpose of the figure is to compare the
Morse and SC estimates of system potential energies for a realistic sequence of non-
equilibrium target structures. For each configuration at a certain elapsed time, the
Morse and SC cohesive energies are compared (via their ratio). In this case the cascade
onset was around 20 fs, and the target became (visually) amorphous above ~300 fs. In
the latter configuration, the SC and Morse estimates of system cohesive energy differ by
as much as 15%. However, the discrepancy is only 5% if timescales less than 100 fs are
considered.  Except at the beginning of the cascade, the Morse potential gives a lower
cohesive energy estimate than the SC potential.
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Fig. 4.5. Ratio of Sutton-Chen  and Morse potentials, V(S-C) and V(Morse) respectively, for
various Cu lattice configurations arising at different times in a single collision cascade (1.0 keV
Ar incident on a 986 atom Cu(100) target). Note the logarithmic time scale. The Morse potential
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was used to calculate the system dynamics. The total system potentials were calculated using a
cut-off distance of 1.01a, where a is the Cu lattice constant. The same qualitative behaviour was
observed if the Morse potential cut-off was increased to 2.01a.

4.4. Integration methods
   The classical equations of motion are integrated by Snook using any of several finite
difference integration algorithms. The Verlet algorithm, which is used by default, has
already been presented in eqns. 3.1 and 3.2 of chapter 3. Another algorithm offered in
Snook’s simulation options is the HGE-A algorithm, which is a so-called predictor-
corrector method:6
   Predictors:

   rn+1 = rn + vn∆t + Fn ∆t²/2m                                                                                         (4.5a)

vn+1 = vn + 0.5[Fn+1 + Fn] ∆t/2m                                                                                  (4.5b)

   Corrector for rn+1:

   rn+1 = rn + vn∆t + 0.25[Fn+1 + Fn] ∆t²/2m                                                                     (4.5c)

   The meanings of the symbols are: rn, vn, Fn: position, velocity, total force vectors at nth

timestep; ∆t: size of the current timestep.
   These integration algorithms are uncontroversial. In general, their accuracy is checked
with reference to the accuracy of energy conservation, and this is how the user should
evaluate them. The accuracy of the integration depends on the timestep specified by the
user in the Run file of a simulation project. One integration algorithm offered by Snook,
the Beeman algorithm, should be used with a fixed timestep, and is therefore
considerably more inefficient than the other choices. In general, the Verlet algorithm
should prove adequate for all simulations, but it may be interesting to check one of the
others for consistent behaviour from time to time.
   The total system energy, as the sum of potential energy (PE) and kinetic energy (KE),
can be calculated at any instant from the current particle positions (using the analytic
potentials) and velocities. This can be compared with the energy calculated at the start
of the simulation, which yields the energy error ∆E. Snook uses the formula ∆E/(KE +
PE) to report energy conservation, but since the PE is usually negative, this formula
tends to overestimate the importance of the error compared with the alternative
measure: ∆E/(KE + |PE|) used by some writers. However, since ∆E is normally less
than 1% the distinction is not particularly important.
   The forces appearing in eqns. 4.5 are not necessarily calculated directly from the
analytic potential functions. In Snook, Morse forces are calculated from a look-up table
(essentially by indexing the inter-particle separation, r, into an array of pre-calculated
values, with interpolation if necessary). Other forces (spline, screened Coulombic) are
calculated directly from the respective analytic functions. The majority of particles in the
system interact at any instant via Morse forces, so the use of a look-up table speeds the
force calculations significantly.*

                                                            
* Floating point calculations, especially those involving the exponential or other functions, are
extremely time-consuming.
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   Another device which improves the speed of calculations is the use of neighbour lists.
A particle’s neighbour list is a list of those other particles in the system with which it
may interact in the period before the next list update (normally carried out every ~10
timesteps). The neighbour lists are built up by taking into account the potential cut-off
distance and the velocity of the fastest particle in the system (which determines the
width of the sheath that has to be examined for potential collision partners). The
‘Number of Partners’ parameter which is specified in the Run file defines the maximum
allowed size of the neighbour list (i.e. the memory allocation for the list). This parameter
is typically set at 50-60, although larger values might be needed on occasions.
   Snook does not employ the ‘moving atom approximation’ described in refs. [30,31],
which ignores the effect of small forces (in effect introducing a displacement threshold).
The only special treatment that Snook accords to small forces is in connection with the
HGE-A algorithm, eqns. 4.5: small pairwise forces can be treated as if they were
constant
during the integration timestep, the corrector force being approximated to its value at
the start of the timestep. The definition of small forces is selected by the user of Snook
(in the Options|Simulation dialog).

4.5. Inelastic processes
   Inelastic processes were neglected in versions 1.0 - 2.1 of the Simulation Kit.  The
physical model used in the current version is described in Chapter 9.
   Inelastic energy loss processes are not well understood for keV particles, and all
extant models have something of a heuristic character. Experimentally, it is not always
easy to identify the effects of inelastic energy losses. The influence of discrete inelastic
events on simulated processes (e.g. sputtering) has been examined in detail recently by
Shapiro and Tombrello.32,33 They discuss several methods of incorporating inelastic
effects into simulation models, and find that in some cases the inclusion of the inelastic
effects lead to substantial differences (~30%) in the predicted sputtering yields
compared with the elastic model. At first sight, this is an unexpected result, since for 5
keV Ar bombardment of Cu(100), the average inelastic energy losses were computed to
be 50-100 eV, or 1-2% of the projectile energy. These inelastic losses are of the same
order of magnitude as the energy losses associated with integration errors in the
simulation (~0.5%). However, the explanation probably lies in the fact that inelastic
events are correlated with the same hard collisions that result in efficient sputter yields.

4.6. Binary targets
   Snook is principally designed for use with elemental targets. However, it can be used
with binary (or arbitrarily complex) targets provided that each of the various long-range
target-target interactions (X-X, X-Y and Y-Y respectively) can reasonably be described
by an identical Morse function. This approximation may well hold good for some
common binary alloys or compounds, XY, such as CuNi or GaAs, in which the
constituent atoms have similar electronic shells and occupy similar atomic sites. Snook
runs noticeably more slowly with binary targets (which it detects by checking the
atomic numbers in the Target file during initialisation), because these involve
significantly more computations.
   It should be noted that in binary targets, the calculation of the several screened
Coulombic interactions (both target-target and target-projectile) will always be handled
correctly, regardless of the target composition. Spline functions joining the screened
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Coulombic potential to the (common) Morse potential will also be appropriate for each
target-target interaction permutation (X-X, X-Y and Y-Y respectively).*
   The imposition of a single Morse function on all long-range target-target interactions
may disqualify the simulation model from use in some applications: for example,
preferential sputtering effects in alloys presumably cannot be accurately reproduced by
such a model.* However, this restriction would probably be irrelevant for the simulation
of impact collision ion scattering spectra, which are mainly influenced by the short-
range potential.
   Chapter 10 offers some suggestions on how to simulate collisions involving systems
with adsorbed overlayers, by using options flags associated with each particle to switch
off or modify the form of the short-range potential. This is a partial solution which
addresses the problem of target stability in such a system. However, it does not solve
the problem of modelling the pair interactions.
   The simulation of processes in binary targets is another area in which the author
hopes to improve the Simulation Kit in the future. The author, as always, welcomes the
views of users of the Simulation Kit on this matter. However, for the foreseeable future,
there will be a difficulty in obtaining credible pair potential parameters for binary
solids: the most promising way forward appears to be via many-body potentials.

