
Migrating to Visual Basic Version 4.0
A Survival Guide

Copyright © 1995 Crescent Division of Progress Software. All rights reserved.�Table of Contents

Chapter 1 - � TOC \o "1-3" \t "chaptitle,1,chaptitle1,1,chaptitle2,1" �Introduction	� GOTOBUTTON _Toc334339965 � PAGEREF _Toc334339965 �5��
Chapter 2 - Using the Transition Guide	� GOTOBUTTON _Toc334339966 � PAGEREF _Toc334339966 �7��
Chapter 3 - Business Considerations	� GOTOBUTTON _Toc334339967 � PAGEREF _Toc334339967 �9��
Chapter 4 - Why VB4?	� GOTOBUTTON _Toc334339968 � PAGEREF _Toc334339968 �15��
Chapter 5 - Required Steps	� GOTOBUTTON _Toc334339969 � PAGEREF _Toc334339969 �21��
Chapter 6 - Taking Full Advantage of Visual Basic Version 4.0	� GOTOBUTTON _Toc334339970 � PAGEREF _Toc334339970 �31��
Chapter 7 - Deployment Issues	� GOTOBUTTON _Toc334339971 � PAGEREF _Toc334339971 �51��
Chapter 8 - Using the Crescent Upgrade Wizard	� GOTOBUTTON _Toc334339972 � PAGEREF _Toc334339972 �53��
Appendix A - Crescent Products	� GOTOBUTTON _Toc334339973 � PAGEREF _Toc334339973 �59��
Appendix B - Other Useful Resources	� GOTOBUTTON _Toc334339974 � PAGEREF _Toc334339974 �Error! Bookmark not defined.��
��About Crescent
Crescent is the leading developer of Visual Basic tools and components, with a broad product line and a worldwide customer base of tens of thousands of developers. We have an established track record in helping this diverse technical community execute successful migrations, providing the tools first for the move from DOS to Windows, and then to multiple versions of Visual Basic.
Crescent was founded in 1986 and was acquired by Progress Software Corporation in early 1995, combining both companies' respective expertise in tools, components, and client/server application development. Joining forces with Progress also ensures users of a professional, dedicated support and service infrastructure, with hotline access, electronic support tools, and customized application support.�Chapter 1
Introduction� TC "Chapter 1 - Introduction" \f C \l "1" �
Welcome to Crescent’s Visual Basic® 4.0 Transition Guide. As the leading vendor of Visual Basic tools and components, it is our goal to help you succeed with Visual Basic.
This guide is designed for anyone involved in the transition from VB3 to VB4. It addresses the transition concerns of intermediate to advanced Visual Basic users, and those with existing VB3 applications. It identifies the business and technical issues you will encounter and the necessary steps to take for a smooth transition.
The focus is on moving these applications to VB4, rather than on teaching the language or development environment itself. Ideally, this guide will serve as a compass, pointing you in the right direction as you map out and implement your transition strategy.
You may already have sensed that Visual Basic 4.0 is the most significant release of Visual Basic since its introduction in 1990. We agree. Several major improvements and new features will let you expand your development capabilities far beyond the scope of VB3. The new version's support for 32 and 16- bit applications, Object Linking and Embedding (OLE) controls and classes, and enterprise development tools for future are sure to enhance your development projects.
Some of these features will impact your applications immediately. They will certainly become important factors as you develop your next-generation applications.
To help you develop and implement your migration strategy, this guide will address:
What are the business issues surrounding the transition to VB4?
Who needs to be involved in the transition?
Why make the transition?
What steps are necessary to complete the transition successfully?
What’s new?
Where do you go from here?�Chapter 2
Using the Transition Guide� TC "Chapter 2 - Using the Transition Guide" \f C \l "1" �
This guide has three key sections: business issues; technical guidelines, methodology and practical advice; and using our VB4 Upgrade Wizard to streamline the transition and deployment of new applications.
Chapters 1-4 will interest developers as well as IS managers and others who need to be familiar with the general issues involved in the transition.
Chapters 5-7 are based on our own transition methodology and experience. This section provides practical advice to developers moving their work to VB4.
Chapter 8 details how the Upgrade Wizard automates the process of upgrading your applications. Using it will help you get a "jump start" on recasting your applications in VB4.
The appendices provide a list of additional resources, to help you continue your transition as smoothly as possible.�Chapter 3
Business Considerations� TC "Chapter 3 - Business Considerations" \f C \l "1" �
"May you be cursed to live in interesting times."
 – Confucius
These are interesting times indeed. Windows 3.1 is being replaced by Windows 95 (and in some cases, Windows NT), changing the desktop from a 16-bit to a 32-bit deployment platform in the process.
To accommodate this seismic shift, Microsoft has upgraded its application development tools, including Visual Basic, which is used by more than 1 million registered developers world wide. Venerable VB3 attributes – like the VBX add-on, inherently a 16-bit piece of code – will be traded in for the more flexible and robust OLE Control (OCX) architecture.
Consider the following problem:
You have a VB3 application deployed. You want to convert it to VB4. End-users across the organization are running Windows 95, Windows NT and Windows 3.X desktops. What do you do? The questions begin:
Will my application convert?
Does my VBX vendor have an equivalent OLE Control for my favorite control?
Do all my controls exhibit the proper "look-and-feel" in the mixed client environment?
Who will perform the transition?
Additionally, VB4 will likely be the staple of your development workbench. There will be new projects to be built. So the questions continue:
Do I convert now, or do I wait for new projects?
Where do I/we get educated?
VB4 promises to be exciting for you and your development colleagues. Let’s consider these business issues.
Will my application convert?
Yes, for the most part.
Unless you are using API declares and calls, your code will convert in a fairly straightforward manner. Even if a language construct changes from VB3, VB4 will support it.
But as you create new projects with VB4, you should begin to use the new language features of VB4. When you are coding VB-specific elements, like Dynasets, Objects, Classes, and Procedures, refer to the help screens (still the F1 key).
Does my VBX Vendor have an OLE Control for my favorite control?
It's a tough question. Crescent does, and others should, too. Many vendors are completing their beta tests, and will begin shipping their first-generation OLE Controls as early as this fall. Some controls may not be available until next winter.
A bigger concern is whether the “equivalent” OLE Control will support the same functionality as the VBX. This issue affects functionality, and raises questions of quality assurance testing. In some ways, it's even more important than whether the OLE Control exists.
If the OLE Controls exist, but the properties and methods have changed, you may have a large amount of re-coding to perform. Unless the vendor has some clever upgrade program, your code could be at risk.
If OLE Controls you need or want don’t yet exist, you can still use VB4 as a 16-bit environment.
Do all my controls exhibit the correct "look-and-feel" in the mixed client environment?
Considering that VB4 supports Windows 3.X, Windows NT, and Windows 95, the look and feel of your applications must complement all of the operating environments in which you will deploy applications.
Most VBX vendors have taken care of the Windows and Windows NT environments (be sure to check to see if their controls look and feel correct in the Windows 95 world). Generally, if OLE Controls exist, they have been massaged to be aware of Windows 95 and support its operation.
VB4, in 32-bit mode, contains the major built-in Windows 95 controls. Chapter 6 details how these controls function.
Who will perform the transition?
