NAJIC INC.

GUIDELINES�STANDARDS�&�NOTES

James D. Clokey�� DATE \@ "MMMM D, YYYY"�
October

15
,

1995
��Table of contents

� TOC \t "SECTION HEADER,1,SUBSECTION HEADER 3,3,SUBSECTION HEADER 2,2,SUBSECTION HEADER 4,4" �GUIDELINES & STANDARDS	� GOTOBUTTON _Toc338386840 � PAGEREF _Toc338386840 �
4
��

PREFACE	� GOTOBUTTON _Toc338386841 � PAGEREF _Toc338386841 �
4
��

INTRODUCTION	� GOTOBUTTON _Toc338386842 � PAGEREF _Toc338386842 �
4
��

CODING CONVENTIONS	� GOTOBUTTON _Toc338386843 � PAGEREF _Toc338386843 �
5
��

What is a Coding Convention?	� GOTOBUTTON _Toc338386844 � PAGEREF _Toc338386844 �
5
��

Code Readability Guidelines	� GOTOBUTTON _Toc338386845 � PAGEREF _Toc338386845 �
5
��

NAMING CONVENTIONS	� GOTOBUTTON _Toc338386846 � PAGEREF _Toc338386846 �
6
��

Hungarian Notation	� GOTOBUTTON _Toc338386847 � PAGEREF _Toc338386847 �
6
��

Variable Naming Conventions	� GOTOBUTTON _Toc338386848 � PAGEREF _Toc338386848 �
6
��

Visual Control Naming	� GOTOBUTTON _Toc338386849 � PAGEREF _Toc338386849 �
7
��

Capitalization Style	� GOTOBUTTON _Toc338386850 � PAGEREF _Toc338386850 �
9
��

Field Names	� GOTOBUTTON _Toc338386851 � PAGEREF _Toc338386851 �
10
��

Formats	� GOTOBUTTON _Toc338386852 � PAGEREF _Toc338386852 �
10
��

Procedures/Functions	� GOTOBUTTON _Toc338386853 � PAGEREF _Toc338386853 �
10
��

Private, Protected	� GOTOBUTTON _Toc338386854 � PAGEREF _Toc338386854 �
10
��

Public	� GOTOBUTTON _Toc338386855 � PAGEREF _Toc338386855 �
10
��

Version Numbers	� GOTOBUTTON _Toc338386856 � PAGEREF _Toc338386856 �
11
��

Introduction	� GOTOBUTTON _Toc338386857 � PAGEREF _Toc338386857 �
11
��

Hierarchy and Format	� GOTOBUTTON _Toc338386858 � PAGEREF _Toc338386858 �
11
��

Specific Version Numbers	� GOTOBUTTON _Toc338386859 � PAGEREF _Toc338386859 �
11
��

ERROR TRAPPING AND EXCEPTION HANDLING	� GOTOBUTTON _Toc338386860 � PAGEREF _Toc338386860 �
12
��

Introduction	� GOTOBUTTON _Toc338386861 � PAGEREF _Toc338386861 �
12
��

A Quick Overview of Exception Handling	� GOTOBUTTON _Toc338386862 � PAGEREF _Toc338386862 �
12
��

Error Processing Standard	� GOTOBUTTON _Toc338386863 � PAGEREF _Toc338386863 �
13
��

APPLICATION DEVELOPMENT CHECKLIST	� GOTOBUTTON _Toc338386864 � PAGEREF _Toc338386864 �
15
��

Splash Screen Form	� GOTOBUTTON _Toc338386865 � PAGEREF _Toc338386865 �
15
��

Main Menu Form	� GOTOBUTTON _Toc338386866 � PAGEREF _Toc338386866 �
15
��

Aliases	� GOTOBUTTON _Toc338386867 � PAGEREF _Toc338386867 �
15
��

Color Scheme	� GOTOBUTTON _Toc338386868 � PAGEREF _Toc338386868 �
15
��

Help	� GOTOBUTTON _Toc338386869 � PAGEREF _Toc338386869 �
15
��

Exit	� GOTOBUTTON _Toc338386870 � PAGEREF _Toc338386870 �
16
��

LANGUAGE / ENVIRONMENT SPECIFIC CONVENTIONS	� GOTOBUTTON _Toc338386871 � PAGEREF _Toc338386871 �
17
��

Miscellaneous Guidelines	� GOTOBUTTON _Toc338386872 � PAGEREF _Toc338386872 �
17
��

Paradox for Windows	� GOTOBUTTON _Toc338386873 � PAGEREF _Toc338386873 �
17
��

Directory Structures	� GOTOBUTTON _Toc338386874 � PAGEREF _Toc338386874 �
17
��

Paradox for Windows	� GOTOBUTTON _Toc338386875 � PAGEREF _Toc338386875 �
17
��

Forms	� GOTOBUTTON _Toc338386876 � PAGEREF _Toc338386876 �
18
��

Paradox for Windows	� GOTOBUTTON _Toc338386877 � PAGEREF _Toc338386877 �
18
��

DOCUMENTATION	� GOTOBUTTON _Toc338386878 � PAGEREF _Toc338386878 �
19
��

User Requirements	� GOTOBUTTON _Toc338386879 � PAGEREF _Toc338386879 �
19
��

Internal Program Documentation	� GOTOBUTTON _Toc338386880 � PAGEREF _Toc338386880 �
19
��

