
T H E A T A R I C O M P E N D I U M

XCONTROL Function Reference

T H E A T A R I C O M P E N D I U M

XCONTROL Callback Functions

The XCONTROL callback functions are user-supplied functions which are identified to the Control
Panel in the CPXINFO structure returned by the cpx_init() function which is also described in this
section. When creating a Form CPX, the only callback function that is utilized is cpx_call(). The
remaining functions are used only when creating Event CPX’s. The XCONTROL callback functions are:

•• cpx_button()
•• cpx_call()
•• cpx_close()
•• cpx_draw()
•• cpx_hook()
•• cpx_init()
•• cpx_key()
•• cpx_m1()
•• cpx_m2()
•• cpx_timer()
•• cpx_wmove()

cpx_button() – 10.19

T H E A T A R I C O M P E N D I U M

cpx_button()
VOID (*cpx_button)(mrets, nclicks, event)
MRETS *mrets;
WORD nclicks;
WORD *event;

cpx_button() is called in an Event CPX when a MU_BUTTON event has
occurred.

PARAMETERS mrets points to a structure containing the mouse event which triggered the function
as follows:

typedef struct
{

WORD x; /* X position of mouse */
WORD y; /* Y position of mouse */
WORD buttons; /* Mask of buttons depressed */
WORD kstate; /* Keyboard shift state */

} MRETS;

nclicks specifies the number of clicks processed. If this event should terminate the
CPX, the function should place a 1 in the WORD pointed to by event.

BINDING cpxinfo.cpx_button = cpx_button;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_BUTTON specified as an event to wait for.

cpx_call()
BOOLEAN (*cpx_call)(work)
GRECT *work;

cpx_call() is called immediately after the cpx_init() function when the user
activates the CPX.

PARAMETERS Upon entry, the GRECT structure pointed to by work contains the current
rectangular extent of the control panel window work area.

BINDING cpxinfo.cpx_call = cpx_call;

return (&cpxinfo);

10.20 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

RETURN VALUE The cpx_call() function should return TRUE if it wants to continue processing
events through the event handlers specified in the CPXINFO structure or FALSE
to indicate the CPX is finished.

COMMENTS When exiting the cpx_call() function, the CPX must deallocate any allocated
memory and close any VDI workstations opened.

cpx_close()
VOID (*cpx_close)(flag)
BOOLEAN flag;

cpx_close() is called in an Event CPX when a WM_CLOSED or AC_CLOSE
message is received by the control panel.

PARAMETERS flag contains TRUE if a WM_CLOSED message was received or FALSE if
AC_CLOSE was received.

BINDING cpxinfo.cpx_close = cpx_close;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

WM_CLOSED messages should be treated as equivalent to ‘OK’ whereas
AC_CLOSE messages should be treated as ‘Cancel’.

cpx_draw()
VOID (*cpx_draw)(clip)
GRECT *clip;

cpx_draw() is called when a WM_REDRAW message is received by the control
panel in an Event CPX.

PARAMETERS clip points to a GRECT structure specifiying the dirtied area.

BINDING cpxinfo.cpx_draw = cpx_draw;

return (&cpxinfo);

COMMENTS This routine should utilize GetFirstRect() and GetNextRect() to obtain the true
rectangles of the area to redraw.

cpx_hook() – 10.21

T H E A T A R I C O M P E N D I U M

This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

cpx_hook()
BOOLEAN (*cpx_hook)(event, msg, mrets, key, nclicks)
WORD event;
WORD *msg;
WORD *mrets;
WORD key, nclicks;

cpx_hook() is called in an Event CPX immediately after the Control Panel’s
evnt_multi() function returns before the message is processed.

PARAMETERS All parameters share counterparts with the evnt_multi() function. For a detailed
explanation of the return values please consult the documentation for that function.
event contains the event mask of one or more events that occurred. msg points to
an array of eight WORDs containing the message buffer. mrets and nclicks point
to the mouse event (if any) as described in cpx_button(). key points to a WORD
containing the keyboard scancode of the key pressed (if any).

BINDING cpxinfo.cpx_hook = cpx_hook;

return (&cpxinfo);

RETURN VALUE The function should return TRUE to override default event handling or FALSE to
continue processing the message.

cpx_init()
CPXINFO (*cpx_init)(xcpb)
XCPB *xcpb;

cpx_init() is called upon bootup and every subsequent time the CPX is opened by
the user.

