
T H E A T A R I C O M P E N D I U M

VDI/GDOS Function Reference

v_alpha_text() – 7.23

T H E A T A R I C O M P E N D I U M

v_alpha_text()
VOID v_alpha_text(handle, str)
WORD handle;
char *str;

v_alpha_text() outputs a line of alpha text.

OPCODE 5

SUB-OPCODE 25

AVAILABILITY Supported by all printer and metafile drivers.

PARAMETERS handle is a valid workstation handle. str is a pointer to a null-terminated text
string which will be printed. Two special BYTE codes may be embedded in the
text. ASCII 12 will cause a printer form-feed. ASCII 18 ‘DC2’ will initiate an
escape sequence followed by a command descriptor BYTE (in ASCII) indicating
which action to take as follows.

Command
BYTE Meaning

‘0’ Enable bold print.

‘1’ Disable bold print.

‘2’ Enable italic print.

‘3’ Disable italic print.

‘4’ Enable underlining.

‘5’ Disable underlining.

‘6’ Enable superscript.

‘7’ Disable superscript.

‘8’ Enable subscript.

‘9’ Disable subscript.

‘A’ Enable NLQ mode.

‘B’ Disable NLQ mode.

‘C’ Enable wide printing.

‘D’ Disable wide printing.

‘E’ Enable light printing.

‘F’ Disable light printing.

‘W’ Switch to 10-cpi printing.

‘X’ Switch to 12-cpi printing.

‘Y’ Toggle compressed printing.

‘Z’ Toggle proportional printing.

7.24 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 25;
contrl[6] = handle;

vdi();

CAVEATS The line of text must not exceed the maximum allowable length of the intin array
as returned by vq_extnd() or the maximum length of your compilers’ array.

COMMENTS Only commands ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ are available with most printer
drivers.

SEE ALSO v_gtext(), v_ftext()

v_arc()
VOID v_arc(handle, x, y, radius, startangle, endangle)
WORD handle, x, y, radius, startangle, endangle;

v_arc() outputs an arc to the specified workstation.

OPCODE 11

SUB-OPCODE 2

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

v_bar() – 7.25

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid workstation handle. x and y specify the center of an arc with a
radius of radius and starting and ending angles of startangle and endangle
specified in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = 4;
contrl[3] = contrl[5] = 2;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0;
ptsin[6] = radius;
ptsin[7] = 0;

vdi();

SEE ALSO vsl_color()

v_bar()
VOID v_bar(handle, pxy)
WORD handle;
WORD *pxy;

v_bar() outputs a filled rectangle to the specified workstation.

OPCODE 11

SUB-OPCODE 1

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

7.26 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid workstation handle. pxy points to an array of four WORDs
specifying a VDI format rectangle to output.

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 1;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS This function, as opposed to vr_recfl() , does take the setting of vsf_perimeter()
into consideration.

SEE ALSO vsf_interior(), vsf_style(), vsf_color(), vsf_perimeter(), vsf_udpat()

v_bez()
VOID v_bez(handle, count, pxy, bezarr, extent, totpts, totmoves)
WORD handle, count;
WORD *pxy, *extent;
char *bezarr;
WORD * totpts, *totmoves;

v_bez() outputs a bezier curve path.

OPCODE 6

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle. count specifies the number of vertices in the
path. pxy is a pointer to a WORD array (count * 2) WORDs long containing the
vertices where pxy[0] is the X coordinate of the first point, pxy[1] is the Y
coordinate of the first point and so on. bezarr is a pointer to a character array
count BYTEs long where each byte is a bit mask with two flags that dictate the
interpretation of each vertice as follows:

v_bez_fill() – 7.27

T H E A T A R I C O M P E N D I U M

Name Bit Meaning

BEZ_BEZIER
(0x01)
BEZ_POLYLINE
(0x00)

0 If set, begin a 4-point bezier segment (two anchor
points followed by two control points), otherwise,
begin a polyline segment.

BEZ_NODRAW
(0x02)

1 If set, jump to this point without drawing.

— 2-7 Currently unused (set to 0).

Upon exit, a 4 WORD array pointed to by extent is filled in with a VDI format
rectangle defining a bounding box of the path drawn. The WORD pointed to by
totpts is filled in with the number of points in the resulting path whereas the total
number of moves is stored in the WORD pointed to by totmoves.

BINDING WORD i;

contrl[0] = 6;
contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;
contrl[6] = handle;

for(i = 0;i < count; i++)
{

intin[i] = (WORD)bezarr[i];
ptsin[i*2] = pxy[i*2];
ptsin[(i*2) + 1] = pxy[(i*2) + 1];

}

vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i = 0; i < 4; i++)
extent[i] = ptsout[i];

SEE ALSO v_bez_fill(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_fill()
VOID v_bez_fill(handle, count, pxy, bezarr, extent, totpts, totmoves)
WORD handle, count;
WORD *pxy, *extent;
char *bezarr;
WORD * totpts, *totmoves;

v_bez_fill() outputs a filled bezier path.

OPCODE 9

7.28 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS Same as v_bez().

BINDING WORD i;

contrl[0] = 9;
contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;
contrl[6] = handle;

for(i = 0;i < count * 2; i++)
ptsin[i] = pxy[i];

for(i = 0;i < count; i++)
intin[i] = (WORD)bezarr[i];

vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i = 0; i < 4; i++)
extent[i] = ptsout[i];

SEE ALSO v_bez(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_off()
VOID v_bez_off(handle)
WORD handle;

v_bez_off() disables bezier capabilities and frees associated memory.

OPCODE 11

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 11;
contrl[1] = 0;
contrl[3] = 0;
contrl[5] = 13;

v_bez_on() – 7.29

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

COMMENTS This function should be called to free any memory reserved by the bezier
functions.

SEE ALSO v_bez_on()

v_bez_on()
WORD v_bez_on(handle)
WORD handle;

v_bez_on() enables bezier capabilities.

OPCODE 11

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 11;
contrl[1] = 1;
contrl[3] = 0;
contrl[5] = 13;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_bez_on() returns a WORD value indicating the number of line segments each
curve is composed of (smoothness). The value returned (0-7) is a power of 2
meaning that a return value of 7 indicates 128 line segments per curve.

SEE ALSO v_bez_off()

7.30 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_bez_qual()
VOID v_bez_qual(handle, percent, actual)
WORD handle, percent;
WORD *actual;

v_bez_qual() sets the speed/quality ratio of the bezier curve rendering engine.

OPCODE 5

SUB-OPCODE 99

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. percent is a value (0–100) specifying
the tradeoff between bezier quality and speed. A value of 0 renders a bezier fastest
with the lowest quality while a value of 100 renders a bezier slowest with the
highest possible quality. On return, the WORD pointed to by actual will contain
the actual value used.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 3;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 32;
intin[1] = 1;
intin[2] = percent;

vdi();

*actual = intout[0];

COMMENTS actual may not be an exact percentage as the rendering engine may not actually
support every value possible between 1–99.

SEE ALSO v_bez(), v_bez_fill(), v_bez_on()

v_bit_image() – 7.31

T H E A T A R I C O M P E N D I U M

v_bit_image()
VOID v_bit_image(handle, fname, ratio, xscale, yscale, halign, valign, pxy)
WORD handle;
char *fname;
WORD aspect, xscale, yscale, halign, valign;
WORD *pxy;

v_bit_image() outputs a disk-based GEM ‘.IMG’ file.

OPCODE 5

SUB-OPCODE 23

AVAILABILITY Supported by all printer, metafile, and memory drivers.