                                                            
* One of the main reasons why Snook runs slowly with multi-component targets is that the
spline function coefficients have to be recalculated many times. It is prudent, for this reason, to
define spline limits which are as narrow as possible, so that particles spend less time in the
spline region.
* I am assuming here that the attractive potential is important in preferential sputtering, but I
may be wrong.
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5. Sputtering Simulations

5.1. Introduction
   Sputtering simulations at a fixed incident angle are one of the easiest simulations to
set up and perform, and they do not make unreasonable demands on computing
resources.  Some difficulties arise in the interpretation of results (see below), but general
agreement with experimental sputtering coefficients is not difficult to achieve. More
work is required for simulations of sputtering involving various projectile incident
angles (see chapter 6), but no new principles are involved.
   When setting up a sputtering simulation, you need to watch for problems of lattice
containment and lattice stability.

5.1.1. Lattice containment
   Lattice containment refers to the tendency for the effects of the collision to propagate
beyond the boundaries of the finite cluster used in the simulation. If you are using
Snook 2.1, this problem can be identified by visual inspection. If you are using Snook
1.2, the check for size effects is to run the simulation on differently sized lattices, and
compare the resulting estimates for sputtering coefficients. For sputtering simulations
involving keV projectiles you may have to tolerate some lattice containment violations,
since to remove them completely may require an unrealistically large lattice.

5.1.2. Lattice stability
   Lattice stability becomes an issue in sputtering simulations because of their long time
span (300-500 fs normally). Over this time scale, you may see a tendency for the surface
layer of the lattice to “relax” towards a configuration which is more stable from the
viewpoint of classical mechanics. Relaxation effects are inherent in the assumption of a
pair-potential description of the lattice.
   Things that can affect this relaxation behaviour are (a) the parameters defining your
Morse potential (Model file), (b) the cut-off distance used with your Morse potential, (c)
the options controlling the amplitude of thermal displacements and the target
temperature, (d) surface structure. A good test for lattice stability is to use a projectile of
negligible kinetic energy (0.1 eV, for example) and start it far away from the surface (the
starting point is specified as the z0 parameter in the Impact file): this will in effect isolate
the lattice. This type of simulation must be carried out with a fixed timestep (which can
be selected in Snook’s simulation options.

5.2. Results
5.2. Sputter coefficients
   Sputter coefficients (γ = number of atoms sputtered per incident projectile) are
typically of magnitude 0.1-10 for projectiles in the keV range. A simulation involving
300-500 runs (incident trajectories) can be completed in a few hours on a 100 MHz
computer.
   Some results are shown below for a 726 atom Ag(111) target bombarded with the
following 0.4 keV projectiles: He, Ne and Ar (you can find the input files for the
Ne/Ag(111) system in the \examples\ne-ag111 directory of your SK installation).
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After completion of the simulation, the following filter condition was applied to the
output file:

[rw > 0 ] & [vz > 0.0] & [rz > 4.5e-10] & [ke/ep > 0.2]              (5.1)

   This condition only selects ejected target atoms with energies above 0.2 eV which are
more than 4.5 Å above the original lattice surface boundary. The easiest way to estimate
the sputter coefficient is to relate it to the size of the file (FileSize, in bytes) created by
the filter operation:

γ = FileSize/(RecSize*NRuns),                                                                                         (5.2)

where RecSize is the size of one binary record in .SNK files (40 bytes) and NRuns is the
number of runs in your simulation (= 376 in this case). (The screen output of Winnow
2.1 displays this information automatically.)
   Similar conditions as (5.1) were applied for a variety of above-surface distances (i.e.
zmin = 4.5, 5.5, 7.0, 10.0 and 15 Å respectively, where zmin is the point above the surface
where the sputtered atom count commences). The corresponding sputter coefficient
estimates are summarised in Table 5.1.

Table 5.1. Calculated sputter coefficients for 0.4 keV projectiles normally incident on 736-atom
Ag(111) target (based on 376 incident trajectories). The simulations were terminated at 400 fs, or
when all particle energies fell below 1 eV. Experimental values refer to polycrystalline Ag
substrates, and are taken from the compilation by Benninghoven et al. (Fig. 2.110).34

Projectile rz boundary, Å Sputter coeff., γ
He 4.5 0.84
He 5.5 0.27
He 7.0 0.17
He 10.0 0.10
He 15.0 0.05
He Experimental 0.19
Ne 4.5 3.85
Ne 5.5 2.91
Ne 7.0 2.14
Ne 10.0 0.62
Ne 15.0 0.54
Ne Experimental 1.6
Ar 4.5 5.66
Ar 5.5 4.37
Ar 7.0 3.19
Ar 10.0 1.93
Ar 15.0 0.95
Ar Experimental 2.7

   The data collected in table 5.1 illustrate how difficult it is to develop a practical
criterion which separates the sputtered atoms from others in the plasma-like region
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which used to be known as the “selvedge” in the SIMS literature of the 1980s.* In these
calculations, a range of 4.5 Å was used for the potential cut-off, so this is presumably a
lower bound for the width of the selvedge. From comparison with the experimental
values, and from visual inspection of the z-distribution of ejected particles, one gets the
impression  that the selvedge extends to around 5.5-7.0 Å. It is satisfactory to note,
however, that relative yields calculated for the different projectiles are much less
dependent on the choice of selvedge width (table 5.2). It is not clear from the literature
how the various authors defined their sputter yields in terms of particle positions.
   Sputter yields are strongly influenced if a planar surface potential (sect. 4.3.4) is
employed in the simulation.

Table 5.2. Calculated ratios of sputter coefficients for 0.4 keV projectiles(He, Ne, Ar)  incident
on Ag(111): dependence on assumed selvedge width, zmin (see text for discusssion, and table 5.1
for simulation conditions and ref. to experimental data).

zmin (Å) 4.5 5.5 7.0 10.0 15.0 Expl.
γ(Ar)/γ(He) 6.8 8.1 18.4 19.3 20.0 16.9
γ(Ar)/γ(Ne) 1.47 1.5 1.5 1.6 1.8 1.7

5.3. Angular effects in sputtering
   There are several distinct kinds of experiments which explore angular effects in
sputtering processes. The simulation procedures are generally similar for each kind of
experiment, although those simulations where the projectile incident geometry varies
are best handled as batch jobs (see the ICISS example in the following section).
   A simulation is linked to a particular experimental measurement only by the criteria
used at the output-processing stage to categorise sputtered particles. For example, the
output data from a given simulation could equally well be processed by Winnow to give
a plot of either the azimuthal or the altitudinal distribution of ejected particles (or of
many other kinds of distribution): the ultimate use of the output data need not be
known or specified at the time that the simulation is run. This flexibility is an important
advantage of the Simulation Kit, although it is achieved at the expense of increased
complexity for the user.
   Winnow’s predefined angular variables (phid, altd, if expressed in degrees, or phi,
alt, if expressed in radians) ease the labour of extracting angular information. Suppose
you want to make a plot of the azimuthal distribution of ejected particles (excluding the
projectile) at an altitudinal angle of 45±3 °. Then you would follow this procedure:
1. Filter the output file (a) to exclude records for the projectile (i.e. [rw > 0]), (b) to

select only ejected target atoms (e.g. [rz > 4.0E-10] & [vz > 0.0] ), and (c)
lastly include only those particles moving at the desired altitude ([altd > 42.0] &
[altd < 48.0]).