Documentation Components	� GOTOBUTTON _Toc338386881 � PAGEREF _Toc338386881 �
19
��

NOTES	� GOTOBUTTON _Toc338386882 � PAGEREF _Toc338386882 �
20
��

INTRODUCTION	� GOTOBUTTON _Toc338386883 � PAGEREF _Toc338386883 �
20
��

COMMAND LINE OPTIONS	� GOTOBUTTON _Toc338386884 � PAGEREF _Toc338386884 �
21
��

Paradox For Windows	� GOTOBUTTON _Toc338386885 � PAGEREF _Toc338386885 �
21
��

DATABASE NORMALIZATION	� GOTOBUTTON _Toc338386886 � PAGEREF _Toc338386886 �
22
��

Database Design and Normalization	� GOTOBUTTON _Toc338386887 � PAGEREF _Toc338386887 �
22
��

Introduction	� GOTOBUTTON _Toc338386888 � PAGEREF _Toc338386888 �
22
��

Flat File	� GOTOBUTTON _Toc338386889 � PAGEREF _Toc338386889 �
22
��

1st Normal Form	� GOTOBUTTON _Toc338386890 � PAGEREF _Toc338386890 �
23
��

2nd Normal Form	� GOTOBUTTON _Toc338386891 � PAGEREF _Toc338386891 �
24
��

3rd Normal Form	� GOTOBUTTON _Toc338386892 � PAGEREF _Toc338386892 �
25
��

4th Normal Form	� GOTOBUTTON _Toc338386893 � PAGEREF _Toc338386893 �
26
��

Codd’s Twelve Rules of Relational Integrity	� GOTOBUTTON _Toc338386894 � PAGEREF _Toc338386894 �
27
��

USER REQUIREMENT INTERVIEW GUIDES	� GOTOBUTTON _Toc338386895 � PAGEREF _Toc338386895 �
29
��

Overview	� GOTOBUTTON _Toc338386896 � PAGEREF _Toc338386896 �
29
��

Legal Case Management Systems	� GOTOBUTTON _Toc338386897 � PAGEREF _Toc338386897 �
29
��

CODE SNIPPETS	� GOTOBUTTON _Toc338386898 � PAGEREF _Toc338386898 �
33
��

INTRODUCTION	� GOTOBUTTON _Toc338386899 � PAGEREF _Toc338386899 �
33
��

DELPHI	� GOTOBUTTON _Toc338386900 � PAGEREF _Toc338386900 �
34
��

PARADOX FOR WINDOWS	� GOTOBUTTON _Toc338386901 � PAGEREF _Toc338386901 �
35
��

�

guidelines & STANDARDS

Preface

This document is a compilation of my ideas as well as information gathered from others, who are recognized in footnotes when I can remember the source. It is intended as a contribution to the developer community. Any comments would be appreciated. Comments can be sent to me via CompuServe [send mail to 70404,151] or the Internet [send mail to master@pipeline.com]. I hope you find some useful thoughts.

Introduction

The primary purpose of these GUIDELINES & STANDARDS is to suggest ways of handling elements that are common to all application development projects. The intent is to make an application as easy to maintain and enhance as possible without imposing an inflexible set of rules on developers. Incorporating these guidelines into day-to-day development will make their implementation almost effortless and add minimally to the development effort. The secondary purpose is to provide a learning tool for developers.

This document provides a solid starting point for development efforts. It should be considered as a living outline of our growth as programmers and as a team. Consequently, it will be revised as we learn new things that should be included.

It is intended to be flexible to allow for creativity, improvement, and personal expression. If you have an idea that you would like to see as part of the coding standard, express it and the team will decide if it should be added to the document. If you take issue with any of these suggestions, please raise those concern as well for the team to consider.

�Coding Conventions�

What is a Coding Convention?

A coding convention is a set of rules or guidelines that you use to format your code and name objects and variables. Using a consistent coding convention is an important contributor to productivity, as well as making code much easier to read, maintain and enhance.

Code Readability Guidelines

It is not code that obfuscates readability, it is the programmer. Readable code is the result of consistent use of a specific coding convention coupled with formatting and commenting the code itself.

DO use descriptive names (Within the rules of the language being used, make the variable and object names as descriptive as possible. Many development languages and environments permit names to have enough characters to make the names themselves quite descriptive, take fu;; advantage of this self-documenting feature. In addition, use of the prefixes [defined in the Naming Conventions sections] provides and easy, standardized way to indicate the type for each element of a program.

DO NOT use reserved words (The names of commands, keywords, functions, system variables, operators and system constants are all reserved words and should be avoided in naming variables and objects. In some circumstances reserved words will not cause a syntactic error, but may well cause a run-time error. In addition, it significantly reduces the readability of code to not know whether a particular word refers to a variable / object or to a command.

DO NOT use method names (To avoid confusion, the names of built-in methods, functions, procedures and other language elements should not be used in naming your own variables and objects, even if the language permits it.

DO use white space and indentation (Most languages permit the free use of white space without impacting the efficacy of the code. Make liberal use of white apace and indentation to make your code more readable. In variable declaration sections and similar segments of code, readability is greatly enhanced if the variables are declared one per line, are in alphabetical order within type and are aligned. In various code structures which extend over one line, alignment conventions substantially enhance readability and understanding

DO use comments liberally. Comments describe what a small number of lines of code is designed to accomplish. Some general guidelines for comments are:

In order to assure that comments are readily apparent, use “comment indicators” at the beginning of the comment line. A “comment indicator” is a “*****“ immediately following the character which denotes a comment in the language you are using.