Every VB developer should experience the transition – the new functionality is worth it. VB3 applications are so widespread that there will always be the opportunity to “open” an old application in VB4. To ensure that the original VB3 application is safe-guarded, follow the basic transition steps outlined in Chapter 5.
Do I convert, or do I wait for new projects?
It depends on the complexity of the existing application, and whether it is scheduled for revision. Large or complex applications do not make the best study environments. Because much of your time will be spent adding features or correcting mistakes, you probably won't get to devote as much effort to learning about and upgrading the architecture.
New projects, on the other hand, will give you the opportunity to learn about VB's new capabilities, and at a more relaxed pace. The exploration and testing that is a natural outgrowth of application development is conducive to learning about a new development environment.
�Where do we get educated?
Relatively few organizations offer training in VB4 today. But that will be changing. New Technology Solutions in New Haven, Connecticut, for example, is one of the few that has VB4 training now.
Your Solution Provider should be able to point you in the right direction for training and other educational services.
Almost no third-party documentation has been released. But that's changing too: The first generation of VB4 books should be in stores this fall.
See Appendix B for more specific references.�Chapter 4
Why VB4?
Version 4.0 is the most significant release of Visual Basic to date. Its enhancements and features makes it certain that VB will become a critical tool for developing client/server applications. It also gives vendors like Crescent a better environment for enhancing the tools we provide.
For a successful transition, many bits and pieces will need to be meshed together. In this chapter, we will discuss:
What is VB4?
Why should you switch?
What do we have for you?
Where to go for more information
What is VB4?
Like VB3, VB4 is a graphical, event-driven development environment for the Microsoft Windows® family of operating systems. This major upgrade retains the integrated development environment (IDE) of earlier versions of VB.
VB4 comes in three flavors:
Standard
Professional
Enterprise
The Standard edition, which was available for VB3, is now for 32-bit environments only – providing a clear solution for Windows 95 and Windows NT.
The Professional Edition, like VB3’s Professional, extends the Standard Edition with more controls, OLE Server and data-access capabilities. The Professional Edition supports 16- and 32-bit operating environments.
The Enterprise Edition caps the Visual Basic family. It provides all of the features and functions of the Professional and Standard editions, with the addition of RDO (Remote Data Object) and the RDC (Remote Data Control), Component Manager and Visual Source Safe®.
Data Access Improvements
Anyone who develops client/server applications has known for a long time that ODBC API calls are one of the fastest methods to access and manipulate remote databases. The Enterprise Edition of VB4 resolves this API madness with two new features: the RDO and RDC. These important new capabilities mean that you no longer have to perform API tricks to make VB4 hustle.
The RDO and the RDC are specific data objects used for client/server applications, and both wrap around the ODBC API. Consider the RDO to be like the Jet-based data objects of VB3, but in a non-Jet, ODBC-based solution. The RDC is a Data Control, just like the VB3 Data Control, but again, non-Jet-related.
Both components have new functionality, designed specifically for client/server applications: Say hello to cursors, stored procedures, and asynchronous processing.
OLE 2.0 Support
One of the most significant changes in VB4 is the total re-architecture of its add-in tools. VBXs are an essential element of VB3; OLE Controls are an essential element of VB4. OLE Controls (OCXs) bring incredible functionality to VB4. Consider an OLE Control to be your favorite VBX on steroids; OLE Controls are a marriage of the full capability of VBXs with all the features and functions of OLE.
Although VB4 will support VBXs (in 16-bit mode), OLE Controls may be the better route to take, because they let you exploit the virtues of 32-bit applications. Each OLE Control is an OLE object. No longer is there a static control. The OLE Control is a living, breathing control that uses OLE as the condition of its existence.
The pervasiveness of OLE objects means they need to be managed. Because OLE is network compatible, OLE components could reside anywhere. The Component Manager lets you find OLE Servers on your network.
OOP and OLE
VB4 is the beginning of Visual Basic’s object orientation. We can’t say that VB4 is fully object-oriented, but it doesn’t really have to be. VB4 is more like "OLE Oriented." VB4 has enough object-oriented features to make it a perfect OLE development environment.
Although VB4 does not have some of the traditional OO functions, like inheritance, it does have facilities to create reusable objects through classes and OLE Servers.
In fact, through VB4’s OLE wizardry, it is possible to create OLE Servers that can be superior to the Dynamic Link Libraries (DLLs) used with VB3.
Source Code Management (SCM)
The Enterprise Edition's Visual Source Safe (VSS) source code management (SCM), gives VB4 a much-needed productivity tool. Microsoft has bundled a VB version of Source Safe in VB4 Enterprise Edition.
Language Extensions
Microsoft has added many new language extensions, capable of handling new functions and commands.
For example, commands like For Each and With are now available (they were actually available in VBA). For Each can be used to manipulate the elements of collections and arrays. With is like the Pascal and C versions of With, which allow you to perform action on an object with multiple statements, without making another reference to the object.
�Why should you switch?
��In a word, OLE. For several years, Microsoft has been refining the admirable traits of OLE into a major application and component manipulation architecture. OLE Controls, Visual Basic for Applications (VBA), and the general “openness” of OLE-compliant Windows applications, give you the chance to easily integrate all of Windows into your VB4 applications.
Perhaps most importantly, VB4 gives you the opportunity to exploit 32-bit operating systems like Windows NT and Windows 95. If you want to do 32-bit applications, then Windows NT 3.51 and Windows 95 are your preferred platforms for development and deployment. But note that VB4 does not support Win32s under Windows 3.X.
��Now you have a choice:
16-bit VB4 for Windows 3.X, VBXs and 16-bit OLE Controls (OCXs)
32-bit VB4 for Windows 95 and Windows NT 3.51, 32-bit OLE Controls (OCXs)
What do we have for you?
To make your transition easier, we’re including a tool to help convert your existing projects from VB3 to VB4. The Crescent Upgrade Wizard, fully documented in chapter 8, will help convert the only language constructs that will not automatically convert – your API declares and DLL calls.
Because your target operating environments are changing, your API declares may be pointing to DLLs that no longer exist or are obsolete because of 32-bit architectures. The upshot is that any WIN API or DLL calls in your applications may be at risk.
The Wizard will find your declares and calls and flag them, and in some cases, fix them.
VB4 also includes new data types that will help make better API usage.
Where to go more information
Microsoft offers a wealth of information both on-line and in print. Start with the VB4 “Readme” in help. Then check out the programmer’s guide for language feature enhancements.
If you're interested in OLE Controls, there are third-party books on creating OLE Controls. If you want to build one, get used to writing them in Visual C++.�Chapter 5
Required Steps� TC "Chapter 5 - Required Steps" \f C \l "1" �
The transition process is simplified by the fact that VB4 converts VB3 projects upon opening them. But that's only the beginning. Knowing a few important steps will help ensure that the transition succeeds.