2. Use the Process|Spectrum option to generate the distribution of the variable phid
over the angular range 0.0 to 360.0.

   The filtering process suggested in (1) can be achieved in a single step:

                                                            
* I use the term selvedge  to refer to the plasma-like surface region which assembles in classical
bombardment simulations. Some writers, e.g. Robinson [7], use the term as a synonym for
“surface”.
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   [rw > 0] & [rz > 4.0E-10] & [vz > 0.0] &
[altd > 42.0] & [altd < 48.0])           (5.3).

   The possible range of the angular variable altd is -90.0 to +90.0 (degrees), but the
negative values (implying motion into the bulk) are rarely needed.
Positive values of altd imply positive values of vz (the perpendicular velocity), which
means that the term [vz > 0.0] in equation 5.3 can be omitted, since it is redundant.
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6. Impact Collision Ion Scattering

6.1. Introduction
   The repulsive interaction between an incident atomic projectile and a target atom at
the surface of a lattice creates a region (known as the shadow cone) into which the
primary projectiles cannot penetrate. Impact Collision Ion Scattering Spectrometry
(ICISS) is an ion scattering technique which uses the shadow cone effect to derive
structural information.8 The shadow cone formalism has also been applied to explain
projectile-incidence anisotropies in other techniques such as SIMS,35,36 ion-induced
secondary electron emission,37 and ion-induced Auger electron emission.38,39

Figure 6.1. Shadow cone region formed by trajectories of projectiles scattered by repulsive
potential.

   The simulation of measurements made in ICISS experiments is one of the most
demanding applications of the Simulation Kit. This is chiefly because ICISS
measurements only detect backscattering of projectiles into a narrow angular range (~
1°). For this reason, practical ICISS simulations require the use of simplified scattering
models and a modest number of target atoms. Using these simplified models, a wide-
range ICISS spectrum can be simulated in approximately one working day on a
Pentium PC. The output from the simulation contains information about projectile
scattering at all angles of emission (not just backscattering). Data for the scattering
angles of interest is selected later using Winnow. This means that a single simulation
can generate data for a variety of experimental measurements.
   The simulation of ICISS data and other kinds of angular scans are good candidates for
running as batch processes (using Snook’s batch run option), as described in section
6.2.
   In ICISS experiments, a projectile is incident parallel to a row of the target lattice.
Scattered projectiles are detected in the same plane, at a scattering angle of ~180°.8
Scattering in the plane requires that the projectile’s collision partners all be coplanar, so
the first simplifying assumption we can make is to consider only those collisions
involving projectiles incident in the plane of the atomic row. This model implicitly
ignores the effects of vibrational displacements. A related simplification is to consider a
target which consists only of atoms in the plane of incidence (see fig. 6.2). Finally, since
ICISS is highly surface sensitive, we need only use a target consisting of a small number
of atomic layers (3 or 4).
   Using the first of these assumptions (and, optionally, the second and third) we can
then determine the relative backscattering yield by considering only those projectile
trajectories which lie in the plane of the atomic row (see fig. 6.2).
   The following discussion assumes that the parameters of the projectile-target
interaction potential (notably the screening length correction) are known. In practice,
these will often have to be determined heuristically. Optimisation exercises of this kind

shadow cone region

incident projectiles
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should usually be carried out using a “binary search” method: for example, suppose the
screening length correction is known to lie in the range 0.7 to 0.9, and the optimum
value is 0.84, then the search would proceed by testing the following values: 0.8
(intermediate between 0.7-0.9), 0.75 (fails), 0.85, 0.825 … and so on.
   One method for selecting the screening length correction for an ICISS simulation is to
select a scattering process that involves 2 atoms (shadower and scatterer) which are
both located in the surface plane, then use a binary collision program (such as Cone) to
fit the experimental shadow cone data to a known structure (e.g. the unreconstructed
clean surface). This binary collision method is based on the assumption that the
projectile does not interact appreciably with other atoms (true, provided the critical
angle is not too shallow).
   When comparing the results of simulations with experimental data, it should be
remembered that the latter involve measurements of ion yields incident in a fixed solid
angle. The simulated data, however, involve scattering into a fixed angular range. The
solid angle subtended by angular ranges ∆ϕ and ∆φ is ∆Ω = ∆ϕ.∆φ.cos ϕ.
   If the simulation is treated as a 2-dimensional scattering problem (as in this chapter),
no correction to the scattered intensities is required. If a full 3-dimensional calculation is
undertaken, scattered intensities need to be corrected (for comparison with
experimental measurements at fixed solid angle of acceptance) by dividing them by cos
ϕ, where ϕ is the altitudinal emission angle.

6.2. ICISS example project
   The input files you will need for the example ICISS project can be found in the
\examples\iciss directory of your SK installation. Be sure to read the readme.txt
files in that directory and before you attempt to run the simulation (which uses a batch
files, cu110.bdf). This project simulates the scattering of 1.5 keV He from a Cu(110)
surface at various altitudinal angle of incidence.
   The input files for each projectile incidence angle are identical, with the exception of
the Run files. The latter differ only in the specification of the projectile altitudinal angle
of incidence, so it is easy to generate Run files for each geometry from a common
‘template’ Run file simply by editing the altitudinal angle field (using Spider’s
Run|Open command).  If you subsequently need to modify some other field in the Run
file (e.g. the timestep) you may find that it is less tedious and error-prone to go back
and generate the files you need from a common ancestor template, rather than edit the
existing Run files.

Figure 6.2. 26-atom Cu(110) lattice used for example project (projection in xz plane). The arrows
depict the range of incident projectile trajectories in the simulation.

1 or 2 keV He
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   Fig. 6.2 illustrates the scattering geometry on a 2-dimensional target lattice. In this
example we shall consider the ideal case of 180° scattering.
   Fig. 6.3 shows the processed results of the ICISS simulation, namely a plot of the 180°
backscattering yield as a function of the projectile incident altitudinal angle. The solid
line in the figure represents the simulated data, while the dashed (blue) line represents
the experimental data (arbitrarily scaled on the intensity axis) as measured by Niehus et
al.40 The backscattered projectile yield is below 200 counts  (for a 0.5° counting interval
per 25,000 trajectories) .
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Figure 6.3. Calculated (solid line) and experimental (dashed line) direct impact backscattering
intensity for 1.5 keV He projectiles incident on Cu(110) along a <112> azimuthal direction (see
fig. 6.1). Yields are calculated using a ±0.5° acceptance range for the altitudinal angle (e.g., a
point at ϕ = 60° refers to the fraction of particles backscattering between 59.5-60.5°. Each point is
based on 25,000 runs (trajectories).