PARAMETERS xcpb points to an XControl Parameter Block structure as described in the
beginning of this chapter.

BINDING The cpx_init() function is called by JSR’ing to the first location in the CPX’s
TEXT segment. ‘C’ programmers should assemble and link the following code as
the first object file in the link to ensure that the correct function is properly called:

10.22 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

; Startup stub for CPX’s without save area

.xref _cpx_init

.text

cpxstart:
jmp _cpx_init

.end

If the CPX has default data which is to be saved back into the CPX with the
CPX_Save() function, the following stub should be used (substitute the ‘.dc.w 1’
statement with the appropriate amount of space required to store your data):

; Startup stub for CPX’s with save area

.xref _cpx_init

.globl _save_vars

.text

cpxstart:
jmp _cpx_init

.data

_save_vars:
.dc.w 1

.end

RETURN VALUE The cpx_init() function returns a pointer to its CPXINFO structure to allow the
Control Panel to access its other routines. If it is a ‘Set-Only’ CPX, it should
return NULL .

COMMENTS A CPX can distunguish when a CPX is booting by checking the xcpb->booting
structure member.

It is recommended that the CPX to create a copy of xcpb each time cpx_init() is
called for the other callback functions to utilize.

cpx_key()
VOID (*cpx_key)(kstate, key, event)
WORD kstate;
WORD key;
WORD *event;

cpx_key() is called in an Event CPX when a MU_KEYBD event has occurred.

cpx_m1() – 10.23

T H E A T A R I C O M P E N D I U M

PARAMETERS kstate specifies the state of the keyboard shift keys as in evnt_keybd(). key
specifies the keyboard scan code of the key struck. The WORD pointed to by
event should be filled in with a 1 if this event should terminate the CPX.

BINDING cpxinfo.cpx_key = cpx_key;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_KEYBD specified as an event to wait for.

cpx_m1()
VOID (*cpx_m1)(mrets, event)
MRETS *mrets;
WORD event;

cpx_m1() is called when a MU_M1 event has occurred in an Event CPX.

PARAMETERS mrets will contain a pointer to a MRETS structure as specified in cpx_button()
which contains the mouse state as it satisfied the condition. The WORD pointed to
by event should be filled in with 1 if this event should terminate the CPX.

BINDING cpxinfo.cpx_m1 = cpx_m1;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with MU_M1
specified as an event to wait for.

SEE ALSO cpx_m2()

cpx_m2()
VOID (*cpx_m2)(mrets, event)
MRETS *mrets;
WORD event;

cpx_m2() is called when a MU_M2 event has occurred in an Event CPX.

PARAMETERS See cpx_m1().

BINDING cpxinfo.cpx_m2 = cpx_m2;

return (&cpxinfo);

10.24 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

COMMENTS This function will only be called if Set_Evnt_Mask() is called with MU_M2
specified as an event to wait for.

SEE ALSO cpx_m1()

cpx_timer()
VOID (*cpx_timer)(event)
WORD *event;

cpx_timer() is called when a MU_TIMER event has occurred in an Event CPX.

PARAMETERS The WORD pointed to by event should be filled in with 1 if this event should
terminate the CPX.

BINDING cpxinfo.cpx_timer = cpx_timer;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_TIMER specified as an event to wait for.

cpx_wmove()
VOID (*cpx_wmove)(work)
GRECT *work;

cpx_wmove() is called when a WM_MOVED message is received by the
Control Panel in an Event CPX.

PARAMETERS work is a pointer to a GRECT containing the new coordinates of the window
work area.

BINDING cpxinfo.cpx_wmove = cpx_wmove;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

T H E A T A R I C O M P E N D I U M

XCONTROL Utility Functions

The XCONTROL utility functions are accessed via the XCPB (XControl Parameter Block) in the
following format for users of ‘C’:

ret = (*xcpb->Function)(param1, param2, ...)