This chapter will discuss:
Required steps
Converting to OLE Controls (OCXs)
VB.INI tricks
Default Controls, forms and classes
Changes in the Jet Engine
A few words on the RDO/RDC
Required Steps
There are a few required steps you must take when converting your VB3 applications to VB4. This section outlines the process; it also provides hints for smooth operation and identifies some common traps.
Project Conversion
First Steps
Although it is possible to “just open” your VB3 projects in VB4 and then save them, this is not enough. Be careful: The process of saving will overwrite your existing VB3 project!
First of all, back-up all your VB3 projects
The back-up is necessary. It's the only way to be sure that if problems arise during the conversion, your VB3 projects will be safe.
Second, open the VB3 project in VB4
�
VB4 will read VB3 projects – opening the project does not necessarily mean that it is successfully converted. Often, an “opened” project will not run because API and DLL declarations and calls usually need to be fixed.
“Save As” the project
�
You may use the same name. VB4 uses a VBP extension for the VB3 MAK file. Remember: If you use “Save” you will overwrite your existing project.
VBXs and OLE Controls are not the same. If you are opening a VB3 project in a VB4 16-bit environment, the project will generally convert without problem. There is one major caveat. VB4 will recognize the controls in your project and match them with the registered versions of their equivalent OLE Controls. VB4 will compare the file (module) names only. If the control has changed its name from VBX to OLE Control, the control will NOT convert. You may be left with a PictureBox control on your form.
Code Conversions - DLLs
VB4 will run with most VB3 code. Despite the many changes to the language, VB3 code is by and large compatible with VB4. The greatest source of problems is how you declare your use of third-party DLL calls. You can see the VB4DLL.TXT for more information.
Third-party DLLs that return string values will not work in VB4 16-bit. There is no option. Internally, VB4 uses a different data type for the returned string. You must contact your vendor for an update.
Code Conversions - APIs
In VB4 32-bit, WIN API calls must reference their appropriate API -- KERNEL32, GDI32, and USER32. The syntax is generally the same. API calls in 32-bit may also use Longs instead of Ints. In some cases, the API calls may have changed entirely. Be sure to reference the WIN32API.TXT file for changes. You may also use the “API Viewer” application that comes with VB4 to browse the API text file. (Please see Chapter 8 for more on using Crescent's Upgrade Wizard to support this process.)
Here's a sample 32-bit declaration:
Declare Function GetTickCount Lib "kernel32" Alias "GetTickCount" () As Long
If you use API string functions like the GetProfileString function, be aware that the 32-bit VB4 has the ability to access APIs that could use UNICODE or ANSI characters. Using the “A” version of the API call will ensure that the ANSI version is used.
The following is the 32-bit GetProfileString declaration:
Declare Function GetProfileString Lib "kernel32" Alias "GetProfileStringA" (ByVal lpAppName As String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As Long) As Long
To date, the API and DLL declarations and calls appear to be the only functions that could cause an application in transition not to run.
Converting to OLE Controls (OCXs)
Most vendors of the tools you use will soon switch to an OLE Control model. As they do, you will want to alter your existing VBX-based applications to their OLE Control equivalent.
In VB4, the process of adding controls to the environment is no longer a File, Add File process. Custom controls have to be registered and recognized by VB4’s Custom Control Manager.
Control Registration
Control registration is a necessary process for OLE components to be recognized by the operating system. In many cases, an unregistered control will result in an OLE error when the control is activated.
Controls should be registered by their installation program. It is also possible for the control to register itself if told to do so. If controls are not registered, VB4 will not be able to add them in.
To register a control in VB4, simply select “Custom controls” from the Tools menu. You will immediately discover that there are dozens of registered controls from other applications that are OLE compliant. If the control you want is not on the list, you can “Browse” the machine to find the OLE Control file. VB4 will then register and add the control to the ToolBox.
�
Don't register a control by browsing it from a floppy drive, because the registry will continue to search for it there.
Adding Controls
If you followed the Control Registration section, you are almost done with adding a control. Any registered control with a check in the box will exist in the VB4 ToolBox.
Like VB3, this will alter the project .VBP file. The next time you open that application, the controls will be there. The added controls will not, however, appear in the Project window.
VB.INI Tricks
Although VB will attempt to convert your VBX references to their OLE Control counterparts, only Microsoft-supplied controls will convert without trouble. If you use third-party controls, the manufacturer may have changed some control names that may cause the controls to not convert.
But there is a trick that you can perform with the VB.INI file that will allow you to map the VBX to OLE Control conversion path of your third-party controls.
�Simply add “mapping” entries into your VB.INI file in the VBX Conversions section. There are 16 and 32-bit sections. The purpose is for VB to map the controls correctly. There are 16-bit and 32-bit versions. The two versions' properties and methods must match.
[VBX Conversions32]
gauge.vbx={7A080CC8-26E2-101B-AEBD-04021C009402}#1.0#0;C:\WINDOWS\System32\gauge32.ocx
The syntax is to include the VBX name with the CLSID (Class ID) from the registry. That entry is then mapped to the OLE Control location.
VBX name:
		gauge.vbx
Class ID:
		{7A080CC8-26E2-101B-AEBD-04021C009402}
Version number:
		#1.0#0
OLE control location:
		C:\WINDOWS\System32\gauge32.ocx
Default Controls, Forms and Classes
You can customize VB4’s default ToolBar. Add the tools, forms, and classes you want, and then save the project as AUTO16LD.VBP for 16-bit, or AUTO32LD.VBP for 32-bit. Remember, there is no longer an AUTOLOAD.MAK.
Changes in the Jet Engine
If you write database applications, you probably use the Data Control, Snapshots, and Dynasets. With VB4 you'll want to think of new ways to manipulate the Jet engine.