   The data shown in Fig. 6.3 were produced by the following method:
   First, in the Run file of the ICISS project, it was specified that only emitted projectile
data should be written to the output file. (This restriction is not mandatory, as filtering
can separate the projectile data later, but it saves unnecessary disk usage.)
   Second, the screening length correction for the He-Cu ZBL potential was estimated to
be 0.9 using the Cone utility which ships with the Simulation Kit. The critical angle
computed by Cone was compared to the critical angle for in-surface scattering (12.5 °) -
which is conventionally located at 85% of the experimental peak height - for various
values of the screening length correction.
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   Third, after the simulation was completed, the resulting output file for each incident
angle was filtered to select out the angular fraction of interest e.g. for 15° incidence:

[altd > 14.5] & [altd < 15.5] & [vx > 0.0]                                                           (6.1)

   The above filter selects particles scattered in the +x direction at altitudinal angles
(expressed in degrees) between 14.5-15.5° i.e. at an angle of 15±0.5°. (The symbol altd
refers to the altitudinal angle expressed in degrees.) Since the output routine only stored
projectile data in this case, there is no need to select projectile particles explicitly (i.e. by
using the additional filter condition: [rw = 0]). This filter is appropriate for 180°
backscattering events.
   Fig. 6.3 illustrates the existence of ‘critical angles’ ϕc for 180° (‘direct impact’ or centre-
to-centre) collisions, which are indicated by sharp onsets in scattering intensities. These
appear as peaks because there is a concentration of trajectories at the shadow cone
edges.
   Note that if the experimental data referred to scattering at some angle less than 180°,
then the filter condition should be modified accordingly. For example, for 140° degree
scattering, condition 6.1 (for ϕ  =15° ) must be modified to: [altd > 54.5] & [altd <
55.5] & [vx > 0.0] (Make sure you use a filter [vx < 0.0] if the scattered projectiles
move in the negative x direction, as they would in this example for ϕ > 50° ).
   Table 3.1 compares the calculated and observed critical angles for this system. Note
that the Simulation Kit is significantly better at locating the 70° edge than is Cone.

Table 3.1. Comparison of (a) observed critical angles in degrees for ICISS peaks shown in Fig.6.3
with values calculated using (b) the Simulation Kit and (c) Cone (binary collision model)
respectively. Estimated uncertainties in critical angle locations are ±0.5° in columns (a-b), and
±0.1° in column (c).

Peak (a) Observed (b) SK (c) Cone

1 12.5 13.3 12.4

2 47.2 48.0 48.2

3 70.4 70.6 71.8

6.3. Angular conventions
   There is some possibility for confusion in the angular conventions used by the
Simulation Kit. The angular variables used by Winnow for filtering and other options are
based on a self-consistent system (see Winnow on-line Help for details). The user-
programmed option in the Run file dialog of Spider also follows the same system.
However, the projectile incident altitudinal and azimuthal angles are defined in the Run
file in a manner similar to what is used by experimentalists: these angles actually define
the orientation of the position vectors that join the surface ‘impact point’ to the starting
projectile position. For this reason, the incident altitudinal angle is always entered in the
Run file dialog as a positive number, although strict geometry would indicate a
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negative value (since vz/√(vx² + vy²) < 0).#  For 180° scattering, the projectile incident
and scattering angles would both therefore be treated as positive quantities (by
Snook/Spider and Winnow respectively).

6.4. Vibrational effects in ICISS
   The ICISS example just described incorporates the effects of thermal vibrational
displacements in the target lattice. These displacements increase the computational
problem immensely, because of the now small probability of occurrence of a direct-
impact event (which requires a scattering configuration in which both scattering atoms
to lie coaxial to the projectile path).
   In order to work around this problem, Snook offers the option of suppressing
thermal vibrational displacements in the y-direction, while applying them in the normal
way along the x- and z-directions. This option was used in the production of Fig. 6.3.
   This workaround (the suppression of y-vibrations) relies on the assumption that the
projectile’s azimuthal incidence is parallel to the x-axis, which is achieved by leaving
this parameter at its default value of zero in the Run file. Thermal displacements
applied in this preferential manner maintain the coplanarity of lattice atoms in the
projectile plane of incidence. To activate this option in Snook, it is only necessary to
select the “No y-vibration” item which appears in the Simulation Options dialog box
(on the Options menu).†
   If an ICISS simulation is run without applying vibrational displacements, the critical
edges will appear as sharp spikes. Some users may prefer this approach for locating the
critical angles.
   The simulation model shown in Fig. 6.3 fails to reproduce the relative peak heights
accurately, but this is to be expected, since the model takes no account of angular
variations in incident ion neutralisation efficiency. Also, the simulated width of the
leftmost peak does not agree with experiment: this may be because the vibrational
displacement of surface Cu atoms is wrongly estimated. Looking at Fig. 6.3, one can
suggest that it is probably more useful to compare simulated and experimental data on
a peak by peak basis, rather than as full angular plots.

6.5. Concluding remarks
   ICCISS simulations (and others which involve many different projectile angles of
incidence) require a significant post-simulation processing effort. In the case of ICISS
simulations, this processing may be best achieved by automating it with a custom-
written computer program, rather than relying on the general (but slow) capabilities of
Winnow. The examples\winnow directory includes a simple program (scat-cnt)
which can be used for batch extraction of the kind of data plotted in Fig. 6.3, or can be
adapted for other purposes.

                                                            
# Spider does not even allow you to enter a negative altitudinal angle.
† The “thermal vibrations” option must, of course, be enabled in the Model file used by the
simulation. Otherwise the option discussed here has no effect.
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7. Depth Distributions

7.1. Introduction
   This chapter discusses a project which looks at the vertical displacement and spatial
distribution of target particles during ion bombardment.
   The input files used for this project can be found in the \examples\mixing
directory. The project requires about 4 hours to run, and generates a very large output
file (dynvars.snk) which is 24 MB in size. The project demonstrates the ability of the
Simulation Kit to use a generic output file for extracting different kinds of information
about a system.
   Briefly, the physical system consists of a Cu(100) target which is bombarded at normal
incidence by 0.5 keV Ar projectiles. The target consists of 12 atomic layers, each of
which contains 225 Cu atoms (15x15x12 = 2700 atoms in total). This relatively large
target was chosen in order to ensure that the collision was contained both laterally and
vertically. The simulation uses 225 runs. Each trajectory is followed until either the
fastest atom in the system has kinetic energy below 2 eV, or 500 fs has elapsed (in
practice, the first condition is met within 300-400 fs). After the termination of each run,
state information (r, p, ...etc) is recorded for each particle in the system.
   The purpose of the simulation was to examine (a) the extent of vertical mixing of
atoms from different layers; (b) the depth of origin of sputtered atoms; (c) the vertical
distribution of implanted primary projectiles; (d) the formation of Wehner spots.
   For purposes (a) and (b), the first necessary stage in data processing was to filter the
output file, dynvars.snk, in a way that would isolate the contributions from
individual layers. This can be achieved (using Winnow’s Filter option) for layer 1 by
noting that this layer corresponds to the particles referenced by lines 1-225 of the input
Target file mixing.trg. Thus a suitable filter expression for this layer is as follows:
[rw > 0] & [rw <= 225]                                                                                          (7.1)

   Likewise, the following filter can be used to isolate the second layer:
[rw > 225] & [rw <= 450]                                                                                     (7.2)

   After several applications of this procedure, one obtains a series of smaller files
layer1.snk, layer2.snk, ... which contain the layer-specific data.