Indent comment lines to the same level as the code to which they apply.

Comments should be in complete sentences starting with a capital and ending with a period to aids in setting comments apart from code.

At a minimum, each major block of code more than five lines long which performs a distinct function be commented.

In-line comments are not recommended.

Naming Conventions

This section provides guidelines for naming various elements and objects connected with an application. While many conventions impose an artificial limitation of 3 characters for the prefix, we have chosen to use as many characters as necessary in order to make the mnemonic easier to use and read.

Hungarian Notation

“Hungarian Notation” is intended to make distinctions between similar objects of different types apparent when the declarations for those objects are not readily available. For example, having the prefix “frm” on the variable helps the reader immediately know that the variable refers to a form. We have extended the notation to define prefixes for common variable / object / component types. Thus, names are in the format “xVariableName” where “x” is the object type indicator for the variable.

Every object on a form that is referenced in code that you write (as opposed to Delphi-generated code) should be named using these guidelines. If an object is statically displayed on the form and never used in code other than in the declaration it need not be named. [On forms with many objects, it is usually best to name all objects so they can be readily identified.]

Variable Naming Conventions�

All variables that have a predefined type should be prefixed with the following:

Predefined Type�Prefix��Ordinal Types���	Integer�int��	ShortInt�si��	LongInt�li��	Byte�byte��	Word�wrd��	Boolean�bool��	ByteBool�bytebool��	WordBool�wrdbool��	LongBool�lbol��	Char�chr��Real Types���	Real�real��	Single�sngl��	Double�dbl��	Extended�ext��	Comp�cmp��String���	String�str��

Visual Control Naming�

When naming visual controls, either programatically or using the Property Manager, the control name should be prefixed with the following:

Control Type�Prefix��TBevel�bvl��TBitBtn�btnbit��TButton�btn��TCheckBox�bxchk��TComboBox�bxcomb��TDBCheckBox�bxchkdbdcb��TDBComboBox�bxcombdb��TDBEdit�bxeddb��TDBGrid�grddb��TDBImage�imgdb��TDBListBox�bxlstdb��TDBLookupCombo�bxcomblkupdb��TDBLookupList�bxlstlkupdb��TDBMemo�bxmemodb��TDBNavigator�dbnav��TDBRadioGroup�btngrpbtnrad��TDBText�bxtxtdb��TDirectoryListBox�bxlstdir��TDrawGrid�grddrw��TDriveComboBox�dxcombdrv��TEdit�bxed��TFileListBox�bxlstfil��TFilterComboBox�bxcombfltr��TForm�frm��TGroupBox�bxgrp��THeader�hdr��TImage�img��TLabel�lbl��TListBox�bxlst��TMaskEdit�bxedmask��TMediaPlayer�medplyr��TMemo�bxmemo��TNotebook�ntbk��TOLEContainer�olecont��TOutline�otlne��TPaintBox�bxpnt��TPanel�pnl��TRadioButton�btnrad��TRadioGroup�btnradgrp��TScrollBar�scrlbar��TScrollBox�bxscrl��TShape�shp��TSpeedButton�btnspd��TStringGrid�grdstr��TTabbedNotebook�ntbktab��TTabSet�tabset��

Note that this set only includes the standard VCL controls. It is suggested that each developer include a suggested prefix with each new visual control developed. It could be included in an About box.

Capitalization Style�

In order to assist in reading a program listing, a consistent capitalization style should be used, as follows:

Element�Style�Example��Reserved Words�All lower case�procedure, begin, end��Class Fields�Starts with capital ‘F’, mixed case name.�FIndex, FMaxCount��Constants�All capital letters�PI, MAXIMUM��Types�Start with capital ‘T’, balance is camel capitalization��TMyType, TYourType��Procedure/Function�If used to read or write properties, they should start with ‘Get’ or “Set’ respectively. Names should be in camel capitalization.�GetMax, SetMax, CalcMax,��

Field Names

Field names should always be in “camel caps” format (the field name starts with a capital letter and each individual word within the field name starts with a capital letter. All other letters are lower case. Words should have no separator between them. [For example, AuthorizerName]

Formats�

These are suggested format standards for unit authoring.

Procedures/Functions

Procedures and functions defined in the body of a unit should be separated by a single, commented line of characters. This line will act as a visual separator. For example:

{--}

procedure TMyClass.Proc1(Value:Integer);

Private, Protected

The private declaration block should be structured in the following order:

1) Field declarations

2) General procedure/function declarations.

3) Property Get, Set functions, procedures.

For example:

private

	FIndex

	FMax

procedure CalcMax(Value:Integer);

function GetMax:Integer;

procedure SetMax(Value:Integer);

Public

The public declaration block should be structured in the following order:

1) Public Methods

2) Properties

For example:

public

	procedure Create; override;

	procedure Free:Override;

	property Max:Integer read GetMax write SetMax;

Version Numbers

Introduction

The purpose of version numbering is to provide an easy means of keeping track of changes made to application programs.

Hierarchy and Format

Version numbers are hierarchical in nature and in the format XX.YY.ZZZ, where:

XX changes sequentially when there is a major change in the functionality of the application.

YY changes sequentially when their is a minor change in the functionality of the application.