These functions provide functions useful mostly to CPX’s as well as functions that closely resemble AES
functions better suited for CPX’s. The XCONTROL Utility Functions are:

•• (*xcpb->CPX_Save)()
•• (*xcpb->Get_Buffer)()
•• (*xcpb->getcookie)()
•• (*xcpb->GetFirstRect)()
•• (*xcpb->GetNextRect)()
•• (*xcpb->MFsave)()
•• (*xcpb->Popup)()
•• (*xcpb->rsh_fix)()
•• (*xcpb->rsh_obfix)()
•• (*xcpb->Set_Evnt_Mask)()
•• (*xcpb->Sl_arrow)()
•• (*xcpb->Sl_dragx)()
•• (*xcpb->Sl_dragy)()
•• (*xcpb->Sl_size)()
•• (*xcpb->Sl_x)()
•• (*xcpb->Sl_y)()
•• (*xcpb->Xform_do)()
•• (*xcpb->XGen_Alert)()

(*xcpb->CPX_Save)() – 10.27

T H E A T A R I C O M P E N D I U M

(*xcpb->CPX_Save)()
BOOLEAN (*xcpb->CPX_Save)(ptr , num);
VOIDP ptr;
LONG num;

CPX_Save() writes the specified data to the CPX on disk at the beginning of the
CPX’s DATA segment.

PARAMETERS ptr is a pointer to the data to save. num specifies the length of the data in bytes.

BINDING (*xcpb->CPX_Save)(ptr, num);

RETURN VALUE CPX_Save() returns TRUE if the operation was successful or FALSE if an error
occurred.

COMMENTS CPX_Save() stores the specified data on disk in the original CPX file at the start
of the DATA segment of the program. For this reason, enough space should be
allocated to account for this data. See cpx_init() for an example method of
accomplishing this.

SEE ALSO (*xcpb->Get_Buffer)()

(*xcpb->Get_Buffer)()
VOIDP (*xcpb->Get_Buffer)(VOID)

Get_Buffer() returns the address of a 64-byte static storage location for the
calling CPX.

BINDING bufptr = (*xcpb->Get_Buffer)();

RETURN VALUE Get_Buffer() returns a pointer to a 64-byte static storage location which can be
used by the CPX to preserve data between invocations.

COMMENTS Data stored in this area is lost upon a reboot. Permanent data should be stored
using CPX_Save().

SEE ALSO (*xcpb->CPX_Save)()

10.28 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->getcookie)()
WORD (*xcpb->getcookie)(cookie, pvalue)
LONG cookie;
LONG * pvalue;

getcookie() searches the ‘cookie jar’ for a given cookie and if found returns its
stored longword.

PARAMETERS cookie contains the longword cookie (usually a packed 4 character ASCII code) to
search for. If found, the value of the cookie is placed in the LONG pointed to by
pvalue.

BINDING err = (*xcpb->getcookie)(cookie, pvalue);

RETURN VALUE getcookie() returns TRUE if the value placed in pvalue is valid or FALSE if the
cookie was not found.

COMMENTS This function is useful in locating TSR’s or other resident processes which a CPX
is designed to configure.

(*xcpb->GetFirstRect)()
GRECT *(*xcpb->GetFirstRect)(prect)
GRECT *prect;

GetFirstRect() returns the first member of the Control Panel’s rectangle list
intersected by prect.

PARAMETERS prect points to a GRECT containing the extent of the dirtied area.

BINDING rdraw = (*xcpb->GetFirstRect)(prect);

RETURN VALUE GetFirstRect() will return a pointer to a GRECT containing the first intersecting
rectangle to redraw or NULL if none of the CPX’s rectangles intersect the dirtied
area.

COMMENTS Xform_do() handles resource object redraws in Form CPX’s. Other objects
requiring a redraw in Form CPX’s and all objects in Event CPX’s must be
redrawn with using these functions when a redraw message is generated.

SEE ALSO (*xcpb->GetNextRect)()

(*xcpb->GetNextRect)() – 10.29

T H E A T A R I C O M P E N D I U M

(*xcpb->GetNextRect)()
GRECT *(*xcpb->GetNextRect)(VOID)

GetNextRect() returns subsequent rectangles needing to be redrawn after first
calling GetFirstRect().

BINDING rdraw = (*xcpb->GetNextRect)();

RETURN VALUE GetNextRect() returns a pointer to a GRECT structure containing a subsequent
rectangle needing to be redrawn.