7.2. Sub-surface depth distribution
   Fig. 7.1 shows the post-bombardment depth (z) distribution of particles plotted
according to the layer of origin. The ordinate scale consists of the total counts measured
for each channel (1 channel = 0.4 Å) summed over all 225 runs. The individual curves
were obtained by using the Processs|Spectrum option in Winnow, with a “spectrum
independent variable” defined as rz*1.0E10 (i.e. the z-position expressed in Å).
   The integrated area under each curve is identical, and corresponds to (225 runs x 225
particles = ) 50625 counts. The most obvious feature of fig. 7.1 is the relative broadening
of the curves in the outermost layers (with consequent decline in heights of the curve
maxima). It is possible to discern tails on the low-z side of these curves which are
indicative of recoil mixing. The extent of mixing is somewhat disguised by the
contribution from particles near the edges of the target planes, which are little disturbed
by the collision cascade. We shall not discuss further how to present data of this kind in
order to better bring out the mixing effects, although clearly it is a delicate problem.
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Figure 7.1. Depth distribution of target atoms in Cu(100) following 0.5 keV Ar bombardment.
The figure shows the contribution (total counts from 225 runs) from particles in each of the first
7 atomic layers (225 particles per layer; 0.4 Å per channel).

7.3. Origin of sputtered atoms
   Fig. 7.2 isolates the depth distribution of particles originating in layer 4 (5.4 Å) of the
target. These data are the same as those shown in fig. 7.1, but now the ordinate scale
has been expanded by a factor of 100. From fig. 7.2 it is evident that a negligible number
of atoms from layer 4 are able to penetrate the surface (at z = 0.0 Å) and leave the target
as sputtered atoms.

Figure 7.2. Same data (for layer 4 only) as shown in fig. 7.1, but with the ordinate scale
expanded by a factor of 100. Note the total absence of layer 4 atoms found at z > -1 Å.

   The depth of origin of sputtered atoms can be quantified by the following
methodology. First some threshold z value must be defined which represents the
beginning of the region occupied by sputtered particles, as opposed to the outermost
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surface atoms. As discussed in section 5.2, this definition is not a trivial task. For the
purposes of discussion, we shall assume a threshold here of z = +6.0 Å. The
contribution of each atomic layer to the sputtered atom yield can then be estimated by
performing a further filter operation on the processed output files (layer1.snk,
layer2.snk etc.) whose preparation was described above. This filter saves those
particles which are located at vertical (z) positions at 6 Å or greater:

[rz > 6.0E-10]                                                                                                           (7.3)

   The finding of this procedure is that of a total of 1080 atoms found to be sputtered
after 225 runs (a mean yield of 4.8 atoms per incident projectile* ), 1067 of these (99%)
originated from layer 1, 13 (1%) originated from layer 2, and none originated from the
deeper layers (3, 4, 5...). This result emphasises the surface specificity of sputtering.

7.4. Projectile implantation profile
   The projectile depth (z) distribution can be accessed from the output file
(dynvars.snk) of the project by filtering with the expression [rw = 0], followed by
generation of the depth “spectrum” as described in section 7.2. Since the projectile may
have left the target region (which covers a radius of ca. 17 Å from the origin), it is
prudent in practice to use a filter condition like the following, which ensures that the
filtered records correspond to projectiles located in the vicinity of the target:
[rw = 0] & [sqrt(rx*rx + ry*ry) < 17.0E-10]                                         (7.4)

Figure 7.3. Depth (z) distribution of projectile species at termination of the simulation outlined
in section 7.1 for 0.5 keV Ar-Cu(100). The figure does not include those projectiles (5.8% of total)
that were laterally displaced by more than 17 Å from the lattice origin. The width of each
channel is 0.8 Å.

   Fig. 7.3 shows the plot which results from this procedure. The distribution is noisy
because it is based on only 225 trajectories. A substantial fraction of the projectiles are
reflected from the surface (ca. 20%, depending on where the surface is drawn). Of more
interest to the present discussion are those projectiles which remain lodged inside the
target. Fig. 7.3 shows that these are mostly stopped within 8 Å of the surface
(equivalent to 4-5 Cu(100) atomic layers).
                                                            
*M. Hou and W. Eckstein, Nucl. Instr. Methods B13 (1986) 507, calculated a sputter yield of 2.6
for the same system. The discrepancy with the value given here is probably related to the
definition of the sputter threshold, as previously discussed in section 5.2.
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7.5. Wehner spots
   It has long been known that sputtered particles are preferentially ejected along
directions parallel to the more closely-spaced atomic rows.  This can be observed
experimentally in the phenomenon of “Wehner spots.”7 Although this topic is
unconnected with the subject of the chapter, it can be examined using a similar
methodology, and is for that reason briefly discussed here. Wehner spots are prominent
features in the images formed by sputtered particles incident upon photographic plates
(or other imaging devices) facing the plane of the surface under bombardment (a set-up
similar to that used for Laue or electron diffraction).
   Wehner spots can be investigated through simulations by making plots of the
asymptotic sputtered particle momenta in the (x,y) plane. Fig. 7.4 shows a plot of px
versus py for sputtered particles in the 0.5 keV Ar-Cu(100) system. These were obtained
by first filtering the output file (dynvars.snk) with the following expression, which
isolated the sputtered target atom component:

[rw <> 0] & [rz > 6.0E-10]                                   (7.5)

   The SNK file that resulted was then loaded into the trajectory plotter, from which fig.
7.4 was copied.* Fig. 7.4 constitutes a projection of the particle trajectories onto the (x,y)
plane. The maximum spot intensities coincide with 45° emission along the <001>
azimuthal directions, which correspond to the altitudinal directions parallel to <011>
atomic rows.

   
Figure 7.4. Scatter plot of sputtered particle momenta (px vs. py) for 0.5 keV Ar-Cu(100) system,
showing the formation of Wehner spots. The x and y axes coincide with <011> target lattice
rows. The diagonal directions lie parallel to <001> rows.  The figure is based on 225 projectile
trajectories.

   This example will not be discussed in greater detail. An obvious first improvement of
the data presented in fig. 7.4 would be to exploit symmetry and “fold over” each data
point into symmetrically equivalent quadrants. This can be achieved (with some

                                                            
* In the Display|Options dialog, “Momenta” was chosen.  The plot shown in fig. 7.4 was created
by playing through all frames, using “Points” for the symbols, and by having the “Refresh
between frames” option unchecked.
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difficulty) using the Format Columns option of Winnow,‡ but it would better to
program the operation directly in a spreadsheet or computer program.