ZZZ changes when a bug in the application system is corrected.

In general, each module will have its own version number.

Specific Version Numbers

Specific version numbers are reserved, as follows:

All pre-release development changes have XX.YY set to 00.00. The ZZZ element changes with different “alpha” or “beta” releases of the product.

The initial installed version of the application always has 01.00.000 as its version number.

�Error Trapping and Exception Handling

Introduction

Error trapping is a complex subject, and cannot be adequately addressed in a document like this. Instead, this section outlines a general error handling style that we can build upon

There is a common dilemma in error processing: The routine that detects an error condition rarely knows the proper action that will correct the problem. Indeed, it may not know if the “problem” really is an error that requires a user’s attention at all.

For example:

assign(f, ‘g:\users.txt’);

reset(f);

if (IOResult <> 0)

then

	MessageDlg(‘File Access Error’, mtWarning, [mbOK], 0);

endIf

Code that attempts to open a file, then displays an error dialog if something went wrong is a common practice. The problem with this code is that it assumes that if it cannot open any file, the user must be informed about the problem. If this code were part of a reusable module, the module is likely to be called in a situation where automatically informing the user would not be the appropriate action.

We need an approach to error trapping which makes it convenient to flag as many error conditions as possible, yet is flexible enough to allow the calling code to:

Handle the error

Ignore the error and fix the error condition

Add additional information about the error, but not handle the error condition itself

Continue processing using a different algorithm

Exception Handling is the mechanism by which these goals are achieved.

A Quick Overview of Exception Handling

Delphi provides a very powerful and flexible implementation of exception handling, which should be used in Delphi development projects and serve as the model for exception handling in other languages. The key characteristics of the Delphi exception handling implementation are:

Exceptions are themselves objects descended from class Exception.

Since exceptions are objects, they have contain properties and methods.

A standard property of all exceptions is Exception.Message.

Since all exceptions are contained in the exception hierarchy, writing exception handlers for a range of exceptions by trapping for their parent exception is possible, for example, all exceptions in Delphi can be handled by trapping for all exceptions that inherit directly or indirectly from class Exception. Alternatively, specific exceptions can be handled by trapping for exceptions of that class, for example, division by zero exceptions can be handled by trapping for exceptions of class EZeroDivide.

Error Processing Standard

When an error condition is detected

1.	Never display a message at that place in the code.

2.	Create an exception using the name of the procedure or function and the error message you would have displayed. For example:

(Declare exception }

ETreeException = class(Exception);

....

{ Use Exception }

procedure TTreeTable.PushParent(OldParent : Double);

begin

	if (HistoryIndex < MaxStackSize)

	then

		begin

			HistoryIndex := HistoryIndex + 1;

			ParentHistory[HistoryIndex] := OldParent;

		end

	else

		{ This exception should never be raised }

		raise EtreeException.Create('PushParent : Tree

			Stack Overflow');

	endIf;

end;

In this code fragment, a new exception [called ETreeException] is declared and used for all error conditions involving the tree object. Then inside the TTreeTable.PushParent() method, the exception is raised if the ParentHistory stack overflows.

3.	All event procedures that can have exceptions raised while they are running should enclose all of their code in a Try...Except statement of the form which allows you directly to access the exception object.

4.	Add both the name of the event procedure and the class name of the exception object to the message property. This provides as much information as possible in the error message.

For example

try

	{ Set new range--filter to view new family }

	EditRangeStart;	{ Set the beginning key }

	FieldByName(TreeInformation.FParentIDField).AsFloat :=

		FcurrentParent;

	EditRangeEnd;	{ Set the ending key }

	FieldByName(TreeInformation.FParentIDField).AsFloat :=

		FcurrentParent;

	ApplyRange;		{ Tell the TTable to establish the range }

except

	on E : Exception do

		raise ETreeException.Create('UpdateFilter: ' + E.className +

			': ' + E.Message);

end;

In this example, ‘UpdateFilter’ is the name of the event procedure, E.ClassName places the name of the exception in the error message, and E.Message keeps whatever information is available in the existing message.

5.	When writing a procedure that must initialize something at the beginning and must remember to uninitialize it at the end, enclose the whole thing in a Try...Finally statement and place the uninitialization statements in the Finally block.

�APPLICAtion development CHECKLIST

Whenever a new project is started. a checklist should be used as a guide to the features to be included in the application. This aids in developing clearer, more professional applications. Over time, a programmer or group develops its own application checklist. Many times the basic elements of an application checklist are incorporated in templates or reusable objects which speeds development and assures consistency.

The elements of the checklist are:

Splash Screen Form

Determine whether or not the application should start with a splash screen, which is generally desirable. If so, the splash screen form object should contain all the code necessary to get the application up and running with all necessary directory / alias / file pointers properly set, all directory changes made and the main menu form [if any] displayed.

Main Menu Form

Determine whether or not the application requires a main menu form.

Aliases

All references to directories should be by alias to permit easy translation to other configurations or up / down sizing. Determine the aliases which are required for the application and define how they will be setup.

Color Scheme

The color scheme should be consistent from form to form within the application.

In developing a color scheme, several points should be kept in mind:

Do not use too many colors

Because it tends to create eye strain:

Avoid the use of large areas of white space.

Avoid the use of bright colors. [For a good example of what should not be done, see the “Hot Dog Stand” color configuration for Windows.]