COMMENTS When a redraw message is received, it should be handled as illustrated below (the
example given is for an Event CPX but it may be applied to the WM_REDRAW
message handling section of a Form CPX as well):

VOID
cpx_draw(clip)
GRECT *clip;
{

GRECT *rdraw;

rdraw = (*xcpb->GetFirstRect)(clip);

while(rdraw)
{

/* User redraw function */
my_redraw(rdraw);
rdraw = (*xcpb->GetNextRect)();

}
}

SEE ALSO (*xcpb->GetFirstRect)()

(*xcpb->MFsave)()
VOID (*xcpb->MFsave)(flag, mf)
BOOLEAN flag;
MFORM * mf;

MFsave() saves the current mouse form so that a custom application mouse form
is not destroyed when the CPX calls graf_mouse() or vsc_form() to change the
shape of the mouse.

PARAMETERS flag specifies the action to take. If flag is MFSAVE (1), the current mouse form
will be written into the MFORM structure pointed to by mf. If flag is
MFRESTORE (0), the mouse form will be restored from the MFORM structure

10.30 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

pointed to by mf. See vsc_form() for the definition of MFORM .

BINDING (*xcpb->MFsave)(flag, mf);

(*xcpb->Popup)()
WORD (*xcpb->Popup)(items, num_items, default, font, button, world);
CHAR * items[];
WORD num_items, default, font;
GRECT *button, *world;

Popup() displays and controls user interaction with a popup menu.

PARAMETERS items points to an array of character pointers pointing to the text of the items. Each
string must be padded in front with at least 2 spaces and should be of equal length
(at least as long as the longest string). num_items specifies the number of items to
display in the popup. If num_items exceeds five, the popup will only show three
items with two arrows to allow scrolling.

default indicates the default item (the default item is displayed with a checkmark)
or -1 to indicate no default item.

font specifies the font size (3 = large, 5 = small) of the items in the popup.

button points to a GRECT containing the rectangular extent of the button pressed
to call the popup. world points to a GRECT containing the current extent of the
CPX work area.

BINDING ret = (*xcpb->Popup)(items, num_items, default, font, button,
world);

RETURN VALUE Popup() returns the item selected (0 based) or -1 if no selection was made (the
user clicked outside of the popup area).

COMMENTS This function is unique to CPX’s and is not the same as menu_popup().

Button objects which are to be used as popups should be TOUCHEXIT objects.
In addition, as a matter of style, popup buttons should be SHADOWED.

(*xcpb->rsh_fix)() – 10.31

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_fix)()
VOID (*xcpb->rsh_fix)(num_objs, num_frstr, num_frimg, num_tree, rs_object, rs_tedinfo,

rs_strings, rs_iconblk, rs_bitblk, rs_frstr, rs_frimg, rs_trindex, rs_imdope);
WORD num_objs, num_frstr, num_frimg, num_tree;
OBJECT * rs_object;
TEDINFO * rs_tedinfo;
char *rs_strings[];
ICONBLK * rs_iconblk;
BITBLK * rs_bitblk;
LONG * rs_frstr, *rs_frimg, *rs_trindex;
struct foobar * rs_imdope;

rsh_fix() fixes up a resource tree in memory based on an 8x16 character font.

PARAMETERS When using the Atari Resource Construction Set the parameters are generated in
the .RSH file created by the compiler.

When using other resource construction sets you should refer to their instructions
for applying their resource structure to this function or use the CPX function
rsh_obfix() on each OBJECT.

BINDING (xcpb->rsh_fix)(num_objs, num_frstr, num_frimg, num_tree,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

COMMENTS rsrc_load(), rsrc_obfix(), and rsrc_rcfix() fix up a resource file based upon the
current screen character size. CPX resource data is always fixed up based upon an
8x16 character font.

Resources should be designed on a screen that supports an 8x16 ratio. When using
the Atari Resource Construction Set, the resouce should be designed as a ‘Panel’
rather than a ‘Dialog’. With other resource construction applications the same
effect is acheived by turning snap off.

Resources should only be fixed up when the xcpb->SkipRshFix flag is 0. This
prevents resources from being fixed up more than once.

SEE ALSO (*xcpb->rsh_obfix)()

10.32 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_obfix)()
VOID (*xcpb->rsh_obfix)(tree, curob)
OBJECT * tree;
WORD curob;

rsh_obfix() converts the specified object from character to pixel based
coordinates based on an 8x16 character font.