PARAMETERS handle is a valid workstation handle. fname specifies the GEMDOS file
specification for the GEM bit-image file to print. ratio should be 0 to ignore the
aspect ratio of the image and 1 to adhere to it.

xscale and yscale specify the method of scaling to apply to the image. Fractional
scaling is specified by a value of 0 whereas a value of 1 represents integer
scaling.

If fractional scaling is used, the image will be displayed at the coordinates given
by the VDI format rectangle pointed to by pxy. If integer scaling is applied, the
image will be displayed as large as possible within the given coordinates using
halign and valign to specify the image justification as follows:

Value halign valign

0 Left
IMAGE_LEFT

Top
IMAGE_TOP

1 Center
IMAGE_CENTER

Center
IMAGE_CENTER

2 Right
IMAGE_RIGHT

Bottom
IMAGE_BOTTOM

BINDING WORD tmp = 5;

intin[0] = ratio;
intin[1] = xscale;
intin[2] = yscale;
intin[3] = halign;
intin[4] = valign;
while(intin[tmp++] = (WORD)*fname++);

contrl[0] = 5;

7.32 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 2;
contrl[3] = --tmp;
contrl[5] = 23;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS A flag indicating whether the device supports scaling can be found in vq_extnd().
This call used with the memory driver can provide image scaling for transfer to
the screen with vrt_cpyfm() .

SEE ALSO vq_scan()

v_cellarray()
VOID v_cellarray(handle, pxy, rowlen, elements, num_rows, wrmode, colarray)
WORD handle;
WORD *pxy;
WORD rowlen, elements, num_rows, wrmode;
WORD *colarray;

v_cellarray() outputs an array of colored cells.

OPCODE 10

AVAILABILITY Not supported by any current drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to a WORD array with 4
entries specifying a VDI format rectangle giving the extent of the array to output.

rowlen specifies the length of each color array row. elements specifies the total
number of color array elements. num_rows specifies the number of rows in the
color array. wrmode specifies a valid writing mode (1–4) and colarray points to
an array of WORDs (num_rows * elements) long.

BINDING WORD i;

contrl[0] = 10;
contrl[1] = 2;
contrl[3] = num_rows * elements;
contrl[6] = handle;
contrl[7] = rowlen;
contrl[8] = elements;
contrl[9] = num_rows;

v_circle() – 7.33

T H E A T A R I C O M P E N D I U M

contrl[10] = wrt_mode;

for(i = 0;i < (num_rows * elements);i++)
intin[i] = colarray;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS This function is not guaranteed available in any driver and should therefore be
avoided unless you are sure the driver you are utilizing understands it.

SEE ALSO vq_cellarray()

v_circle()
VOID v_circle(handle, x, y, radius)
WORD handle, x, y, radius;

v_circle() outputs a filled circle.

OPCODE 11

SUB-OPCODE 4

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation. x and y specify the center of a circle with a
radius of radius.

BINDING contrl[0] = 11;
contrl[1] = 3;
contrl[3] = 0;
contrl[5] = 4;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = 0;

vdi();

SEE ALSO vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

7.34 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_clear_disp_list()
VOID v_clear_disp_list(handle)
WORD handle;

v_clear_disp_list() clears the display list of a workstation.

OPCODE 5

SUB-OPCODE 22

AVAILABILITY Supported by printer, plotter, metafile, and camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 22;
contrl[6] = handle;

vdi();

COMMENTS v_clear_disp_list() is essentially the same as v_clrwk() except that no form feed
is issued.

SEE ALSO v_clrwk()

v_clrwk()
VOID v_clrwk(handle)
WORD handle;

v_clrwk() clears a physical workstation.

OPCODE 3

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation.

BINDING contrl[0] = 3;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

v_clsvwk() – 7.35

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Physical workstations are cleared automatically when they are opened.

This call will generate a form feed on page-oriented devices.

Using this command on a virtual workstation will clear the underlying physical
workstation. This is generally not recommended because it will effect all virtual
workstations not simply your own.

SEE ALSO v_clear_disp_list(), v_updwk()

v_clsvwk()
VOID v_clsvwk(handle)
WORD handle;

v_clsvwk() closes a virtual workstation.

OPCODE 101

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid virtual workstation to close.

BINDING contrl[0] = 101;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_opnvwk()

v_clswk()
VOID v_clswk(handle)
WORD handle;

v_clswk() closes a physical workstation.

OPCODE 2

AVAILABILITY Available only with some form of GDOS.

7.36 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid physical workstation to close.

BINDING contrl[0] = 2;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_opnvwk()

v_contourfill()
VOID v_contourfill(handle, x, y, color)
WORD handle, x, y, color;

v_countourfill() outputs a ‘seed’ fill.

OPCODE 103

AVAILABILITY Supported by all current screen, printer and metafile drivers. The availability of
this call can be checked for using vq_extnd().

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting point for
the fill. If color is OTHER_COLOR (-1) then the fill continues in all directions
until a color other than that found in x and y is found. If color is positive then the
fill continues in all directions until color color is found.

BINDING contrl[0] = 103;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

intin[0] = color;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS In true-color mode if a positive value for color is used, the fill spreads until a
pixel is found with the same color as ‘virtual pen’ color.

SEE ALSO vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

v_curdown() – 7.37

T H E A T A R I C O M P E N D I U M

v_curdown()
VOID v_curdown(handle)
WORD handle;

v_curdown() moves the text cursor down one line.

OPCODE 5

SUB-OPCODE 5

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 5;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-B VT-52 code.

SEE ALSO v_curup()

v_curhome()
VOID v_curdown(handle)
WORD handle;

v_curhome() moves the text cursor to the upper-left of the screen.

OPCODE 5

SUB-OPCODE 8

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 8;

7.38 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-H VT-52 code.

v_curleft()
VOID v_curleft(handle)
WORD handle;

v_curleft() moves the text cursor left one character position.

OPCODE 5

SUB-OPCODE 7

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 7;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-D VT-52 code.

SEE ALSO v_curright()

v_curright()
VOID v_curright(handle)
WORD handle;

v_curright() moves the text cursor one position to the right.

OPCODE 5

SUB-OPCODE 6

AVAILABILITY Supported by all screen drivers.

v_curtext() – 7.39

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 6;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-C VT-52 code.

SEE ALSO v_curleft()

v_curtext()
VOID v_curtext(handle, str)
WORD handle;
char *str;

v_curtext() outputs a line of text to the screen in text mode.

OPCODE 5

SUB-OPCODE 12

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle is a valid workstation handle. str is a character pointer to a string no more
than 127 characters long.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

intin[i] = 0;
contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 12;
contrl[6] = handle;

vdi();

COMMENTS The line of text must not exceed the maximum length of the intin array as returned
by vq_extnd() or the maximum length of your compilers’ array.

SEE ALSO vs_curaddress(), v_rvon(), v_rvoff()

7.40 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_curup()
VOID v_curup(handle)
WORD handle;

v_curup() moves the text cursor up one line.

OPCODE 5

SUB-OPCODE 4

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 4;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-A VT-52 code.

SEE ALSO v_curdown()

v_dspcur()
VOID v_dspcur(handle, x, y)
WORD handle, x, y;

v_dspcur() displays the mouse pointer on screen at the specified position.

OPCODE 5

SUB-OPCODE 18

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. x and y specify the screen
coordinates of where to display the mouse pointer.

v_eeol() – 7.41

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 5;
contrl[1] = 1
contrl[3] = 0;
contrl[5] = 18;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS This call will render a mouse cursor on screen regardless of its current ‘show’
status. Normally a function will use either graf_mouse() if using the AES or
v_show_c() if using the VDI .