Help

At the very least, use “fly-over” or “balloon” help for each button.

Every form should have a help button or menu choice [preferably both].

Take the time to develop a context-sensitive help system as part of the application.

If the application includes any kind of text or Write file, include a button or menu choice [preferably both] so that the user can launch the file in Notepad or Write.

Exit

Include a button or menu option [preferably both] so the user can exit the application.

The exit choice should close the application properly and courteously. This means assuring that:

All records are posted.

All files are closed.

All forms are closed.

The drive and directory are reset, if necessary.

Do not depend upon the user double clicking the system bar in the form header

�LANGUAGE / ENVIRONMENT SPECIFIC CONVENTIONS

Each language and development environment has a need for certain guidelines specific to itself. This section defines those guidelines and conventions for the languages and development environments we use.

Miscellaneous Guidelines

Paradox for Windows

Every form should have errorTrapOnWarnings(Yes) in the form open method so that warning errors are shown.

Every form should have Properties | Compiler Warnings and Properties | Compile with Debug checked to display more informative warning messages.

Code should not be placed at the form level. It is executed for every object on the form. Put code that does not require the prefilter at the page level so that it executes when the event bubbles. Place generic routines at the prefilter level.

Use setErrorCode() instead of disableDefault to disable built-in behavior.

When building menus, trap for user selection by using menu IDs.

Use built-in ObjectPAL variables as much as possible.

Use a switch structure rather than nested if statements.

Use specific coding. For example:

Use the syntax tc.open("TABLE.DB").

When executing action() and menuAction() methods, be specific, do not use action(Constant), instead use active.action(Constant).

The tab stop property for buttons should be set to True.

Use the wide scroll bar.

For each application, use only one style sheet for forms and one style sheet for reports to give the application a consistent look and feel.

Directory Structures

Paradox for Windows

Use Directory Object Addressing [DOA], which provides a means for using individual directories to hold different types of objects which are included in an application and, coupled with aliases, permits the application to address these objects independent of the specific hardware location of the application’s objects. Guidelines for the alias and directory structures for an application are defined in the following table:

Alias�Directory Name�Content��:App:��AppBaseDirectory��[abbreviated as ABD]�The application’s INI file, Install file Backup file and similar files��n/a�ABD\DOCUMENT�All documentation for the application��:AppForms:�ABD\FORMS�All form objects for the application, except those having to do with the Help segment.��:AppHelp:�ABD\HELP�All objects having to do with the application’s Help segment.��:AppLibrary:�ABD\LIBRARY�All library objects for the application, except those having to do with the Help segment.��:AppQueries:�ABD\QUERIES�All query objects for the application, except those having to do with the Help segment.��:AppReports:�ABD\REPORTS�All report objects for the application, except those having to do with the Help segment.��:AppScripts:�ABD\SCRIPTS�All script objects for the application, except those having to do with the Help segment.��:AppTables:�ABD\TABLES�All table objects for the application, except those having to do with the Help segment.��Forms

Paradox for Windows

The initial form for any application is named xx$START.FDL. The xx$START form:

Displays the application’s title and logo

Sets the application’s window title

Opens any libraries required by the application

Establishes the aliases required by the application

All references used in the application should be by alias

Builds the application’s primary menu

Opens and hides the help text form [if any]

Displays the application’s main interface [usually a set of buttons]

Manages the orderly closing of the application.

�Documentation

User Requirements

Probably the most important element of documentation and the one on which the application’s success depends is the definition of User Requirements. This information is obtained via interviews with ALL current and potential users of the application as well as gaining a thorough understanding of the functionality of the existing system and its shortcomings in the eyes of the users.

Internal Program Documentation

The best way to document a program is to have complete internal documentation, including a header comment block, in-line comments and meaningful variable names.

Documentation Components

There are a number of published documentation components which comprise a full set of application system documentation. These are in addition to the internal program documentation described in the above section. The documents are:

User’s Manual, including

Instructions for using the application.

A description of the feeds or input to the application.

A description of the feeds from this application to other applications.

A description [including samples] of all reports produced by the system and the destination of each report.

Application Administrator’s Manual, including

Instructions for administering the system.

Backup and Recovery procedures.

Technical Manual including

Definition of the database and associated tables and fields.

Definition of data mapping from the prior system.

Definition of all objects that comprise the system, including properties and code.

Notes

Introduction

These notes are intended to bring together in one place significant pieces of information gathered from a multitude of sources. In many cases, the source of the information is not credited because it is no longer available in my records. Many thanks to all of these now anonymous authors who have posted notes, tips and techniques on various bulletin boards.

�Command Line Options

Paradox For Windows

Command line options specify certain configuration options for Paradox. Multiple options can be specified on the same command line, each should start with as “-” and be separated from the others by a space. The table� below specifies these options. Pages 169 through 170 contain important information on the usage of each of these command line options.

Option�Description��-c�Starts Paradox with a clear desktop��-d filename�Specifies an alternate PDOXWORK.INI file. “filename” is the name of the alternate file and must include the extension, even if it is “.INI”.��-I filename�Specifies an alternate PDOXWIN.INI file.��-m�Loads Paradox as a minimized application��-o filename�Specifies an alternate IDAPI.INI file��-p directory�Specifies an alternate private directory��-q�Starts Paradox without displaying the title screen��-w directory�Specifies an initial working directory��startfile�Opens Paradox, then opens the document and performs its default action. “Startfile” is the name of an Paradox document and must include the file extension���Database Normalization

Database Design and Normalization�

Introduction

Relational databases are the predominant method for storing repetitive data in computers because they allow the storage and maintenance of data more efficiently than other types of databases. Relational databases are so named because they split data into different tables and then relate common information between those tables. It is more efficient to store information in many narrow tables, than in one very wide table. It also results in more consistent and reliable data.