PARAMETERS tree points to the OBJECT tree which contains the object curob to fix up.

BINDING (*xcpb->rsh_obfix)(tree, curob);

COMMENTS See rsh_fix().

SEE ALSO (*xcpb->rsh_fix)()

(*xcpb->Set_Evnt_Mask)()
VOID (*xcpb->Set_Evnt_Mask)(mask, m1, m2, time)
WORD mask;
MOBLK * m1;
MOBLK * m2;
LONG time;

Set_Evnt_Mask() defines which events an Event CPX will process with its
callback functions.

PARAMETERS mask is a bit mask of events (MU_MESAG , MU_TIMER , etc...) that the CPX
wishes to process as in evnt_multi(). m1 and m2 point to MOBLK structures
which define mouse rectangles to wait for if the CPX wishes to wait for MU_M1
and/or MU_M2 events as in evnt_mouse(). MOBLK is defined as follows:

typedef struct
{

WORD m_out; /* 0 = enter, 1 = exit */
WORD m_x;
WORD m_y;
WORD m_w;
WORD m_h;

} MOBLK;

time specifies the length of time to specify for the MU_TIMER event if
appropriate.

(*xcpb->Sl_arrow)() – 10.33

T H E A T A R I C O M P E N D I U M

BINDING (*xcpb->Set_Evnt_Mask)(mask, m1, m2, time);

COMMENTS This function is only valid for Event CPX’s.

(*xcpb->Sl_arrow)()
VOID (*xcpb->Sl_arrow)(tree, base, slider, obj, inc, min, max, numvar, dir, foo)
OBJECT * tree;
WORD base, slider, obj, inc, min, max;
WORD *numvar;
WORD dir;
VOID (* foo)();

Sl_arrow() is called by a CPX when the user clicks on an arrow element of an
‘active’ slider.

PARAMETERS tree points to the object tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’. obj is
the index of the arrow element clicked on by the user.

inc specifies the increment amount for each slider step (+/-). min specifies the
minimum value the slider can represent. max specifies the maximum value the
slider can represent.

numvar points to a WORD containing the value which the slider represents and
which is to be updated as the slider is moved. dir specifies the direction of the
slider movement (VERTICAL (0) or HORIZONTAL (1)).

foo is a pointer to a user-defined callback function which is called once for each
step of the slider to allow the user’s action to ‘actively’ update the slider. foo may
be NULL if no updating is desired.

BINDING (*xcpb->Sl_arrow)(tree, base, slider, obj, inc, min, max,
numvar, dir, foo);

COMMENTS Slider paging can be accomplished with this function. To do so use a method
similar to the following (this example is for vertical sliders):

graf_mkstate(&mx, &my, &dum, &dum);
objc_offset(tree, slider, &ox, &oy);
inc = ((my < oy) ? (-1) : (1));
(*xcpb->Sl_arrow(tree, base, slider, base, inc, min, max,

&numvar, VERTICAL, foo);

10.34 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->Sl_dragx)()
VOID (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo)
OBJECT * tree;
WORD base, slider, min, max;
WORD *numvar;
VOID (* foo)();

Sl_dragx() is called by a CPX when a user clicks on the horizontal slider
‘elevator’ of an ‘active’ slider.

PARAMETERS tree points to an OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

min specifies the minimum value the slider can represent. max specifies the
maximum value the slider can represent.

numvar points to a WORD containing the value which the slider represents and
which is to be updated as the slider is moved.

foo points to a user-defined routine which is called each time the slider value
numvar is modified. foo may be NULL if no updating is desired.

BINDING (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo);

COMMENTS It is appropriate to change the shape of the mouse to FLAT_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->Sl_dragy)()

(*xcpb->Sl_dragy)()
VOID (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo)
OBJECT * tree;
WORD base, slider, min, max;
WORD *numvar;
VOID (* foo)();

Sl_dragy() is called by a CPX when a user clicks on the vertical slider ‘elevator’
of an ‘active’ slider.

PARAMETERS See Sl_dragx().

(*xcpb->Sl_size)() – 10.35

T H E A T A R I C O M P E N D I U M

BINDING (*xcpb->Sl_dragy)(tree, base, slider, min, max, numvar, foo);

COMMENTS It is appropriate to change the shape of the mouse to FLAT_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->Sl_dragx)()

(*xcpb->Sl_size)()
VOID (*xcpb->Sl_size)(tree, base, slider, num_items, visible, direction, min_size)
OBJECT * tree;
WORD base, slider, num_items, visible, direction, min_size ;

Sl_size() adjusts the size of the slider ‘track’ relative to the size of the slider
‘elevator’.