SEE ALSO v_rmcur(), graf_mouse(), v_show_c()

v_eeol()
VOID v_eeol(handle)
WORD handle;

v_eeol() erases the text line from the current cursor position rightwards.

OPCODE 5

SUB-OPCODE 10

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 10;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-K VT-52 code.

SEE ALSO v_eeos()

7.42 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_eeos()
WORD v_eeos(handle)
WORD handle;

v_eeos() erases the current screen of text from the cursor position.

OPCODE 5

SUB-OPCODE 9

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 9;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-J VT-52 code.

SEE ALSO v_eeol()

v_ellarc()
VOID v_ellarc(handle, x, y, xradius, yradius, startangle, endangle)
WORD handle, x, y, xradius, yradius, startangle, endangle;

v_ellarc() outputs an elliptical arc segment.

OPCODE 11

SUB-OPCODE 6

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the coordinates of the

v_ellipse() – 7.43

T H E A T A R I C O M P E N D I U M

center of an arc with an X radius of xradius and a Y radius of yradius. Only the
portion of the arc which falls between the angles specified in startangle and
endangle will be drawn. Angles are specified in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = contrl[3] = 2;
contrl[5] = 6;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellipse(), v_ellpie(), vsl_color(), vsl_type(), vsl_width(), vsl_udsty()

v_ellipse()
VOID v_ellipse(handle, x, y, xradius, yradius)
WORD handle, x, y, xradius, yradius;

v_ellipse() outputs a filled ellipse.

OPCODE 11

SUB-OPCODE 5

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center point of an
arc with an X radius of xradius and a Y radius of yradius.

7.44 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 5;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellpie(), v_ellarc(), vsf_color(), vsf_interior(), vsf_style(), vsf_udpat(),
vs_perimeter()

v_ellpie()
VOID v_ellpie(handle, x, y, xradius, yradius, startangle, endangle)
WORD handle, x, y, xradius, yradius, startangle, endangle;

v_ellpie() outputs a filled elliptical pie segment.

OPCODE 11

SUB-OPCODE 7

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center coordinates
of an elliptical pie segment to draw with an X radius of xradius and a Y radius of
yradius. Only the portion of the arc will be drawn falling between the angles
specified in startangle and endangle (as shown below). The ends of this arc is
connected to the center point with lines forming the pie segment.

900

2700

01800

v_enter_cur() – 7.45

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 11;
contrl[1] = contrl[3] = 2;
contrl[5] = 7;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellarc(), v_ellipse(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(),
vs_perimeter()

v_enter_cur()
VOID v_enter_cur(handle)
WORD handle;

v_enter_cur() clears the screen to color 0, removes the mouse cursor and enters
text mode.

OPCODE 5

SUB-OPCODE 3

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 3;
contrl[6] = handle;

vdi();

CAVEATS You should check that the left mouse button has been released with vq_mouse()
prior to calling this function. If the button is depressed when you call this function
the VDI will lock waiting for it to be released after v_exit_cur().

COMMENTS This call is used by a GEM application to prepare for executing a TOS
application when not running under MultiTOS .

7.46 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO v_exit_cur()

v_exit_cur()
VOID v_exit_cur(handle)
WORD handle;

v_exit_cur() exits text mode and restores the mouse pointer.

OPCODE 5

SUB-OPCODE 2

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 2;
contrl[6] = handle;

vdi();

CAVEATS See v_enter_cur().

COMMENTS To completely restore the screen you should call form_dial(FMD_FINISH , sx, sy,
sw, sh) where sx, sy, sw, and sh are the coordinates of the screen.

SEE ALSO v_enter_cur()

v_fillarea()
VOID v_fillarea(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_fillarea() outputs a filled polygon.

OPCODE 9

AVAILABILITY Supported by all drivers.

v_flushcache() – 7.47

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. count specifies the number of
vertices in the polygon to output. pxy should point to an array of coordinate pairs
with the first WORD being the first X point, the second WORD being the first Y
point and so on.

BINDING WORD i;

contrl[0] = 9;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < count*2;i++)
ptsin[i] = pxy[i];

vdi();

COMMENTS This function will automatically connect the first point with the last point.

SEE ALSO v_pline(), v_contourfill()

v_flushcache()
VOID v_flushcache(handle)
WORD handle;

v_flushcache() flushes the character bitmap portion of the cache.

OPCODE 251

AVAILABILITY Available only with FSMGDOS and SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 251;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_loadcache(), v_savecache()

7.48 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_fontinit()
VOID v_fontinit(fptr_high, fptr_low)
WORD fptr_high, fptr_low;

v_fontinit() allows replacement of the built-in system font.

OPCODE 5

SUB-OPCODE 102

AVAILABILITY All TOS versions.

PARAMETERS fptr_high and fptr_low are the high and low WORDs of a pointer to a Line-A
compatible font header structure in Motorola (Big-Endian) format which contains
information about the font to be used as a replacement for the system font.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 102;
contrl[6] = handle;

intin[0] = fptr_high;
intin[1] = fptr_low;

vdi();

COMMENTS This function has never been officially documented though it exists in all current
versions of TOS.

v_form_adv()
VOID v_form_adv(handle)
WORD handle;

v_form_adv() outputs the current page without clearing the display list.

OPCODE 5

SUB-OPCODE 20

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle.

v_ftext() – 7.49

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 20;
contrl[6] = handle;

vdi();

COMMENTS This function is useful if you wish to print a new page containing the same objects
as on the previous page.

SEE ALSO v_updwk()

v_ftext()
VOID v_ftext(handle, x, y, str)
WORD handle, x, y;
char *str;

v_ftext() outputs outline text taking spacing remainders into consideration.

OPCODE 241

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinate of the NULL -terminated text string (see vst_alignment()) pointed to
by str to print.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 241;
contrl[1] = 1;
contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

To output 16-bit Speedo character indexes, use v_ftext16().

7.50 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

This function produces output more properly spaced than with v_gtext() because
it takes the remainder amounts from vqt_f_extent() into consideration.

SEE ALSO v_ftext(), v_ftext_offset(), v_ftext_offset16(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext16()
VOID v_ftext16(handle, x, y, wstr, wstrlen)
WORD handle, x, y;
WORD *wstr;
WORD wstrlen;

v_ftext16() is a variant binding of v_ftext() that outputs 16-bit Speedo character
text rather than 8-bit ASCII text.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinate of the location to output text. wstr points to a NULL -terminated text
string composed of WORD-sized Speedo characters. wstrlen specifies the length
of the text string.

BINDING WORD i;

for(i = 0; i < wstrlen; i++)
intin[i] = wstr[i];

contrl[0] = 241;
contrl[1] = 1;
contrl[3] = wstrlen;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS This function should only be used when vst_charmap() has been used to indicate
that WORD-sized Speedo character indexes should be recognized rather than 8-
bit ASCII.

The text contained in wstr (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or

v_ftext_offset() – 7.51

T H E A T A R I C O M P E N D I U M

the size of the intin array allocated by your compiler.

CAVEATS Current versions of SpeedoGDOS become confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext(), v_ftext_offset(), v_ftext_offset16(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext_offset()
VOID v_ftext_offset(handle, x, y, str, offset)
WORD handle, x, y;
char *str;
WORD *offset;

v_ftext_offset() is a variant binding of v_ftext() available under SpeedoGDOS
which allows an offset vector for each character to be specified.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y give the point where the
string will be rendered. offset points to an array of WORDs which contains one x
and y offset value for each character in str.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);
--i;

ptsin[0] = x;
ptsin[1] = y;

for(j = 0; j < i * 2;j++)
ptsin[j + 2] = offset[j];

contrl[0] = 241;
contrl[1] = i + 1;
contrl[3] = i;
contrl[6] = handle;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or

7.52 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

the size of the intin array allocated by your compiler.