Breaking data up into a number of smaller tables is called "normalizing", after the mathematical theory which underlies relational databases. There are 12 rules for splitting data into separate tables. These rules are called "normal forms". The first four of these are of general interest, the remaining are more esoteric and will not be discussed here.

Flat File

We start with a flat file and apply each of the first three normal forms in turn to see how data is transformed into “normalized tables.

If we had to use one table to store all the information in a Telephone Chargeback System, we might end up with this table structure:

Structure Of: TELEPHONE

1	 Staff Member	A20*�2 	Position 	A20�3 	Department	A20�4 	Department Manager	A20�5 	Equipment One	A30�6 	Equipment Two	A30�7 	Equipment Three	A30�8 	Equipment Four 	A30�9 	Equipment Five	A30

This table assumes that no person has more than five pieces of equipment, which are specifically described. Each Department and Department Manager is also spelled out in detail. But what happens if Joe Blow requires more than five pieces of equipment? We would have to add a new field "Equipment Six" for just that person. This is especially inefficient if the vast majority of people in the database have just 1 or 2 items. In a very large table, the amount of wasted space can become truly horrendous.

Here is another problem. What if we want to query for the departments where staff people have the equipment item known as "Message Call Answering". This item could appear in any one of 5 different fields, (or 6, if we added a new field to allow for Joe Blow.) The query to find this list would be complex., having as many rows as there are repeating fields, since each instance of an Equipment Item must be separately queried. We cannot put the criteria for each of the "Equipment." fields on the same line, since doing this would be asking for "Message Call Answering" in each and every "Equipment." field. This is a very slow query. Most databases will make 5 separate passes through the table, finding matching records in each case. There has to be a better way.

1st Normal Form

The first "rule" of normalizing databases says "Eliminate Repeating Groups". For each set of related fields, make a separate table and give that table a primary key. What this means for our application is that we split up the data into two tables, as follows:

Structure Of: STAFF

1	Staff Member	A20*�2	Position	A20�3	Department	A20�4	Department Manager	A20

Structure Of: EQUIPMNT

1	Staff Member	A20*�2	Equipment Description	A30*

All equipment descriptions are placed in the separate Equipment table, and linked to the Staff table via the Staff Member's name. Both tables are much narrower than the original Telephone table, and correspondingly longer. But relational databases are designed to handle relatively narrow but long tables much more efficiently than wide, short tables. This is especially true if the operations we perform on these tables use the key fields, since linking on key fields is very quick indeed.

Notice how the Equipment table has both fields keyed. The primary index (consisting of the concatenation of all keyed fields) must be unique. In instances such as the one above, where the key fields are getting very wide, programmers generally start using "ID" numbers to establish uniqueness between records. So we would modify the Equipment table as follows:

Structure Of: EQUIPMNT

1	Staff Member	A20�2	Equipment ID	A2*�3	Equipment Description	A30

Now to perform the query described above, we link the two tables together using Paradox's example elements. The Answer table is a list of Departments where Staff Members have this item of equipment. But this query will run far quicker than the first one, use less memory and less disk space. If we place a Paradox secondary index on the "Equipment Description" field, the query will run even faster, although this is usually not necessary.

But this layout also has it problems. What if we want to change the text associated with a specific "ID", for example, from "Message Call Answering" to "Message Call Forwarding". In Paradox, this can be done with a ChangeTo query, but many relational databases don't support such an operation. If you have to perform the operation manually, and miss some entries, you end up with inconsistent information in the database, the same ID number referring to different descriptions. This is known as an "Update" anomaly.

Another problem occurs if every person who has Message Call Answering is transferred to another division, or laid off by the company. When you delete all references to this piece of Equipment, it disappears from the system completely! There is now no record that it ever existed, or is a valid option to use in this system. This is known as a "Delete" anomaly.

2nd Normal Form

The second "rule" of relational databases is designed to avoid these two problems. If a field in a table is related to only part of a multi-field key, remove it to a separate table.

In the example above, the Equipment Description field depends entirely on the Equipment ID field, part of our two field key. It has no relationship to the Staff Member field at all. If we split it off into a third table, the resulting structure looks like this:

Structure Of: STAFF

1	Staff Member	A20�2	Position	A20�3	Department	A20�4	Department Manager	A20

Structure Of: INVENTRY

1	Staff Member	A20*�2	Equipment ID	A2*

Structure Of: EQUIPMNT

1	Equipment ID	A2�2	Equipment Description	A30

In this 2nd Normal Form design, the Equipment descriptions are separated out into their own table, keyed by Equipment ID. This ID field is also used in the INVENTRY table as part of the key.

"Update" anomalies are much easier to avoid, since the description of each equipment item appears once and only once in the whole system. It does not need to be changed in multiple places. "Delete" anomalies are avoided completely, since changes to the equipment assigned to each staff member, and to staff members themselves are insulated from the approved equipment list.

Notice how our tables are getting narrower, with less duplication of wide field values. Where duplication is unavoidable, we make it as small as possible by using the ID number.