                                                            
‡ You need to make 4 data (*.dat) files, using the abs() function to permute the sign of the px, py
entries in turn as (+,+), (+,-), (-,+) and (-,-) . The files can be recombined using an editor. There
will be considerable redundancy (duplicate entries) but this won’t affect the resulting plot.
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8. Thermal Vibrations

8.1. Introduction
   The author became increasingly dissatisfied by the method of handling thermal
vibrations in the first version of the Simulation Kit. The original intention was to provide
an order-of-magnitude estimate of lattice atomic displacements. As the following
discussion will show, the choice of atomic displacements for atomic collision
simulations is a non-trivial problem. However, feedback from users indicated that a
more ‘precise’ treatment was necessary, particularly for  temperature variation studies.
Accordingly, the basis of the computations made by Snook and Spider (in versions
1.2 or 2.1) is outlined in some detail here. The discussion in this chapter, which is
certainly not the only way to approach the problem, should allow users to decide for
themselves on the value of the treatments used.
   Before discussing the equations, the following general points are worth drawing
attention to:
1. Users can always override the mean square thermal vibrations calculated by

Spider by simply editing the values in the .MDL file. (Refer to the File Formats topic
in Spider’s online Help)

2. Most experiments based on keV ion bombardment are not particularly sensitive to
thermal vibration effects.

3. Errors in the treatments of vibrational effects will only significantly influence
simulations of physical processes if the root mean square (rms) vibrational
amplitude error is significant in comparison with the scattering cross section
(collision radius).

4. Most published keV bombardment simulations have not included thermal vibration
effects.

5. Don’t confuse the rms vibrational amplitude √<r2>, with the mean square thermal
vibrational amplitude, <r2>.

6. Don’t confuse the isotropic mean square amplitude <r2> with the unidirectional
mean square amplitudes <x2>, <y2>, <z2>.

7. Debeye temperatures are uncertain to at least ±10%, and often more.

8.2. Theory
   According to the Debeye theory, the isotropic mean square thermal vibration
amplitude, <r2>, of atoms in a monatomic solid is given by the following expression:

   <r2> = 9h 2 T/(MkθD2). [ φφ(θD/T) + θD/4T]                                                                   (8.1)

where θD is the Debeye temperature, k is Boltzmann’s constant, T is the absolute
temperature and M is the mass of atoms in the solid. φφ(x) is the following function,
where x = θD/T :
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    Equation 18.1 refers to the mean square amplitude of an isotropic oscillator. This is
the quantity which Snook reads from the .MDL file created by Spider. For vibrations
in a specific direction (x, y or z), the right hand side of equation 18.1 must be divided by
3:

<x2>  = <y2> = <z2> = <r2>/3 = 3h 2 T/(Mk θD2) . [ φφ(θD/T) + θD/4T]                       (8.3)

   These unidirectional amplitudes are the quantities which are calculated and used by
Snook.
   If we substitute for the physical constants, and interpret M as the mass in atomic mass
units (amu), then with the substitution (x = θD/T) the expression (18.3) simplifies to:

<x2> = 145.5/MθD . [ φφ(x)/x + 1/4]   Å2                                                                        (8.4)

[h = 1.05459E-34 Js; k = 1.38066E-23 JK-1; 1 amu = (1000NA)-1 = 1.6606E-27 kg]

8.3. Comments on the Literature
    There is some confusion in the equations published in the literature, in that equation
18.3 is sometimes associated with the isotropic vibrations (more properly described by
equation 18.1). This presumably occurs because of typographical errors. Despite this,
and other discrepancies, most authors seem to broadly agree on the constant pre-factor
(5.5) in equation 18.4 (although physicists tend to calculate the pre-factor using nuclear
rather than atomic masses, giving a value of 6.0). The reader is urged to be cautious
when reading the literature on this subject (including this article!).

8.4. Implementation  in Spider and Snook
   Spider (versions 1.2 and 2.1) uses equation 18.4 to calculate <x2> for bulk and
surface atoms, based on the values for T and θD specified by the user (for the Model
file), and the approximations to φφ(x) discussed below. These unidirectional <x2> values
are read by Snook from the Model file. The displacements added to each lattice atom x,
y and z coordinate are calculated (using the Box-Muller method) to be consistent with a
random distribution having Gaussian deviates characterised by a variance <x2>. Bulk,
surface parallel and surface perpendicular displacements respectively are drawn from
distributions with different standard deviations. However, a requirement imposed on
the displacements calculated by Snook is that they shall not exceed 2.5 standard
deviations. For purposes of the vibrational correction, a lattice atom is classified as a
‘surface atom’ if its z-coordinate, z[n], places it above the anchor atom at z[1], or no
more than 1 Å below it: 1

   if z[n] >= z[1] - 1.0E-10 then {the atom is in a surface site }
  else { atom is in a bulk site }

   The method for calculation of the Debeye function φφ(x) in equation 18.4 is now
explained.
   φφ(x) can be calculated by numeric integration of equation 18.2. Eckstein provides the
following approximation:3
                                                            
1 You should contact the author if this treatment does not meet your requirements.
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   This approximation is used by Snook for x in the range 0 to 3.0, i.e. in the range T =
0.33θD to “infinity”. Recall that x = θD/T.  For “infinite” T, φφ(x) = 1.0; for T = 0.33θD, φφ(x)
= 0.48.
   As T → 0, so too  φφ(x) → 0. For values of x  > 3.0 the following (low-temperature)
approximation is used:3

                    φφ(x) = [π2/6  - (x + 1)exp(-x) - (x/2 +1/4)exp(-2x) - ...]/x                          (8.6)

    For x >> 1, φφ(x)/x becomes small in comparison to the ¼ term in equation 18.4, and
the lattice vibrations approach their zero-point levels.
   It is worth pointing out that these thermal displacements are computed without
reference to the potential function (Morse) used for the target-target interactions in your
lattice. This means that the (thermo-)dynamical temperatures associated with your
lattice (which depend on the potential parameters) will not correspond to the
temperature which you specified in the model file. The true lattice temperature is
related to the mean difference in potential energies, <V1 - V0>, of the lattice with (V1), and
without (V0), thermal displacement effects applied. For a system of oscillators
interacting via quadratic (harmonic) terms, theory suggests a value of <V1-V0> = 3/2kT
(which we shall use as an approximation for the Morse potential too; this result comes
from either the Equipartition principle,41 or the Virial theorem,9 depending on your
point of view). The discrepancy between theory and the values returned by Snook
depend on the potential function used by Snook. For example, the default Morse
potential for Cu gives a value of <V1 - V0> = 0.076 eV (300 K), compared with 3/2kT =
0.04 eV.
   Further discussion of these matters would take us too far afield, but the conclusion
must be that the choice of an appropriate thermal displacement depends to some extent
on the purpose of the simulation. For a study of ion scattering or channelling, the
primary focus of interest is the displacement itself. However, for study of lattice
dynamics (melting, film growth, diffusion etc.), the potential energy associated with (or
implied by) the displacements should be the primary consideration. Sputtering - one of
the main applications of such simulations - unfortunately falls in the area between these
extreme cases.