To output 16-bit Speedo character indexes, use v_ftext_offset16().

SEE ALSO v_ftext_offset16(), v_ftext(), v_gtext()

v_ftext_offset16()
VOID v_ftext_offset(handle, x, y, wstr, wstrlen, offset)
WORD handle, x, y;
WORD *wstr;
WORD wstrlen;
WORD *offset;

v_ftext_offset16() is a variant binding of v_ftext_offset() which allows 16-bit
Speedo character strings to be output rather than 8-bit ASCII codes.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y give the point where the
string will be rendered. offset points to an array of WORDs which contains one x
and y offset value for each character in wstr.

BINDING WORD i;

for(i = 0;i < wstrlen; i++)
intin[i] = wstr[i];

ptsin[0] = x;
ptsin[1] = y;

for(j = 0; j < i * 2;j++)
ptsin[j + 2] = offset[j];

contrl[0] = 241;
contrl[1] = wstrlen + 1;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

COMMENTS This function should only be used when vst_charmap() has been used to indicate
that WORD sized Speedo character indexes should be recognized rather than 8-bit
ASCII.

The text contained in wstr (including its NULL byte) should not exceed the

v_getbitmap_info() – 7.53

T H E A T A R I C O M P E N D I U M

maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

CAVEATS Current versions of SpeedoGDOS become confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext16(), v_ftext_offset()

v_getbitmap_info()
VOID v_getbitmap_info(handle, ch, advx, advy, xoff, yoff, width, height, bitmap)
WORD handle, ch;
fix31 *advx, *advy, *xoff, *yoff;
WORD *width, *height;
VOID *bitmap;

v_getbitmap_info() returns placement information for the bitmap of a character
based on the current character font, size, and alignment.

OPCODE 239

AVAILABILITY Available only with SpeedoGDOS1.

PARAMETERS handle specifies a valid workstation handle. ch is the character to return
information about.

The fix31 variables pointed to by advx, advy, xoff, and yoff will be filled in with
the x and y advance and offset vectors respectively. The WORDs pointed to by
width and height will be filled in with the width and height of the bitmap pointed
to by the value returned in bitmap.

BINDING contrl[0] = 239;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = ch;

vdi();

*width = intout[0];
*height = intout[1];
*advx = *(fix31 *)&intout[2];

1This call did exist in FSMGDOS, however the call had a completely different calling format. Atari changed the existing call as no
FSMGDOS program had yet been written to utilize it.

7.54 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*advy = *(fix31 *)&intout[4];
*xoff = *(fix31 *)&intout[6];
*yoff = *(fix31 *)&intout[8];
*bitmap = *(void *)&intout[10];

COMMENTS The advance vector represents the amount to add to the current point to properly
place the character. The offset vector, when added to the current point, give the
location of the upper-left corner of the bitmap.

v_getoutline()
VOID v_getoutline(handle, ch, xyarray, bezarray, maxverts, numverts)
WORD handle, ch;
WORD *xyarray;
char *bezarray;
WORD maxverts;
WORD *numverts;

v_getoutline() returns information about an SpeedoGDOS character required to
generate the character with bezier curves.

OPCODE 243

AVAILABILITY Available only with SpeedoGDOS2.

PARAMETERS handle specifies a valid workstation handle. ch specifies the character to return
information about. The arrays pointed to by xyarray and bezarray are filled in
with the bezier information for the character. The definition of xyarray and
bezarray is given in the binding for v_bez().

maxverts should indicate the maximum number of vertices the buffer can hold. The
WORD pointed to by numverts will be filled in with the actual number of vertices
for the character.

BINDING contrl[0] = 243;
contrl[1] = 0;
contrl[3] = 6;
contrl[6] = handle;

intin[0] = ch;
intin[1] = maxverts;
*(WORD *)&intin[2] = xyarray;
*(WORD *)&intin[4] = bezarray;

vdi();

2This call was present under FSMGDOS, however it’s binding has dramatically changed. Applications using this binding will not operate
under the older FSMGDOS.

v_get_pixel() – 7.55

T H E A T A R I C O M P E N D I U M

*numverts = intout[0];

v_get_pixel()
VOID v_get_pixel(handle, x, y, pindex, vindex)
WORD handle, x, y;
WORD *pindex, *vindex;

v_get_pixel() returns the color value for a specified coordinate on the screen.

OPCODE 105

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. x any y specify the coordinate to
return color information for.

In a palette-based mode the WORD pointed to by pindex will contain the
hardware register index of the color and the WORD pointer to by vindex will
contain the VDI index of the color.

In 16-bit true-color modes, pindex will be 0 and vindex will return the 16-bit
RGB pixel value in the format {RRRR RGGG GGGB BBBB}.

In 32-bit color modes, the lower byte of vindex will contain the 8 bits of red data,
the upper byte of pindex will contain the 8 bits of green data, and the lower byte of
pindex will contain the 8 bits of blue data. The upper byte of vindex is reserved
for non-color data.

BINDING contrl[0] = 105;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

*pindex = intout[0];
*vindex = intout[1];

7.56 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_gtext()
VOID v_gtext(handle, x, y, str)
WORD handle, x, y;
char *str;

v_gtext() outputs graphic text.

OPCODE 8

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinates of the text (see vst_alignment()). str is a pointer to a NULL -
terminated character string to print.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 8;
contrl[1] = 1;
contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

Using this function to output outline text with FSMGDOS is possible to remain
backward-compatible but not recommended as it will introduce small errors as
spacing remainders are lost.

SEE ALSO v_ftext(), v_ftext_offset(), vst_color(), vst_effects(), vst_alignment(),
vst_height(), vst_point()

v_hardcopy() – 7.57

T H E A T A R I C O M P E N D I U M

v_hardcopy()
VOID v_hardcopy(handle)
WORD handle;

v_hardcopy() invokes the ALT-HELP screen dump.

OPCODE 5

SUB-OPCODE 17

AVAILABILITY Supported by screen drivers running under ST compatible resolutions.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 17;
contrl[6] = handle;

vdi();

CAVEATS This function works in only ST compatible screen modes and should thus be
avoided.

SEE ALSO Scrdmp()

v_hide_c()
VOID v_hide_c(handle)
WORD handle;

v_hide_c() hides the mouse cursor.

OPCODE 123

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 123;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

7.58 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS This call is nested. For each time you call this function you must call v_show_c()
an equal number of times to show the mouse.

SEE ALSO v_show_c(), graf_mouse()

v_justified()
VOID v_justified(handle, x, y, str, length, wflag, cflag)
WORD handle, x, y;
char *str;
WORD length, wflag, cflag;

v_justified() outputs justified graphics text.

OPCODE 11

SUB-OPCODE 10

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinates at which to draw the NULL -terminated text string (see
vst_alignment()) pointed to by str. length specifies the pixel length of the area to
justify on.

wflag and cflag specify the type of justification to perform between words and
characters respectively. A value of NOJUSTIFY (0) indicates no justification
whereas a value of JUSTIFY (1) indicates to perform justification.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 11;
contrl[1] = 2;
contrl[3] = --i;
contrl[5] = 10;
contrl[6] = handle;

intin[0] = wflag;
intin[1] = cflag;

ptsin[0] = x;

v_killoutline() – 7.59

T H E A T A R I C O M P E N D I U M

ptsin[1] = y;
ptsin[2] = length;
ptsin[3] = 0;

vdi();

COMMENTS This call does not take into account remainder information from outline fonts.