The query processes as quickly as the previous one, even though it uses one more table than before, because the links are established on key fields. Relational databases are designed and optimized to process keyed links between tables.

3rd Normal Form

Third normal form is similar to 2nd normal form in that it is designed to avoid Update and Delete anomalies. But it specifically addresses relationships in tables which have only one key field.

In the STAFF table described above, both 1st and 2nd normal forms are satisfied: There are no repeating fields, and no multi-field key. These is however, one problem with the structure of the table:

Each staff member has a position within the firm. Each staff member also belongs to a department. But the Department Manager has nothing to do with the Employee (from a relational database standpoint.) This field "belongs" to the Department name; it is the person designed to manage the department. It thus makes sense to split information about Departments into a separate table.

3rd normal form specifies that if fields do not contribute to a description of the of the table's key, they should be removed to a separate table. The STAFF table is thus split up into two tables as follows:

Structure Of: STAFF

1	Staff Member	A20�2	Position	A20

3	Department ID	A3

Structure Of: DEPTMENT

1	Department ID	A3*�2	Department	A20�3	Manager	A20

Structure Of: INVENTRY

1	Staff Member	A20*�2	Equipment ID	A2*

Structure Of: EQUIPMNT

1	Equipment ID	A2*�2	Equipment Description	A30

(We have introduced a Department ID field for the same reason noted above; when duplication is necessary, make the duplicated values as small as possible.) Our query now requires all four tables.

With 3rd normal form, the information in each table pertains to the key of that table only. The whole system is contained in four tables with a total of 10 fields, instead of 1 table with 9 fields. But most operations are performed on keys, so processing speed is much faster. We can have as many pieces of equipment for each employee as we need, with no wasted space for those people who only have 1 or 2 pieces. Department and Equipment details are ensconced in their own tables, secure from Update and Delete anomalies.

Applications in a relational database design have a solid theoretical underpinning; it is one of the reasons why relational databases are becoming so popular.

4th Normal Form

Most applications need go no further than 3rd normal form. But there are some situations where we need to break the information up into an even finer modularity.

For example, what if we also want to store the speed Dial numbers which staff members program into their systems, perhaps to send out notices when such numbers are changed. We might simply add a field to the INVENTRY table to maintain this information:

Structure Of: INVENTRY

1	Staff Member	A20*�2	Equipment ID	A2*�3	Speed Dial Numbers	A4

Notice how the number of equipment items bears no relationship to the number of speed dial numbers defined. For some employees, there are more items; for others, there are more numbers.

The table above implies a relationship between "Equipment ID" and "Speed Dial Number" for each employee. It suggests, for example, that Nancy Adachi's equipment item "04" is in some way connected to her speed dial number "1000". In fact, there is no relationship between these two fields, other than that they are both attributes of the "Staff Member" field. Each staff member can have multiple equipment items, and can also have multiple speed dial numbers.

4th normal form requires us to isolate independent multiple relationships. It specifies that no table should contain two or more One-Many or Many-Many relationship unless they are also directly related to each other.

If the additional field we need to store is the date on which that equipment item was assigned to that staff member, there is a direct relationship between the two fields, and they logically belong in the same table. Another way of looking at it is that there is a One-One relationship between a piece of equipment assigned to a staff member, and the date it was assigned. There is a One-Many relationship between staff members and this entity of "equipment-date". The table looks like this:

Structure Of: INVENTRY

1	Staff Member	A20*�2	Equipment ID	A2*�3	Date Assigned	D

But in the original example using Speed Dial numbers, we need to create two tables, one for the equipment items assigned to that staff member, the other to store speed dial numbers.

Structure Of: INV_EQPT

1	Staff Member	A20*�2	Equipment ID	A2*

Structure Of: INV_SPDL

1	Staff Member	A20�2	Speed Dial Numbers	A4*

As a related issue, the situation of having dual detail tables linked to a Master is one that Paradox does not handle well. Reporting in particular is difficult since multi-table reports must be tied to one of the details, and there is no easy way to link in the other detail.

 Codd’s Twelve Rules of Relational Integrity�

1. Information Rule

All of the information in a relational database must be represented explicitly and uniquely through table values.

2. Guaranteed Access

Every item of information stored in a relational database must be accessible by specifying ONLY table name, column name, and primary-key value.

3. Missing Information

There must be a mechanism to express missing information in the database in such a way as to be independent of data type and supported in operations at the logical (the Data Sublanguage) level.

4. System Catalog

The description of the database at the logical level should be represented dynamically at the logical level like ordinary data so that the user may use the database's Data Sublanguage to manipulate the information.

5. Data Sublanguage

No matter how many languages or interactive modes are supported, there must be a least one Relationally Complete data manipulation language.

6. View Updatability

The database must support logical views of the data, and the user should be able to update the data in the base tables via these logical views.

7. Insert/Update/Delete

The database must allow the Retrieval, Insertion, Updating, and Deletion of records at the set level.

8. Physical Data Independence

Interactive operations and applications programs should not have to be modified whenever there are changes to the structure of the underlying data files.

9. Logical Data Independence

Interactive operations and applications programs should not have to be modified whenever the base tables are restructured, so long as the restructuring involves no loss of information.

10. Integrity Independence

Interactive operations and applications programs should not have to be modified whenever there are changes to the integrity rules stored in the system catalog.