VB4 ships with Jet 3.0. Jet 3.0 is compliant with Jet 2.5, which shipped separately in early 1995. Jet 2.5 is for 16-bit installations, Jet 3.0 is for 32-bit. Microsoft has radically changed the internals of the Jet to comply more with OLE-based database management. Entities like collections and workspaces make the Jet a powerful database engine.
This architectural change also comes with some syntax cost. Several of the techniques you used in earlier versions of the Jet have changed. The reason: consolidating syntax into one complete language.
The Data Access Objects like Snapshots and Dynasets always had their own methods of operation. With the new Jet, the Data Control and the DAO now have a similar syntax.
For example, in VB3, you would have created a snapshot like this:
Dim ss as Snapshot
Set ss = db.CreateSnapshot(“Titles”)
But in VB4, the syntax becomes:
Dim ss As Recordset
Set ss = MyDB.OpenRecordset(“Titles”, dbOpenSnapshot)
As you can see, the “Recordset” keyword is now used in DAO functions.
The VB4 help section on “Converting Code to Jet Version 2.5/3.0” is extremely useful.
A Few Words on the RDO/RDC
For those enjoying the fruits of the Enterprise Edition (32-bit only), you get a bonus for your client/server applications. The RDO/RDC are your tools to access remote databases (such as Microsoft SQLServer, Oracle, Sybase, Progress, etc.).
The designs of the DAO/DC and the RDO/DC are fairly similar. In fact, if you know how to use the DAO/DC, you should be able to use the RDO/RDC in the same fashion. Most of the functions for accessing databases, tables and fields are the same. The difference is that you now have database objects that are specifically “tuned” for network access. The RDO/RDC is “Jetless”, leaving you with a lean, fast and smaller deployed application. Check it out!�Chapter 6
Taking Full Advantage of Visual Basic Version 4.0� TC "Chapter 6 - Taking Full Advantage of Visual Basic Version 4.0" \f C \l "1" �
With VB4, you begin a new age. OLE Controls, class modules, OLE servers, objects, and other key features will absolutely change – and improve – how you use Visual Basic. But, realize that fully exploiting VB4 requires some hands-on experience. You need time to discover its capabilities.
To speed your learning curve, this chapter will discuss ways to modernize your applications by incorporating the new features of VB4. Don't waste your time trying to use VB4 the way you used VB3. You'll end up overlooking many important features, and unnecessarily limiting your programming capabilities.
Topics in this chapter begin with a general discussion of the new OLE-Oriented concepts of VB4, then followed by new features that will maximize your VB4 transition:
Objects, classes and collections
3D Forms
Background compilation
Compiler directives for “Dual Bitness”
The Component Manager
Control registration
Data-aware Grid
Dragging Project Files from File Manager
New DEF usage
New Functionalities with Functions and SUBs
Line Continuation
Locking Controls
Using the Object Browser
Option Explicit
Profiles and the Registry
Property Procedures
Right Mouse Clicks and Tool Tips
Running VB3 and VB4 on the Same Machine
Source Code Management with Visual Source Safe
Variable and Constant Usage
Windows 95 Controls
Objects, Classes and Collections
Objects
VB developers are intimately familiar with the modularization of their code. In VB3, modules were a way of life. Each developer has his or her own way of using modules to advantage. Although VB4 still supports the .BAS file module systems, Class modules and Custom objects will quickly become a way of life for the VB4 developer.
Although Objects are not new to VB, VB4 allows VB applications to exist as OLE objects to other applications. This means that you can create a custom VB application that acts as an OLE Server to other OLE-compliant applications, such as Microsoft Word® or Microsoft Access.® Simply put, your VB4 applications can now easily integrate into the entire Windows application system.
Becoming an OLE server isn’t just making an EXE. The compiler needs to know that you intend your application to become an OLE server. To do this, access the Project tab in the Options dialog of the Tools menu.
Other applications will be able to access these applications objects through OLE Automation.
Classes
Classes are probably the most significant coding change to VB. Classes give you the opportunity to create your own objects that can be used throughout your applications. Some may consider classes to be like modules. This is not true. Classes are like objects, with properties and methods. In fact, Microsoft mentions that classes are like invisible forms. The biggest distinction between classes and modules is that classes are created in class modules and not the typical BAS files. Classes can also be used like objects in your applications as well as in other applications that may be referencing your project as an OLE Server.
Properties are added to a class by declaring variables (see the Variables and Constants section for more information), methods are added to a class by declaring SUBs and Functions.
Collections
Collections give you the opportunity to group a set of related items. With collections, you can encapsulate many items as a single entity. Like the DAO collections (like Workspace), a collection makes processing custom objects easier.
Collections are objects, and collections can be passed as objects to functions and subroutines, as well as properties in classes. The items that make a collection can also be dissimilar. So a collection could contain objects as well as variables.
These major features make VB4 highly customizable. Use Classes to create custom objects in VB. Then use these objects in a highly distributable, object-based application. Join the Object revolution and use Classes.
3D Forms
��Most controls now have an Appearance property. Forms also have an Appearance property. In fact, if the property is set to 3D, all controls on the form will appear in 3D format.
This means that 3D projects are a lot easier -- fewer containers and API calls.��Background Compilation
You can now alter how you want your compilation to occur. A new feature lets you either “Compile on demand” or “Background compile.” If you go into the Tools, Options menu, in the Advanced tab, you can set your compilation options.
�
Both options are admirable in their design, although the compile on demand setting has a small implementation problem. Because error checking won’t happen until compilation, broken code in a module may not get compiled. This could lead to a procedure breaking when you don’t expect it. Be sure that your applications are totally debugged before you distribute them.