SEE ALSO v_gtext(), v_ftext(), vst_color(), vst_font(), vst_effects(), vst_alignment(),
vst_point(), vst_height()

v_killoutline()
VOID v_killoutline(handle, outline)
WORD handle;
FSMOUTLINE outline;

v_killoutline() releases an outline from memory.

OPCODE 242

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

COMMENTS Under FSMGDOS this call was required to release memory allocated for an
outline returned from v_getoutline(). With SpeedoGDOS, this call is no longer
required and is thus not documented further.

SEE ALSO v_getoutline()

v_loadcache()
WORD v_loadcache(handle, fname, mode)
WORD handle;
char *fname;
WORD mode;

v_loadcache() loads a previously saved cache file from disk.

OPCODE 250

AVAILABILITY Supported only by FSMGDOS and SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. fname specifies the GEMDOS file

7.60 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

specification of the cache file to load. mode specifies whether current data will be
flushed first. A value of 0 will append the loaded cache to the current cache
whereas a value of 1 will flush the cache prior to loading.

BINDING WORD i = 1;

intin[0] = mode;
while(intin[i++] = (WORD)*fname++);

contrl[0] = 250;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_loadcache() returns 0 if successful or -1 if an error occurred.

COMMENTS This command only affects the cache responsible for storing bitmaps created from
outline characters.

SEE ALSO v_savecache(), v_flushcache()

v_meta_extents()
VOID v_meta_extents(handle, xmin, ymin, xmax, ymax)
WORD handle, xmin, ymin, xmax, ymax;

v_meta_extents() embeds placement information for a metafile.

OPCODE 5

SUB-OPCODE 98

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. xmin and ymin specify the upper left
corner of the bounding box of the metafile. xmax and ymax specify the lower left
corner.

BINDING contrl[0] = 5;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 98;
contrl[6] = handle;

ptsin[0] = xmin;

v_opnvwk() – 7.61

T H E A T A R I C O M P E N D I U M

ptsin[1] = ymin;
ptsin[2] = xmax;
ptsin[3] = ymax;

vdi();

COMMENTS Parameters sent to this call should be specified in whatever coordinate system the
metafile is currently using.

SEE ALSO vm_pagesize()

v_opnvwk()
VOID v_opnvwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out;

v_opnvwk() opens a virtual VDI workstation.

OPCODE 100

AVAILABILITY Supported by all drivers.

PARAMETERS work_in is a pointer to an array of 11 WORDs which define the inital defaults for
the workstation as follows:

work_in[x] Meaning

0 Device identification number. This indicates the
physical device ID of the device (the line number
of the driver in ASSIGN.SYS when using GDOS).
For screen devices you should normally use the
value Getrez() + 2, however, a value of 1 is
acceptable if not using any loaded fonts.

1 Default line type (same as vsl_type()).

2 Default line color (same as vsl_color()).

3 Default marker type (same as vsm_type()).

4 Default marker color (same as vsm_color()).

5 Default font (same as vst_font()).

6 Default text color (same as vst_color()).

7 Default fill interior.

8 Default fill style.

9 Default fill color.

7.62 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

10 Coordinate type flag. A value of 0 specifies NDC
‘Normalized Device Coordinates’ coordinates
whereas a value of 2 specifies RC ‘Raster
Coordinates’. All other values are reserved. NDC
coordinates are only available when using external
drivers with GDOS.

handle should be set to the current handle (not the device ID) of the physical
workstation for this device. For screen devices this is the value returned by
graf_handle(). On exit handle will be filled in the VDI workstation handle
allocated, if successful, or 0 if the workstation could not be opened.

work_out points to an array of 57 WORDs which on exit will be filled in by the
VDI with information regarding the allocated workstation as follows (a structure
name is listed beside its array member for those using the ‘C’ style
VDI_Workstation structure instead of the array):

work_out[x]
VDI Structure

Member Meaning
0 xres Width of device in pixels - 1.

1 yres Height of device in pixels - 1.

2 noscale Device coordinate units flag:
0 = Device capable of producing a precisely scaled

image (screen, printer, etc...)
1 = Device not capable of producing a precisely scaled

image (film recorder, etc...)
3 wpixel WIdth of pixel in microns (1/25400 inch).

4 hpixel Height of pixel in microns (1/25400 inch).

5 cheights Number of character heights (0 = continuous scaling).

6 linetypes Number of line types.

7 linewidths Number of line widths (0 = continous scaling).

8 markertypes Number of marker types.

9 markersizes Number of marker sizes (0 = continuous scaling).

10 faces Number of faces supported by the device.

11 patterns Number of available patterns.

12 hatches Number of available hatches.

13 colors Number of predefined colors/pens (ST High = 2, ST
Medium = 4, TT Low = 256, True Color = 256).

14 ngdps Number of supported GDP’s

v_opnvwk() – 7.63

T H E A T A R I C O M P E N D I U M

15-24 cangdps[10] cangdps[0 – (ngdps - 1)] contains a list of the GDP’s the
device supports as follows:

1 = Bar
2 = Arc
3 = Pie Slice
4 = Circle
5 = Ellipse
6 = Elliptical Arc
7 = Elliptical Pie
8 = Rounded Rectangle
9 = Filled Rounded Rectangle
10 = Justified Graphics Text

25-34 gdpattr[10] For each GDP as listed above, gdpattr[0 – (ngdps - 1)]
indicates the attributes which are applied to that GDP as
follows:

1 = Polyline (vsl_...)
2 = Polymarker (vsm_...)
3 = Text (vst_...)
4 = Fill Area (vsf_...)
5 = None

35 cancolor Color capability flag.
0 = No
1 = Yes

36 cantextrot Text rotation flag.
0 = No
1 = Yes

37 canfillarea Fill area capability flag.
0 = No
1 = Yes

38 cancellarray Cell array capability flag.
0 = No
1 = Yes

39 palette Number of available colors in palette.
0 = > 32767 colors
2 = Monochrome
>2 = Color

40 locators Number of locator devices.
1 = Keyboard only.
2 = Keyboard and other.

41 valuators Number of valuator devices.
1 = Keyboard only.
2 = Keyboard and other.

42 choicedevs Number of choice devices.
1 = Function keys.
2 = Function keys + keypad.

43 stringdevs Number of string devices.
1 = Keyboard.

44 wstype Workstation type.
0 = Output only
1 = Input only
2 = Input/Output
3 = Metafile

45 minwchar Minimum character width in pixels.

46 minhchar Minimum character height in pixels.

47 maxwchar Maximum character width in pixels.

7.64 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

48 maxhchar Maximum character height in pixels.

49 minwline Minimum line width.

50 zero5 Reserved (0).

51 maxwline Maximum line width.

52 zero7 Reserved (0).

53 minwmark Minimum marker width.

54 minhmark Minimum marker height.

55 maxwmark Maximum marker width.

56 maxhmark Maximum marker height.

BINDING WORD i;

contrl[0] = 100;
contrl[1] = 0;
contrl[3] = 11;
contrl[6] = *handle;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();

*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;i++)
work_out[45+i] = intout[i];

CAVEATS The VDI included with TOS versions less than 2.06 sometimes returned the same
handle for consecutive calls using the same physical handle.

COMMENTS Using multiple virtual workstations provides the benefit of being able to define
multiple sets of default line types, text faces, etc... without having to constantly set
them.

The VDI_Workstation structure method is the recommended method of using this
function. See the VDI entry for V_Opnwk() and V_Opnvwk().