11. Distribution Independence

The underlying data should be able to be stored on multiple independent computers, and the database should be able to access the data regardless of where it is physically located within.

12. Nonsubversion

If a relational database has a procedural language (Paradox's PAL) it should not be allowed to subvert the database's integrity and security rules.

�User Requirement Interview Guides

Overview

Although there are books available which provide general interview outlines or checklists, this section presents interview guides for obtaining user requirements for specific types of applications.

Legal Case Management Systems

The material in this section is the way information is gathered for the development and implementation of a Matter Management System in a Corporate Legal Department. � Using this checklist, you gather information crucial to the implementation of a case management system. Review the items carefully with each group within the department to ensure that the needs of all groups are being taken into account during the implementation phase.

Matter Data Entry

How many matters are currently being monitored in your group?

How many attorneys and other legal staff are employed in your group?

Decide on the value of entering/converting closed cases.

Opening a Matter

Identify the different ways a case originates

How are cases assigned?

How is the client or business unit identified?

Do you differentiate between an insured matter and an uninsured matter?

Flow of Information

How does the attorney get information?

How is a matter entered into the system? Centralization v. Decentralization

What is the minimum amount of information needed to open a matter?

Managing Matter Information

How is a case managed or reviewed?

Are the people who enter matters different from those who modify/update the matter?

General matters may be necessary to track day to day activities for the management of both the legal department and individual attorney workload.

Closing a Matter

How are you notified that a case is closed?

How will that information be transmitted to the system?

Matter Categorization

What types of matters does this group open?

How do you categorize your matters?

Are you ever asked to quantify cases by certain criteria? i.e., how many cases did you open this year related to x, y, or z?

For litigation matters, identify types of parties, damage types, outcomes, courts and jurisdictions.

How do you identify the “clients” of your law department?

Identify different types of narrative you may want to store associated with a matter.

Identify key activities, or events, that occur within a matter.

How do you assign counsel to your cases that are not being handled in-house? Do you choose from a list of “preferred” vendors?

Accounts Payable Processing

How are invoices received and by whom?

Who tracks the invoices?

Analyze data requirements. What information is collected?

Do you track invoices by period, and if so, how do you define the period?

Do invoices go through a definable approval process? If so, is that process different for invoices of different dollar amount thresholds?

Do you need your invoices to interface to another system? i.e., Accounts Payable feeds back and forth?

Do you compare actual costs against some budget amounts? If so, how are those budgets determined, and how do they get attached to the costs?

Is historical information necessary for all cases, only current cases, or not at all?

Review check request forms, if necessary.

Data Conversion and Field Mapping

Identify sources of current data.

Determine volume.

Obtain record layouts from the legacy system.

Determine the most appropriate place in the new system to store the same information. This is called field mapping.

When all data has been mapped to the new systems fields and tables, review all affected and tables to determine if any other fields in those tables are required or perhaps should be populated with data from other sources. This is called reverse field mapping.

When both mappings are completed, the conversion programs can be written.

Interfaces with Other Systems

What type of systems are you interfacing with?

Are you uploading data from the new system, downloading data to the new system or both?

What information will be passed between systems?

Is the data exchange necessary or will it produce redundancy?

Time Recording Process

How do the attorneys currently record their time?

Who does the input?

What information is collected?

How is the information used after it is collected?

Create an input sheet, if desired.

Reporting Requirements

What reports are currently being produced?

Are they sufficient?

Are they still needed?

Define the frequency of each report (daily, weekly, monthly, quarterly, semi-annually, annually, on request)

For each report still needed, where does the data come from for each of the fields?

Prioritize reports.

Test The New System

Enter sample matters with all associated data.

Run all Database Management Queries and Searches

Run all Matter Management Queries and Searches

Run all reports for the new system and compare them with the required reports

If required reports differ from those available, create Report Specifications.

Make changes to the new system’s Field Master to correctly identify data field attributes.

Make changes to the new system’s Window/Report table to modify window title bars.

CODE SNIPPETS

INTRODUCTION

This section contains annotated snippets of code taken from various BBS’s, magazines, etc. None of this code is warranted to work.

�DELPHI

�paradox for windows

� This section is based on the Prestwood Coding Conventions by Mike Prestwood, appearing in, among other venues, WHAT EVERY PARADOX 5 FOR WINDOWS PROGRAMMER SHOULD KNOW by Mike Prestwood, published by SAMS Publishing Company, 1994.

� Thanks to Cliff Schroeder [CIS ID: 76647,1014] for some of the ideas in this section.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� Camel Capitalization means that every individual word within a name is capitalized and that there are no separators between the words.

� Thanks to Cliff Schroeder for some of the ideas in this section.

� This is replaced by the main aliases for the application, usually the application’s name.

� Also referred to as BASEDIR in INSTALL.BAT

� This table appears on Page 168 of the Paradox for Windows Getting Started manual , which is copyright by Borland International.

� This material is excerpted from a paper copyright 1990 by:�	Dan Ehrman, President, Kallista, Inc., Chicago, IL, PHONE: (312) 663-0101]

� This material is excerpted from a paper by:�	DALE W. Harrison, 3815 Richmond Ave. Box 111, HOUSTON, Texas 77027, PHONE: (713) 888-1479

� This material is based on information from CompInfo and is used by them to guide clients in implementing the Corporate LawPack for Windows.

continued on next page