Compiler Directives
Because the Professional and Enterprise Editions support 16-and 32-bit applications it may occasionally be necessary to prepare your source code to be either 16 or 32-bit. In many cases, one application can satisfy both environments, although there is some language difference in 16 and 32-bit development.
Let’s say that you have an application that makes an API call that has a 16 and 32- bit difference. To make VB4 recognize the difference when compiling the application , you can include Compiler Directives. Essentially, the directives cause the compiler to ignore certain statements.
The # symbol indicates the #IF etc., is to be used as a compiler directive. Don’t try using the # on other commands -- the #IF is the only one that is supported.
The directives, in fact, are quite simple. They take the form of #IF statements. If you want to ignore a 32-bit function call when compiling in 16-bit, include a statement such as the following:
#IF Win32 Then
...
#End If
Your logic statements can then use various constants to identify specific directions that should occur during compilation. You can provide your own compiler constants by declaring them with the #CONST keyword. User-defined compiler constants are always private.
This means that you don’t have to create two separate sources when creating dual bitness applications. In a deployment environment that may have 16 and 32-bit clients, a single source tree for your applications can make source code management and deployment much easier.
The Component Manager
VB4 Professional and Enterprise give you the Component Manager to catalog and browse OLE objects. The OLE objects can either be network-based or local servers. The process of cataloging allows you to group and isolate OLE components for use in your VB4 applications.
�
Unlike the Object Browser, the Component Manager is meant to encapsulate OLE components into a library of components. It also makes it easier to manage the vast number of OLE components.
For instance, if you know you are going to always use an Excel worksheet with a custom class you created, you could create a catalog entry for those components, speeding development of subsequent applications.
Data-aware Grid
In VB3, the ListBoxes were data-aware but the grid was not. Any “browsing” activities required a lot of code if there were databases involved. VB4 includes a data-aware grid.
�
DBGrid can easily “hook-up” to a Data Control. With some effortless property changes, the grid can have you up-and-running in no time.
New DEF Usage
VB4 adds a few new DEF statements. Because VB4 has expanded its data types, there are more DEF statements available. This new generation of statements can handle Booleans, Objects, and Dates.
Dragging Project Files from File Manager
Adding files and objects to VB4 can now be done from File Manager or Windows Explorer. If you have an OLE Control, BAS, CLS or any file that you want to include in your VB4 project, you can drag it from File Manager into VB4.
If you drag an OCX file, you can drop it into the ToolBox. BAS, CLS and other project files can be dropped into the Project Window. VB4 meets drag-and-drop in a big way!
New Functionality with Functions and SUBs
The methods that you used to construct and call functions and SUBs in VB3 will work in VB4. But you might want to consider modifying your style to exploit the new features.
New declaration possibilities
Calling conventions
Private and public instances
Named parameters
New Declaration Possibilities
Optional Parameters
For the first time, you can add Optional parameters to your procedure calls. Both Functions and SUBs can now use the Optional keyword in the declaration to indicate that the following parameter is optional.
Function mfbCheckDBStatus(Optional vroTest As Variant) As Boolean
The function can also be called without the parameter.
mfbCheckDBStatus
If you need to check for the existence of an optional parameter, the IsMissing function can be used to test the parameter.
Parameter Arrays
In addition to optional parameters, functions and SUBs can now have parameter arrays. As the last parameter of a function or sub, parameter arrays give you the possibility to declare functions with a variable number of parameters.
For instance:
Function mfbCheckDBStatus(ParamArray vroTest()) As Boolean
Indicates that you could call the function like this:
mfbCheckDBStatus (“Authors”, “Author Name”)
Calling Conventions
In VB4, Functions and SUBs can be called in similar fashion. You can now use parentheses in your SUBs. In addition, Functions can be called without parentheses. The one caveat is that when a function is called to return a value, parentheses must be used.
Private and Public Instances
VB4 no longer uses Global to define “application-wide” instances of entities. Instead, VB4 uses Public and Private keywords in declarations. That means it is now possible to create Functions and SUBs, using Public or Private to indicate their scope.
Public is the equivalent of the old Global. Private has remained the same as it was in VB3.
Named Parameters
Named parameters are useful when you have many parameters in the declaration of a Function or SUB. You don’t have to be concerned with the order of the parameters, as long as you know the name.
Function mfbCheckDBStatus(DB As String, Field As String) As Boolean
The function above uses more straightforward names for the parameters. When the function is called:
mfbCheckDBStatus (Field:=“Name”, DB:=“Authors”)
The parameter name, followed by a colon, can be used to assign the parameter a value, regardless of where it falls in the declaration. Never forget the : (colon), VB4 will evaluate an expression like Field = “Name” as an assignment that will return a Boolean value (a good reason for Option Explicit).
Line Continuation
Most will say “It’s about time.” It seems that a line-continuation character is something we all wanted. Well, now it's here. The mysterious character is the _ (underscore). Just enter a space followed by an _, then [Return]. Now you can continue the same command on the next line.
Locking Controls
When you place a control on a form, there is always the chance that you’ll move it accidentally. You can now “lock” controls in place. In the Edit menu, or by using the �, you can keep your controls in place.
Using the Object Browser
Because VB4 has an ongoing interaction with OLE Controls, it is often difficult to work with OLE Controls that may exist in server applications. The source of confusion is that many server applications poorly document the properties and methods of their OLE objects. VB4’s answer is the Object Browser. Additionally, the Object Browser can browse your VB4 project.
�
With the Object Browser you can:
Identify objects that are used in your project.
Find properties, methods, and constants in objects.
As you can see, the Object Browser lets you look into an object library and list the properties and methods of the objects in that library. Now you can easily access other non-VB OLE components.
Option Explicit
Like VB3, it’s a good idea to have your VB4 environment “Require Variable Declaration.” Be sure to visit the Tools, Options dialog to modify the setting. Like VB3, VB4 does not require variable declaration by default.
�
Property Procedures
Have you ever wanted to push a variable onto a form without using a tag? Now you can. Property functions let you create custom properties for forms or class modules. You can manipulate custom properties by using PropertySet, PropertyGet, and PropertLet statements,
Let’s say, for instance, that you want to send a key value to a form, so that the key is there in time for an SQL query to use it in a condition.
If you include a variable declaration for the property (as a form-level variable):
Private msKey as String
Then add two procedures for PropertySet and PropertyLet for the form:
Public Property Let GetKey(vNewValue)
 msKey = vNewValue
End Property
Public Property Get GetKey()
 GetKey = msKey
End Property
You can now set the property from elsewhere by using:
Form1.GetKey = "David"
In your form, you would use the variable you declared for any usage in your code.
Obviously, Property Procedures can be a bit more complex. But, the point is that VB4 has become much more adaptable to your needs. Customize it to fit!
Profiles and The Registry
With VB3, an application profile (INI) file was necessary for any amount of configurable installation. This profile is often the only way to modify an application operation without recompiling. With VB4, Microsoft would like you to begin using the Registry for your application profiles.
The Registry is not new. We saw the beginnings of registry-like operations with the advent of OLE in Windows 3. When Windows NT came into the picture, the Registry became a convenient replacement for the myriad of INI files that reside on a client machine. Consider the Registry your new INI file where you no longer have to be concerned with the location of the file. The Registry is omnipotent. It is controlled by the operating system, not your application.
Registry manipulation no longer needs complex API calls like profile manipulation. VB4 has five commands that can be used for your registry control.
SaveSetting
DeleteSetting
SaveAllSettings
GetSetting
GetAllSettings
These commands will simplify your configuration and installation procedures.
Control Registration
Remember, don't register a control by browsing it from a floppy drive. The registry will remember that the control was first registered from a floppy and will continue to search for it there. Using REGEDT32, you can maneuver throughout the registry noticing all the configuration features of your installation. Take care not to change entries in the Registry.
Treat the Registry with care. The Registry controls more than you know. If you are bent on playing with REGEDT32, then educate yourself first. Read up on the internals of Windows 95 or Windows NT.
Right mouse clicks and Tool Tips
Right mouse clicks
In an effort to embrace new usability features of Windows 95, VB4 uses many alternate “mousing” techniques to enhance the development environment. With VB3, there are sporadic incidences of right mouse clicks. Most, if not all, are provided by third-party vendors. TrueGrid Pro, for example, uses a right click to enter into its design mode.
VB4 uses right clicks naturally and consistently. Almost every entity in the environment, from windows to custom controls, has pop-up menus that appear with a right click.
�	�
�
Most importantly, properties of a control can now be reached with a right click.
Tool Tips
Tool tips are everywhere. Did you ever wonder what � is? With Tool Tips, if you let the mouse “hover” over the icon for a moment, you’ll see a Tool Tip that will let you know that the Project window will be displayed when the button is clicked.
In fact, the buttons in the ToolBox now have Tool Tips. Even the most obscure icon has a Tool Tip.
Running VB3 and VB4 on the same machine
Windows NT is the only platform that can support running VB3 and VB4 at the same time.
During the transition, you could “compare” the VB3 and VB4 versions of the application in this environment.
In Windows NT, you can set the program properties of the executable file to “Run in separate memory space.” Doing so will let more than one copy of VB.EXE run.
Variable and Constant Usage
Variables
Variables haven’t changed a lot with the exception of a few new types. VB4 now also supports more specific types. They are:
Byte - 1 byte, 0-255
Boolean - 2 bytes, True or False
Date - 8 bytes, Jan 1, 100 to Dec 31, 9999
Object - any object reference
Error types (stored in Variants)
Variant Arrays
Constants
Constants are now available at all times. The old CONST.TXT file has its equivalent in the VB Library. Each reference (or TypeLib) like, objects, VB and VBA contain their own definitions of constants. If you use the Object Browser and then select the VB Objects and Procedures library, you can scroll through all constants that are available and actually paste them into your code.
You can still use a module with the CONST.TXT declarations but, future applications should use the new constants in the VB library.