Desk accessories running under TOS versions below 1.4 should not leave a
workstation open across any call which might surrender control to GEM
(evnt_button(), evnt_multi(), etc...). This could give GEM time to change
screen resolutions and TOS versions below 1.4 did not release memory allocated
by a desk accessory (including workstations) when a resolution change occurred.

SEE ALSO v_opnwk(), vq_extend(), v_clsvwk(), V_Opnvwk()

V_Opnvwk() – 7.65

T H E A T A R I C O M P E N D I U M

V_Opnvwk()
WORD V_Opnvwk(dev)
VDI_Workstation dev;

V_Opnvwk() is not a component of the VDI , rather an interface binding designed
to simplify working with virtual screen workstations. It will open a virtual screen
workstation with a VDI_Workstation structure as a parameter rather than
work_in and work_out arrays.

OPCODE N/A

AVAILABILITY User-defined.

PARAMETERS ws is a pointer to a VDI_Workstation structure defined as follows (for the
meaning of each structure member, refer to v_opnvwk()):

typedef struct
{

WORD handle, dev_id;
WORD wchar, hchar, wbox, hbox;
WORD xres, yres;
WORD noscale;
WORD wpixel, hpixel;
WORD cheights;
WORD linetypes, linewidths;
WORD markertypes, markersizes;
WORD faces, patterns, hatches, colors;
WORD ngdps;
WORD cangdps[10];
WORD gdpattr[10];
WORD cancolor, cantextrot;
WORD canfillarea, cancellarray;
WORD palette;
WORD locators, valuators;
WORD choicedevs, stringdevs;
WORD wstype;
WORD minwchar, minhchar;
WORD maxwchar, maxwchar;
WORD minwline;
WORD zero5;
WORD maxwline;
WORD zero7;
WORD minwmark, minhmark;
WORD maxwmark, maxhmark;
WORD screentype;
WORD bgcolors, textfx;
WORD canscale;
WORD planes, lut;
WORD rops;
WORD cancontourfill, textrot;
WORD writemodes;
WORD inputmodes;

7.66 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

WORD textalign, inking, rubberbanding;
WORD maxvertices, maxintin;
WORD mousebuttons;
WORD widestyles, widemodes;
WORD reserved[38];

} VDI_Workstation;

BINDING WORD
V_Opnvwk(dev)
VDI_Workstation dev;
{

WORD i, in[11];

in[0] = Getrez() + 2;
dev->dev_id = in[0];
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;
i = graf_handle(&dev->wchar,

&dev->hchar, &dev->wbox,
&dev->hbox);

v_opnvwk(in, &i, &dev->xres);
dev->handle = i;

if(i)
vq_extnd(i, 1, &dev->screentype);

return (i);
}

RETURN VALUE V_Opnvwk() returns 0 if non-successful or the workstation handle otherwise.

COMMENTS This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

SEE ALSO v_opnvwk(), V_Opnwk(), vq_extnd()

v_opnwk()
VOID v_opnwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out;

v_opnwk() opens a physical workstation.

OPCODE 1

AVAILABILITY Available only with some form of GDOS.

PARAMETERS All parmeters for this function are consistent with v_opnvwk() except as follows:

On entry, handle does not need to contain any specific value. On return, however,

V_Opnwk() – 7.67

T H E A T A R I C O M P E N D I U M

it will contain a workstation handle if successful or 0 if the call failed.

BINDING WORD i;

contrl[0] = 1;
contrl[1] = 0;
contrl[3] = 11;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();

*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;I++)
work_out[45+i] = ptsout[i];

COMMENTS Physical workstations should be opened when needed and closed immediately
afterwards. For example, a word processor should not open the printer
workstation when the application starts and close it when it ends. If this is done,
the user will be unable to change printers with the Printer Setup CPX(s).

SEE ALSO V_Opnwk(), v_opnvwk(), vq_extnd()

V_Opnwk()
WORD V_Opnwk(devno, dev)
WORD devno;
VDI_Workstation dev;

V_Opnwk() is not a component of the VDI , rather an interface binding designed to
simplify working with VDI workstations. It will open a physical workstation using
a VDI_Workstation structure rather than work_in and work_out.

OPCODE N/A

AVAILABILITY User-defined.

PARAMETERS devno specifies the device ID of the device to open. Valid values for devno
follow:

1-10 = Screen (loaded device drivers only)
11-20 = Plotters
21-30 = Printers
31-40 = Metafile Drivers

7.68 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

41-50 = Camera Drivers
51-60 = Tablet Drivers
61-70 = Memory Drivers

ws is a VDI_Workstation structure as defined in V_Opnvwk().

BINDING WORD
V_Opnvwk(devno, dev)
WORD devno;
VDI_Workstation dev;
{

WORD i, in[11];

in[0] = dev->dev_id = devno;
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;
i = devno;

v_opnvwk(in, &i, &dev->xres);
dev->handle = i;

if(i)
vq_extnd(i, 1, &dev->screentype);

return (i);
}

RETURN VALUE V_Opnwk() returns a workstation handle if successful or 0 if the call failed.

COMMENTS This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

SEE ALSO v_opnwk(), vq_extnd(), v_opnvwk(), V_Opnvwk()

v_output_window()
VOID v_output_window(handle, pxy)
WORD handle;
WORD *pxy;

v_output_window() outputs a specified portion of the current page.

OPCODE 5

SUB-OPCODE 22

AVAILABILITY Supported by all printer and metafile drivers under any type of GDOS.

PARAMETERS handle specifies a valid workstation handle. pxy is a pointer to an array of four

v_pgcount() – 7.69

T H E A T A R I C O M P E N D I U M

WORDs in VDI rectangle format which specifies the bounding extents of the
current page to output.

BINDING contrl[0] = 5;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 21;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS Some printer drivers ignore the sides of the bounding box specified and print the
entire width of the page.

COMMENTS This call is similar to v_updwk() except that only a portion of the page is output.

SEE ALSO v_updwk()

v_pgcount()
VOID v_pgcount(handle, numcopies)
WORD handle, numcopies;

v_pgcount() is used to cause the laser printer to output multiple copies of the
current page.

OPCODE 5

SUB-OPCODE 2000

AVAILABILITY Supported only with some laser printer drivers (for instance the Atari laser printer
driver) under some form of GDOS.

PARAMETERS handle specifies a valid workstation handle. numcopies specifies the number of
copies to print minus one. A value of 0 means print one copy, a value of 1, two
copies, and so on.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 1;
contrl[5] = 2000;
contrl[6] = handle;

intin[0] = numcopies;

7.70 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS This call is preferred over repeatedly calling v_updwk() and v_form_adv() as
this method forces the printer data to be resent for each page.

v_pieslice()
VOID v_pieslice(handle, x, y, radius, startangle, endangle)
WORD handle, x, y, radius, startangle, endangle;

v_pieslice() outputs a filled pie segment.

OPCODE 11

SUB-OPCODE 3

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center of a
circlular segment of radius radius which is drawn between the angles of
startangle and endangle (specified in tenths of degrees - legal values illustrated
below) and connected to the center point.

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = 4;
contrl[3] = 2;
contrl[5] = 3;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0
ptsin[6] = radius;

intin[0] = startangle;

v_pline() – 7.71

T H E A T A R I C O M P E N D I U M

intin[1] = endangle;

vdi();

SEE ALSO v_ellpie(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(), vsf_perimeter()

v_pline()
VOID v_pline(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_pline() outputs a polyline (group of one or more lines).

OPCODE 6

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. count specifies the number of
vertices in the line path (2 to plot a single line). pxy points to a WORD array with
count * 2 elements containing the vertices to plot as in (X1, Y1), (X2, Y2), etc...