PARAMETERS tree points to the OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

num_items is the total number of items represented by the slider. visible is the
number of items actually seen by the user.

direction specifies the direction of the slider as either VERTICAL (0) or
HORIZONTAL (1). min_size represents the minimum pixel size of the adjusted
slider elevator.

BINDING (*xcpb->Sl_size)(tree, base, slider, num_items, visible,
direction, min_size);

COMMENTS This function does not redraw the slider.

(*xcpb->Sl_x)()
VOID (*xcpb->Sl_x)(tree, base, slider, value, min, max, foo)
OBJECT * tree;
WORD base, slider, value, min, max;
VOID (* foo)();

Sl_x() updates the position of a horizontal slider within its base.

PARAMETERS tree points to an OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

10.36 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

value is the value the slider should represent. min and max are the minimum and
maximum values the slider can represent respectively.

If foo is not NULL , it points to a user-function which is called to redraw the
slider.

BINDING (*xcpb->Sl_x)(tree, base, slider, value, min, max, foo);

SEE ALSO (*xcpb->Sl_y)()

(*xcpb->Sl_y)()
VOID (*xcpb->Sl_y)(tree, base, slider, value, min, max, foo)
OBJECT * tree;
WORD base, slider, value, min, max;
VOID (* foo)();

Sl_y() updates the position of a vertical slider within its base.

PARAMETERS See Sl_x().

BINDING (*xcpb->Sl_y)(tree, base, slider, value, min, max, foo);

SEE ALSO (*xcpb->Sl_x)()

(*xcpb->Xform_do)()
WORD (*xcpb->Xform_do)(tree, editobj, msg)
OBJECT * tree;
WORD editobj;
WORD *msg;

Xform_do() is a specialized version of form_do() designed to handle a CPX
object tree and window messages concurrently.

PARAMETERS tree should point to an OBJECT tree containing a form with the root object being
256x176. editobj specifies the editable text object to initially display the text
cursor at (or 0 if no editable object exists on the form).

msg should point to an 8 WORD array used by the function to store special
messages returned by evnt_multi().

(*xcpb->XGen_Alert)() – 10.37

T H E A T A R I C O M P E N D I U M

BINDING ret = (*xcpb->Xform_do)(tree, editobj, msg);

RETURN VALUE Xform_do() returns the positive object number of the EXIT or TOUCHEXIT
object selected. The high bit of this value indicates if the object was double-
clicked and should therefore be masked off if unused. If Xform_do() returns a -1,
then a message should be processed as contained in msg. The structure of
messages are the same as in evnt_multi(). Possible messages are:

WM_REDRAW
AC_CLOSE
WM_CLOSE
CT_KEY

CT_KEY (53) is a special XCONTROL message indicating that a key was
pressed. The scancode of the key pressed is contained in msg[3]. Only special
keyboard keys such as HELP, F1–F10, UNDO, ALT-X, etc... will be returned as the
standard alphabetic keys are processed in editable fields.

COMMENTS The Xform_do() function automatically handles and redraws of the given
OBJECT tree. Any other items needing to be redrawn should be handled at the
appropriate window redraw message.

WM_CLOSED messages should always be treated as ‘OK’ while AC_CLOSE
messages should be treated as ‘Cancel’.

(*xcpb->XGen_Alert)()
BOOLEAN (*xcpb->XGen_Alert)(id)
WORD id;

XGen_Alert() displays a specialized alert centered in the Control Panel’s work
area.

PARAMETERS id specifies the alert to display as follows:

Name id Alert

SAVE_DEFAULTS 0 Save Defaults?

MEM_ERR 1 Memory Allocation Error

FILE_ERR 2 File I/O Error

FILE_NOT_FOUND 3 File Not Found Error

BINDING ret = (*xcpb->XGen_Alert)(id);

10.38 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

RETURN VALUE XGen_Alert() returns TRUE if ‘OK’ was selected or FALSE if ‘Cancel’ was
selected. Alerts 1-3 always returns TRUE.