Source Code Management with Visual Source Safe
The Enterprise Edition of VB4 contains Visual Source Safe (VSS). Source Code Management meets Visual Basic. VSS is integrated into the VB4 environment so that it is tailored to VB4.
�Windows 95 Controls
If you want to exploit Windows 95 controls, you can only do so using the 32-bit version of VB4. Controls such as RichTextBox and a ToolBar are available for your Windows 95 clients.
��Chapter 7
Deployment Issues� TC "Chapter 7 - Deployment" \f C \l "1" �
This chapter will address the issues you are likely to encounter as you begin.
Topics in this chapter are:
Client platforms and testing VB applications
Internationalization
Client Platforms and Testing VB4 Applications
Perhaps the biggest thorn in the VB4 transition is deployment, in part because you may be operating under a completely different operating environment than your end-users.
If the you are using Windows 95, some of the controls and routines which are specific to Windows 95 will be worthless in Windows 3.X.
The burden is then placed upon you and your testing staff. Your VB4 applications should be engineered and tested on a platform as close the end users’ as possible, to minimize incompatibilities. This will require significant up-front planning, as well as extensive testing, during both development and deployment.
Remember:
VBXs will work in VB4 16-bit only.
OLE Controls are written for 32 or 16-bit.
Testing requires a fairly sophisticated laboratory. In many corporate environments, the user community may be a mixture of Windows 3.X, Windows NT and Windows 95. Make sure that you effectively test your VB4 applications on all platforms.
Internationalization
VB4 can now include Resource (RES) files. With RES files , you could extract your strings, pictures, and data to an external file. The resulting RES file can now be used as a resource “library.”
RES files can help your applications by loading resources only when needed. RES files are also used for internationalization by having the items that are necessary for translation segregated from the source code. The translation process need only change the RES file.
You need some extra tools for a resource file. Microsoft’s Visual C++ has the resource compiler necessary to create RES files.�Chapter 8
Using the Crescent Upgrade Wizard� TC "Chapter 8 - Using the Transition Wizard" \f C \l "1" �
To make your transition more successful, we offer the Upgrade Wizard. The Wizard will find your declares and calls, flag them, and in some cases, fix them.
You can then search your code for the flags, called “To Do” then fix your application. Sometimes, the Upgrade Wizard will even fix the declares and calls on its own. Remember, if it’s Windows NT or Windows 95, your API usage needs to be fixed when moving from VB3 to VB4.
In addition, the Wizard will search the project file give you a list of VBXs that cannot be upgraded automatically (see Chapter 5).
This chapter will cover:
Installing the Upgrade Wizard
What the Upgrade Wizard Does for You
Using the Upgrade Wizard
�Installing the Upgrade Wizard
On the distribution disk, there is a file called WIZSETUP.EXE. Run the file. This will start the installation procedure.
�
TRANS01.TIF
Select a directory for the Wizard, like UPWIZ. The installation will only take a few moments. When it’s done, you can immediately run the Upgrade Wizard.
�
TRANS02.TIF
The installation process will make a Program Group for the Wizard so that you can run it at a later time.
What the Upgrade Wizard Does for You
Upgrade correct API/DLL calls that can be converted
Flag API/DLL calls that cannot be converted
Identify VBXs that cannot be automatically to OLE Controls
Using the Upgrade Wizard
As mentioned before, the Upgrade Wizard will find API/DLL declares and calls. The Wizard will either correct or “flag” calls that cannot be converted. In some instances, the Wizard will be able to correct API calls. If it cannot, it will comment-out the offending call and flag it.
If you received an updated DLL from your vendor, you can place the appropriate migration information in the WIN1632.TXT file in the Wizard directory.
GETROP2,Declare Function GetROP2 Lib "gdi32" Alias "GetROP2" (ByVal hdc As Long) As Long
This code informs the Wizard to look for the GETROP2 API call and convert it to the new 32-bit version. Adding a similar call for your new DLLs will ensure that the Wizard will convert even more of your VB3 code.
Once you invoke the Wizard, it will ask for a VB3 project to convert. You may enter the project (MAK) name or browse to find it. In addition, the Wizard will create an image of the project in a subdirectory so that your original project is intact.
�
The Wizard needs to have the output options configured. The target platform, 16 or 32-bit, must be identified because the declares and calls are specific to the target operating system.
�
The Wizard can even transition a VB3 project into both 16 and 32-bit versions.
After the operating platform settings have been made, the Wizard conversion options must be set. Here the process becomes more critical -- you have to designate the output. This output ranges from simple comments in the code that needs to be changed, or a conversion of code. Remember that not all the DLL references will convert. Most of the API calls will.
�
The degree to which you convert is up to you. You are now ready to start the transition. Once complete, check the VB4PORT directory (or whatever directory you specified) for the converted files.
You will either find a ToDo note:
'TODO: No Win32 API known for function GETFREESPACE. Convert to different API function.
Or, you will find completed conversions, for example:
'Declare Function GetDeviceCaps Lib "GDI" (ByVal hDC%, ByVal nIndex%) As Integer
Declare Function GetDeviceCaps Lib "gdi32" (ByVal hdc As Long, ByVal nIndex As Long) As Long
The old declaration will be commented-out, with the new declaration immediately below it.
Let the Wizard make your transition a smooth one. Enjoy and have a pleasant transition!�Appendix � SEQ chapnum * Alphabetic \r1 �A�
Crescent Products
All of Crescent’s products have been updated to take full advantage of Visual Basic 4.0.