BINDING WORD i;

contrl[0] = 6;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < (count*2);i++)
ptsin[i] = count[i];

vdi();

COMMENTS To draw a single point with this function, pxy[2] should equal pxy[0], pxy[3]
should equal pxy[1], and count should be 2.

SEE ALSO v_fillarea(), vsl_color(), vsl_type(), vsl_udsty(), vsl_ends()

7.72 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_pmarker()
VOID v_pmarker(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_pmarker() outputs one or several markers.

OPCODE 7

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation. count specifies the number of markers to
plot. pxy points to a WORD array with (count * 2) elements containing the
vertices of the markers to plot as in (X1, Y1), (X2, Y2), etc...

BINDING WORD i;

contrl[0] = 7;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < (count * 2); i++)
ptsin[i] = pxy[i];

vdi();

COMMENTS Single points may be plotted quickly with this function when the proper marker
type is selected with vsm_type().

SEE ALSO vsm_type(), vsm_height(), vsm_color()

v_rbox()
VOID v_rbox(handle, pxy)
WORD handle;
WORD *pxy;

v_rbox() outputs a rounded box (not filled).

OPCODE 11

SUB-OPCODE 8

v_rfbox() – 7.73

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
containing the VDI format rectangle of the rounded box to output.

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 8;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS There is no way to define to size of the ‘roundness’ of the corners.

SEE ALSO v_rfbox(), v_bar(), vsl_type(), vsl_color(), vsl_udsty(), vsl_ends()

v_rfbox()
VOID v_rfbox(handle, pxy)
WORD handle;
WORD *pxy;

v_rfbox() outputs a filled rounded-rectangle.

OPCODE 11

SUB-OPCODE 9

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of four
WORDs which specify the VDI format rectangle of the rounded-rectangle to
output.

BINDING contrl[0] = 11;

7.74 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 9;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS There is no way to specify the ‘roundness’ of the rectangle.

SEE ALSO v_rbox(), v_bar(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat()

v_rmcur()
VOID v_rmcur(handle)
WORD handle;

v_rmcur() removes the last mouse cursor displayed.

OPCODE 5

SUB-OPCODE 19

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 19;
contrl[6] = handle;

vdi();

COMMENTS v_rmcur() should only be used in conjunction with v_dspcur() when the mouse is
moved manually. graf_mouse() or v_hide_c() should be used unless this is your
intention.

SEE ALSO v_hide_c(), graf_mouse()

v_rvoff() – 7.75

T H E A T A R I C O M P E N D I U M

v_rvoff()
VOID v_rvoff(handle)
WORD handle;

v_rvoff() causes alpha screen text to be displayed in normal video (as opposed to
inverse).

OPCODE 5

SUB-OPCODE 14

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 14;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-Q VT-52 code.

SEE ALSO v_rvon(), v_curtext()

v_rvon()
VOID v_rvon(handle)
WORD handle;

v_rvon() causes alpha screen text to be displayed in inverse mode.

OPCODE 5

SUB-OPCODE 13

AVAILABILITY Supported by all screen devices.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;

7.76 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[5] = 13;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-P VT-52 code.

SEE ALSO v_rvoff(), v_curtext()

v_savecache()
WORD v_savecache(handle, fname)
WORD handle;
char *fname;

v_savecache() saves the current outline cache.

OPCODE 249

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. fname specifies the GEMDOS file
specification of the cache file to save.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*fname++);

contrl[0] = 249;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_savecache() returns 0 if successful or -1 if an error occurred.

COMMENTS This call only saves the portion of the cache responsible for storing bitmaps
created from outlines.

SEE ALSO v_loadcache(), v_flushcache()

v_set_app_buff() – 7.77

T H E A T A R I C O M P E N D I U M

v_set_app_buff()
VOID v_set_app_buff(but, nparagraphs)
VOID * buf;
WORD nparagraphs;

v_set_app_buff() designates memory for use by the bezier generation routines.

OPCODE -1

SUB-OPCODE 6

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS buf specifies the address of a buffer which the bezier generator routines may
safely use. nparagraphs specifies the size of the buffer in ‘paragraphs’ (16 bytes).

BINDING contrl[0] = -1;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 6;

*(VOID *)&intin[0] = buf;
intin[2] = nparagraphs;

vdi();

COMMENTS Before the application exits, it should call v_set_app_buff(NULL, 0) to
‘unmark’ memory. The application is then responsible for deallocating the
memory.

In the absence of this call the first v_bez() or v_bezfill() call will allocate its own
buffer of 8K. Atari documentation recommends a size of about 9K depending on
the extents of the bezier you wish to generate.

SEE ALSO v_bez()

v_show_c()
VOID v_show_c(handle, reset)
WORD handle, reset;

v_show_c() ‘unhides’ the mouse cursor.

OPCODE 122

7.78 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. If reset is 0 the mouse will be
displayed regardless of the number of times it was ‘hidden’. Otherwise, the call
will only display the cursor if the function has been called an equal number of
times compared to v_hide_c().

BINDING contrl[0] = 122;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = reset;

vdi();

CAVEATS While it may be tempting to always use a reset value of 0, it is not recommended.
Doing so may confuse the system so that when the critical error handler is called,
the mouse is not displayed.

SEE ALSO v_hide_c(), graf_mouse()

v_updwk()
VOID v_updwk(handle)
WORD handle;

v_updwk() outputs the current page to the specified device.

OPCODE 4

AVAILABILITY Supported by all printer, metafile, plotter, and camera devices when using any
form of GDOS.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 4;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

COMMENTS This call does not cause the ‘page’ to be ejected. You must use either v_clrwk() or
v_form_adv() to accomplish that.

SEE ALSO v_clrwk(), v_form_adv()

v_write_meta() – 7.79

T H E A T A R I C O M P E N D I U M

v_write_meta()
VOID v_write_meta(handle, intin_len, intin , ptsin_len, ptsin)
WORD handle, intin_len;
WORD * intin ;
WORD ptsin_len;
WORD *ptsin;

v_write_meta() writes a customized metafile sub-opcode.

OPCODE 5

SUB-OPCODE 99

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. intin points to an array of WORDs
with intin_len (0-127) elements. ptsin points to an array of WORDs with
ptsin_len (0-127) elements. ptsin is not required to be of any length, however,
intin should be at least one word long to specify the sub-opcode in intin[0] . Sub-
opcodes 0-100 are reserved for use by Atari. Several pre-defined sub-opcodes in
this range already exist as follows:

Sub-Opcode:
intin[0] Meaning

10 Start group.

11 End group.

49 Set no line style.

50 Set attribute shadow on.

51 Set attribute shadow off.

80 Start draw area type primitive.

81 End draw area type primitive.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = ptsin_len;
contrl[3] = intin_len;
contrl[5] = 99;
contrl[6] = handle;

for(i = 0;i < intin_len; i++)
intin[i] = m_intin[i];

for(i = 0;i < ptsin_len; i++)
ptsin[i] = m_ptsin[i];

7.80 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Metafile readers should ignore and safely skip any opcodes not understood.

vex_butv()
VOID vex_butv(handle, butv, old_butv)
WORD handle;
WORD (*butv)((WORD) bstate);
WORD (** old_butv)((WORD) bstate);

vex_butv() installs a routine which is called by the VDI every time a mouse
button is pressed.

OPCODE 125

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. butv points to a user-defined
button-click handler routine. The address pointed to by old_butv will be filled in
with the address of the old button-click handler.