8.5 Lattice atom velocities
   The simulation options dialog box in Snook allows the user to initialise the velocities
of the target lattice atoms. The idea is to set-up the target lattice as a dynamical system
of a specific temperature (see, however, the preceding section for qualifications to this
remark). The velocities are randomly applied, according to a Maxwellian distribution.‡

Note that this velocity initialisation is based on a classical theory, in contrast to the
quantum mechanical foundation of the Debeye theory on which the thermal
                                                            
‡ No attempt is made to ensure that <vx>, <vy> and <vz> are precisely zero, although in practice
this very nearly happens in large lattices, as expected.
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displacements are estimated.
   According to the Equipartition Principle (from statistical mechanics), the mean
translational energy <KE>  of an atom in the classical limit is 3/2 kT (k is the Bolzmann
constant). This can be broken down into contributions of ½kT for each direction of
motion. The velocity distribution is deduced from the following assumptions:
   (a) atomic energies are distributed according to a Boltzmann distribution: i.e. P(E) =
exp-((KE + V)/kT) = exp(-KE/kT).exp(-V/kT);
   (b) atomic positions and momenta are distributed independently: i.e. P(E) =
P(V).P(KE).
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9. Inelastic Scattering

9.1. Introduction
   Until this point the discussion has considered only the effects of elastic scattering.
Energetic particles can lose energy through excitation of excitation of valence or core
electrons, or lattice vibrations. These energy losses are termed inelastic losses. The term
electronic stopping is also used to refer to electronic excitations, which are the
predominant loss mechanism at keV particle energies and above. The reader should be
aware at the outset that the main pitfall in the literature of electronic stopping is the lack
of any standard system of units. The equations in this chapter should be used with SI
units.
   Version 2.2 of the Simulation Kit permits the modelling of inelastic effects via a
combination of three distinct electronic stopping models.4 These models are: (a) the
Lindhard-Schiott-Scharrf (LSS) model; (b) the Oen-Robinson (OR) model; (c) the
Shapiro-Tombrello (ST) model.32,33 These models can be included singly, not at all, or in
any weighted combination according to the preference of the user. The simulation of
inelastic effects at keV energies usually has to be done on an ad hoc basis because of the
general theoretical uncertainty surrounding the mechanisms of inelastic loss. The
parameters for each of the models (a)-(c) are specified using Spider; the actual
model(s) to be used are selected in Snook's Options box at run-time.
   The LSS model requires the specification of a set of parameters for every kind of atom
(i.e. atomic number, Z1) for which inelastic losses are to be tracked. For instance, 2 sets
of parameters are required for the Ar → Cu(100) system (for Ar and Cu particles
respectively). The OR and ST models require a set of parameters for each pair of
collision partners. For example, 3 sets of parameters are required for the Ar → Cu(100)
system, representing the pairs Ar-Ar, Ar-Cu and Cu-Cu respectively. For all models,
incomplete sets of parameters are allowed, but this will lead to neglect of the
corresponding energy loss channel (for example, if you forget to include parameters for
the Cu-Cu interaction). The Spider online Help topics explain how you should enter
the parameters for these various inelastic loss models.
   In implementing these models, the programmer (i.e. the author) is forced to make
decisions with which the user of a program may not necessarily agree. For example, in
Snook, any inelastic loss corrections for a given timestep are applied after the update of
the elastic corrections (positions and velocities) for that timestep. The distinction may
seem trivial, but it does have observable consequences.

9.2. Lindhard-Schiott-Scharrf (LSS) model
   The LSS model asserts that the electronic energy loss (dE) associated with the
movement dx of a particle (atomic number Z1) in a medium (atomic number Z2) is
proportional to the particle velocity (v):
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where N is the atomic density of the medium (atoms m-3), aB is the Bohr radius, and vB is
the Bohr velocity (= c/137). Equation 9.1 simplifies to:

− =
dE
dx

K LSS v( ).                                                                                                                                                          (9.2),

where K(LSS) is a constant. The LSS model thus views the target as a viscous medium,
and describes a continuous electronic energy loss process that arises from passage
through this medium. Spider allows the definition of K(LSS) given in equations 9.1 and
9.2. to be scaled by an arbitrary factor. dE can be calculated at each timestep, once an
atom's displacement, dx, is computed for that timestep.
   For a mixed target material (e.g., a Cu-Ni alloy), the correct choice of the Z2 parameter
in equation 9.1 requires some careful thought, which will be guided by the user's
physical intuition about the correct 'effective' atomic number of the target.
   It should be noted that the application of inelastic corrections according to the LSS
model does not conserve linear momentum. (This remark does not apply to the OR and
ST models.)

9.3. Oen-Robinson (OR) Model
   The OR model estimates the energy loss (∆E) arising from a single isolated binary
atomic collision in which the distance of closest approach (apsidal distance) is R0:
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   Here c is a constant term (normally c = 0.3, but this can be specified arbitrarily in
Spider), and a is the uncorrected Moliere-Lindhard screening length. Z1 is the atomic
number of the 'projectile' species, while Z2 is the atomic number  of the 'target' atom
species. (The roles of the two atoms involved in the collision can be symmetrized in
Spider, if the user so desires.)
   As implemented by Snook, the term v in equation 9.3 represents the relative velocity
(|v1 - v2|) of the collision partners at 'infinite separation', which is computed as follows:

v v t V r t= +
1

2
2µ. ( ) ( ( ))                                                                                                (9.4),

where v(t) and V(r(t)) respectively represent the magnitude of the relative velocity at
some time t, and the potential energy at the same time (the apsidal point is used by
Snook); µ is the reduced mass of the system.
   The connection between equations 9.1 and 9.3 is brought out if the latter is written in
the form:
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− =∆E K OR FOR v( ). .                                                                                                                                              (9.6),

where FOR is the 'Oen-Robinson factor,' and K(OR) is a constant for a given collision
pair. Note the absence of any atomic density (N) term in equations 9.3 and 9.5. K(OR)
has very different physical dimensions from K(LSS) defined in the preceding section. A
scale factor may optionally be specified in Spider to adjust the magnitude of the
energy loss described by equations 9.3, 9.5 and 9.6.
   In contrast to the LSS model, the OR model has the character of a discrete energy loss,
because it associates a single loss event with each close encounter. One problem with
implementing the OR model is in finding a technique to deal with collision events that
cannot be approximated as binary encounters. Snook circumvents this problem,
perhaps inelegantly, by requiring the user to impose (heuristically) an upper limit RMAX

on R0 (the distance of closest approach). Thus, the OR energy loss is not computed
unless the colliding atoms approach within a distance RMAX. Typically, RMAX would be
on the order of 1-2 Å.
   The way in which the computed OR energy loss (∆E) is applied within the simulation
routine is identical to the method used for the ST model described in the following
section (qv.).