EnQuiry™�This visual client/server application development tool offers SQL query building and automatic form layout.
��PowerPak Pro™ �This multi-vendor product suite includes team programming capabilities, database tools, data controls and professional development tools. It bundles QuickPak Professional and XRef with other industry-leading add-on controls to build corporate applications.���QuickPak Professional™ �The most comprehensive toolset of custom controls, subroutines, utilities, and sample code for developing Visual Basic applications. More than 30 Custom Controls, over 400 DLL routines, and dozens of sample programs will increase your programming productivity.���
�PDQComm™�This is the most complete library of custom controls, subroutines, and functions for serial communications within the VB environment. It significantly extends and enhances the MSComm control with low- and high-level services.
��NetPak Professional™�This comprehensive collection of network functions and programs lets you add advanced networking capabilities to your applications. Five custom controls and more than 200 functions for Novell NetWare and Microsoft Windows networking functions will save you low-level coding for network access and operations.
���XRef for Visual Basic™�XRef provides professional applications management tools to the Visual Basic programming environment. You can document and more efficiently manage complex applications. Aimed at mid-level and advanced VB programmers, XRef is critical to managing team development projects.
��QuickPak Scientific™�This numerical analysis tool provides subroutines and functions for numerical and statistical analysis, giving you flexible ways to solve analytical problems in the development of scientific, engineering, market research, financial market analysis and other technical operations.��
�Appendix B
Other Useful Resources� TC "Appendix B - Other Useful Resources" \f C \l "1" �
There are several places to turn for more information, including vendors, publications, and the Internet.
Here is a sampling of additional resources. While it's not all-inclusive, it should help you build a solid foundation for your transition – from understanding the architectural issues, to keeping up to date with new offerings.
Media
Publications that cover components and Visual Basic on a regular basis include;
Byte
Visual Basic Programmer's Journal
Visual Basic Tech Journal
Microsoft
Microsoft offers a broad range of information. The following documents can be ordered from the Microsoft Developer Solutions Team, at (800) 227-4679.
Strategic Whitepapers (For MIS, ISVs, and System Consultants)
The Microsoft Object Technology Strategy (098-55163)
Management Backgrounders (For Users, MIS, ISVs, and System Consultants)
OLE Corporate Backgrounder (098-56457)
The Benefits of Component Software (098-56459)
OLE Documents (098-56352)
OLE Controls (098-55315)
Open Systems: Technology Leadership and Collaboration (098-55058)
Technology Comparisons (For MIS, ISVs, and System Consultants)
OLE and OpenDoc: Information for Customers (098-56353)
Object Strategies: How They Compare (098-55636)
OLE, SOM and OpenDoc: A Comparison of Technologies (098-55722)
Technical Documents(For Developers)
OLE Documents Technical Backgrounder (098-56453)
Microsoft OLE: Today and Tomorrow (098-56454)
What is an OLE 2 Application (098-56455)
Developing Applications with OLE 2 (098-56456)
OLE Control Specification Overview (098-56458)
The Microsoft Foundation Classes (MFC) Whitepaper
The OLE 2.0 Programmer's Reference (ISBN 1-55615-628-6 and -629-4)
Inside OLE 2.0 (ISBN 1-55615-618-9)
Training
VB BOOTCAMP™ from New Technology Solutions. New Technology Solutions is a MS Solution Provider that provides Visual Basic training throughout the country. They have a VB BOOTCAMP specifically for VB4. Contact New Technology Solutions at 203-239-6874.

�For more information
Contact Crescent at (800) 352-2742
Or E-mail us, at crescent@progress.com.
Or World Wide Web, at http://www.progress.com/crescent

Crescent and its product names are trademarks of the Crescent Division of Progress Software Corporation. Microsoft Windows and Visual Basic are registered trademarks of Microsoft Corporation. Other trademarks referenced are property of their respective owners.

This document is furnished for informational purposes only and is subject to change without notice. Crescent Division of Progress Software assumes no liability for Visual Basic applications converted according to the suggestions in this guide.
Copyright 1995 © Crescent Division of Progress Software. All rights reserved�
� PAGE �2� Crescent Visual Basic Version 4.0 Transition Guide

Chapter � SEQ chapnum* Arabic \c �0� Deployment and Platform Issues � PAGE �2�

� PAGE �2� Crescent Visual Basic Version 4.0 Transition Guide

Chapter � SEQ chapnum* Arabic \c �0� Deployment and Platform Issues � PAGE �1�

� PAGE �2� Crescent Visual Basic Version 4.0 Transition Guide

Crescent Visual Basic Version 4.0 Transition Guide � PAGE �6�

� PAGE �6� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 1 Introduction

� PAGE �2� Crescent Visual Basic Version 4.0 Transition Guide

Chapter � SEQ chapnum* Arabic \c �0� How to use the Transition Guide

�PAGE �3�

Chapter 2 Using the Transition Guide

� PAGE �12� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 3 Business Considerations � PAGE �13�

Chapter 3 Business Considerations

� PAGE �20� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 4 Why VB4? � PAGE �19�

Chapter 4 Why VB4?

� PAGE �28� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 5 Required Steps � PAGE �29�

Chapter 5 Required Steps

� PAGE �48� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 6 Taking Full Advantage � PAGE �49�

Chapter 6 Taking Full Advantage

� PAGE �52� Crescent Visual Basic Version 4.0 Transition Guide

Chapter � SEQ chapnum* Arabic \c �0� Deployment and Platform Issues � PAGE �52�

Chapter 7 Deployment

� PAGE �56� Crescent Visual Basic Version 4.0 Transition Guide

Chapter 8 Using the Upgrade Wizard � PAGE �57�

Chapter 8 Using the Upgrade Wizard

� PAGE �60� Crescent Visual Basic Version 4.0 Transition Guide

Appendix � SEQ chapnum* Alphabetic \c � � Crescent Products � PAGE �60�

Appendix A Crescent Products

� PAGE �62� Crescent Visual Basic Version 4.0 Transition Guide

Appendix B Other Useful Resources � PAGE �63�

Appendix B Other Useful Resources