9.4. Shapiro-Tombrello (ST) model
   The ST model attempts to incorporate collision-induced core electron promotion
effects into a classical dynamical scattering model. The main drawback of the model is
the uncertainty surrounding the correct choice of parameters (p, RC, ∆E: see below). A
brief summary of the model as implemented in Snook will now be given. For a deeper
review of the physics involved, the reader is referred to the original literature.32, 33, 42

   The idea underlying the ST model is that an inelastic (inner-shell electron promotion)
transition can occur if a colliding pair of atoms approaches closer than some critical
distance (RC). This energy loss may involve up to NMAX electrons from the inner shell.
For each electron promoted, an amount of inelastic energy ∆E is lost (the maximum loss
possible is thus ∆E*NMAX). The number of electrons considered for promotion (N)
depends on the relative radial kinetic energy (KR = ½µvR2) available to the collision pair
at the moment when RC is passed; i.e., N must be consistent with the condition: KR ≥
N∆E. Finally, for each of the N electrons, a probability factor (p) is compared with a
random number to determine whether or not that electron is actually promoted (for
instance, if p = 0.5, typically only ~N/2 electrons will be promoted).*
   From the foregoing, we see that the total energy loss (∆ET) computed for a particular
collision configuration satisfies the conditions:

∆ET ≤ N∆E;  ∆ET ⊂ {∆E, 2∆E …N∆E}                                                                                 (9.7),

                                                            
* The author is indebted to Dr Shapiro for this suggestion.



Inelastic Scattering 57

(the equality applies if p = 1, in which case ∆ET  = N∆E ), while the average energy loss
over many such collision configurations is:

<∆ET > = N*p*∆E                                                                                                          (9.8).

   The inelastic energy loss corrections for both the ST and OR models are applied at the
apsis of the collision.# At the apsis, the radial kinetic energy (KR) is zero. The energy loss
correction (∆ET) is applied by reducing the potential energy of the interacting atoms:
this entails translating them instantaneously along the line joining their centres by a
distance ∆r, which changes the potential energy by an amount ∆V, such that ∆V =∆ET.
   The translation distance ∆r was originally estimated by ST via the relation: ∆r =
∆V/F(r), where F(r) is the force at the apsidal point.32  This equation would be exact if
the potential declined linearly with separation (r). Snook uses a similar procedure, but
applies it twice (both at the apsidal point, and at the first estimated displacement). In
addition, the first application of the formula uses a heuristic correction factor of 1.2 to
compensate for the rapid decline the force as r is increased. The procedure used by
Snook typically computes the correct displacement ∆r to within ~10-4 Å or better, but
such is the nature of the potential that errors of this magnitude do lead to errors at the
~1 eV level in the energy book-keeping routines. For this reason, it is important that
you initially test the parameters of your simulation (in particular, the timestep) with the
ST and OR loss effects disabled. This will give a true estimate of the integration error.
Subsequent errors in energy conservation can then be attributed to inelastic loss book-
keeping errors.  The ST and OR energy loss algorithms conserve linear momentum, but
not angular momentum.2

                                                            
# In practice, at the first timestep after the apsis. It could be argued that the ST correction should
be applied at the moment that RC is crossed, rather than at the apsis. However, in practice this
procedure would make very little difference to the collision dynamics (and no difference at all
for direct impact collisions).
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10. Advanced Topic: Flags

10.1. Introduction
   Version 2.2 of Snook uses an array of bytes ('options flags') to store information
relating to individual particles (1 byte per particle). Each byte consists of eight
bitmapped parameters. That is, the specific bits of the byte each contain information
about different options in use for the corresponding particle. The individual bits, more
usually known as (options) flags (and designated by names of the form ofXXXX), can
either be set (equal to 1) or cleared (equal to 0). The flags currently defined in version
2.2 of the Simulation Kit, and their values are listed in Table 10.1.

Table 10.1. Options flags (ofXXXX) and their values.

Flag name Value Binary representation Applies to
ofEmitted 1 00000001 All particles
ofNoForce 2 00000010 Target particles only
ofRepulsive 4 00000100 Target particles only
ofNotContained 8 00001000 All particles

   The options bytes are read in from the Target and Projectile files of a simulation
project (as the last numeric column). The default value for all flags is zero. Most users
will have no reason to change this default behaviour, and can ignore this chapter.
   The effects of the various flags are explained in the following sections.  Note from
Table 10.1, that not all flags affect the projectile.
   Should you wish to incorporate one or more of the associated options into your
simulation, you simply need to set the corresponding bits of the options byte in the
Target file and/or Projectile file of your simulation project.* To set bits, you must total
up the respective numbers in the Value column of Table 10.1. Thus an options byte of 3
means that the ofEmitted and ofNoForce bytes have both been set (1+2 = 3).

10.2. ofEmitted
   This flag is set by Snook after (a) a projectile or target particle has been ejected from
the surface region of the target, and (b) a surface binding energy correction has been
applied. The effect of setting this flag manually is to override (ignore) the surface
binding energy correction. However, if the surface binding energy is zero (0.0), the flag
has no effect.

10.3. ofNoForce
   This flag suppresses the interaction between 2 target atoms in the Morse potential
region only. That is, if the flag is set for either of the colliding atoms, the interaction
between them will be ignored in this region. This flag only has an effect if the target is
complex (consists of more than one kind of atom). The flag has no effect in the spline or
screened Coulombic region of a composite potential (it would not make sense
                                                            
* The options byte can be specified at the time that the Target/Projectile file was created (via the
'Flags' input box), or by manual editing in a text editor.
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physically to neglect these stronger interactions). The ofNoForce flag may be usefully
set for an atom that interacts weakly or repulsively with its neighbours, such that the
Morse potential would be a poor representation of the potential (for example, Xe atoms
in a system consisting of a Xe monolayer adsorbed on a Cu surface).

10.4. ofRepulsive
   This flag affects the interaction between 2 target atoms in the Morse potential region
only. It replaces these interactions with a screened Coulombic interaction, but only
when both interacting atoms have the ofRepulsive flag set. This flag takes precedence
over the ofNoForce flag. This flag only has an effect if the target is complex (consists
of more than one kind of atom). Consider the following flag settings for the collision
system Ar → Cl/Cu(100):

Atom ofNoForce ofRepulsive

Cu Clear Clear
Cl Set Set

   Based on these flags, the atoms in the system will interact at short range (i.e. the
Morse region defined in the Model file) according to the following scheme:

Interaction pair Interaction potential
Cu-Cu Morse
Cl-Cu None
Cl-Cl Screened Coulombic

   The benefit of this approach is that it results in a stable target configuration (apart
from the Cl-Cl interactions, which are presumably weak because of the large Cl-Cl
distance). The other approach, of treating the Cu-Cl and Cl-Cl interactions with the
same Morse potential as the Cu-Cu interaction has obvious difficulties, although it must
be admitted that these are irrelevant for certain kinds of simulations (e.g. projectile
ranges, ISS and other fast processes).

10.5. ofNotContained
   This flag is set by Snook after (a) a projectile or target particle has been ejected from
any of the 4 sides of the target lattice, and (b) a bulk binding energy correction has been
applied. The effect of setting this flag manually is to override (ignore) the bulk binding
energy correction. However, if the latter is zero (0.0), the flag has no effect.
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