BINDING contrl[0] = 125;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)butv >> 16);
contrl[8] = (WORD)((LONG)butv);

vdi();

*(LONG *)old_butv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to butv, the mouse status is contained in 68x00 register D0 (in the same
format as the button return value in vq_mouse()). A ‘C’ handler should, therefore,
be sure to specify register calling parameters for this function. Any registers which
will be modifed should be saved and restored upon function exit. The routine may
call the BIOS and/or XBIOS sparingly but should not call the AES, VDI , or
GEMDOS.

SEE ALSO vex_curv(), vex_motv()

vex_curv() – 7.81

T H E A T A R I C O M P E N D I U M

vex_curv()
VOID vex_curv(handle, curv, old_curv)
WORD handle;
WORD (*curv)((WORD) mx, (WORD) my);
WORD (** old_curv)((WORD) mx, (WORD) my);

vex_curv() installs a routine which is called every time the mouse cursor is drawn
allowing a customized mouse rendering routine to replace that of the system.

OPCODE 126

AVAILABILITY Supported by all screen devices.

PARAMETERS handle specifies a valid physical workstation handle. curv points to a user defined
function which will be called every time the mouse is to be refreshed. old_curv is
the address of a pointer to the old rendering routine which will be filled in by the
function on exit.

BINDING contrl[0] = 126;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)curv >> 16);
contrl[8] = (WORD)((LONG)curv);

vdi();

*(LONG *)old_curv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to curv, the mouse’s X and Y location on screen is contained in 68x00
registers D0 and D1 respectively. A ‘C’ handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/or XBIOS sparingly but should not call the AES, VDI , or GEMDOS.

SEE ALSO vex_butv(), vex_motv()

7.82 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vex_motv()
VOID vex_motv(handle, motv, old_motv)
WORD handle;
WORD (*motv)((WORD) mx, (WORD) my);
WORD (** old_motv)((WORD) mx, (WORD) my);

vex_motv() installs a user routine which is called every time the mouse pointer is
moved.

OPCODE 126

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. motv points to a user-
defined routine which is called every time the mouse is moved. old_motv is an
address to a pointer which will be filled in containing the address of the old
function.

BINDING contrl[0] = 126;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)motv >> 16);
contrl[8] = (WORD)((LONG)motv);

vdi();

*(LONG *)old_motv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to motv, the mouse’s new X and Y location is contained in 68x00
registers D0 and D1 respectively. A ‘C’ handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/or XBIOS sparingly but should not call the AES, VDI , or GEMDOS.
The routine may modify the contents of D0 and D1 as necessary to affect the
movement of the mouse (one way of implementing a mouse accelerator).

SEE ALSO vex_curv(), vex_butv()

vex_timv() – 7.83

T H E A T A R I C O M P E N D I U M

vex_timv()
VOID vex_timv(handle, timv, old_timv, mpt)
WORD handle;
VOID (* timv)(VOID);
VOID (** old_timv)(VOID);
WORD *mpt;

vex_timv() installs a user-defined routine that will be called at each timer tick
(currently once every 50 milliseconds).

OPCODE 118

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. timv should point to a user-
defined timer tick routine. old_timv is an address to a pointer which will be filled
in with the old timer tick routine. mpt is a pointer to a WORD which will be filled
in with the value representing the current number of milliseconds per timer tick.

BINDING contrl[0] = 118;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)timv >> 16);
contrl[8] = (WORD)((LONG)timv);

vdi();

*(LONG *)old_timv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Any registers which will be modifed should be saved and restored upon function
exit. The routine may call the BIOS and/or XBIOS sparingly but should not call
the AES, VDI , or GEMDOS. The routine should fall through to the old routine.
As this vector is jumped through quite often, the routine should be very simple to
avoid system performance slowdowns.

vm_coords()
VOID vm_coords(handle, xmin, ymin, xmax, ymax)
WORD handle, xmin, ymin, xmax, ymax;

vm_coords() allows the use of variable coordinate systems with metafiles.

OPCODE 5

7.84 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODES 99, 1

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. xmin and ymin specify the coordinate
pair which provides an anchor for the upper-left point of the coordinate system.
xmax and ymax specify the coordinate pair which provides an anchor for the
lower-right point of the coordinate system.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 5;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 1;
intin[1] = xmin;
intin[2] = ymin;
intin[3] = xmax;
intin[4] = ymax;

vdi();

COMMENTS Use of this function allows the use of practically any coordinate system with a
limit of (-32768, -32768), (32767, 32767).

Metafiles default to a coordinate space of (0, 32767), (32767, 0).

SEE ALSO vm_pagesize(), v_meta_extents()

vm_filename()
VOID vm_filename(handle, fname)
WORD handle;
char *fname;

vm_filename() allows specfying a user-defined filename for metafile output.

OPCODE 5

SUB-OPCODE 100

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifys a valid workstation handle. fname points to a NULL -terminated
GEMDOS filename which all metafile output should be redirected to.

vm_pagesize() – 7.85

T H E A T A R I C O M P E N D I U M

BINDING WORD i = 0;

while(intin[i++] = (WORD)*fname++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 100;
contrl[6] = handle;

vdi();

CAVEATS When a metafile is opened, the default file ‘GEMFILE.GEM’ is created in the
current GEMDOS path on the current drive and is not deleted as a result of this
call. You will need to manually delete it yourself.

COMMENTS This call should be made immediately after a v_opnwk() to a metafile handle if
you wish to use an alternate filename to prevent data from being lost.

vm_pagesize()
VOID vm_pagesize(handle, pwidth, pheight)
WORD handle, pwidth, pheight;

vm_pagesize() specifys a metafile’s source page size.

OPCODE 5

SUB-OPCODES 99, 0

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. pwidth specifies the width of the
page which the metafile was originally placed on in tenths of a millimeter. pheight
specifies the height of the page which the metafile was originally placed on in
tenths of a millimeter.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 0;
intin[1] = pwidth;
intin[2] = pheight;

vdi();

7.86 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS A metafile originally designed on an 8.5” x 11” page would have a pwidth value
of 2159 and a pheight value of 2794.

SEE ALSO v_meta_extents()

vq_cellarray()
VOID vq_cellarray(handle, pxy, rowlen, num_rows, elements, rows_used, status, colarray)
WORD handle;
WORD *pxy;
WORD rowlen, num_rows;
WORD *elements, *rows_used, *status, *colarray;

vq_cellarray() returns the cell array definitions of specified pixels.

OPCODE 27

AVAILABILITY Not supported by any known drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
which specify a VDI format rectangle. row_length specifies the length of each
row in the color array. num_rows specifies the number of total rows in the color
array.

Upon return, the WORD pointed to by elements will indicate the number of array
elements used per row. In addition, rows_used will be filled in with actual
number of rows used by the color array and the WORD pointed to by status will
be filled in with 0 if the operation was successful or 1 if at least one element could
not be determined. Finally, the WORD array (with (num_rows * row_length)
elements) pointed to by colarray will be filled in with the color index array stored
one row at a time. On return colarray will actually contain
(elements * rows_used) valid elements.

BINDING WORD i;

contrl[0] = 27;
contrl[1] = 2;
contrl[3] = 0;
contrl[6] = handle;
contrl[7] = row_length;
contrl[8] = num_rows;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vq_chcells() – 7.87

T H E A T A R I C O M P E N D I U M

vdi();

*el_used = contrl[9];
*rows_used = contrl[10];
*status = contrl[11];

for(i = 0;i < contrl[4];i++)
colarray[i] = intout[i];

CAVEATS No driver types are required to utilize this function. It is therefore recommended
that it be avoided unless your application is aware of the capabilities of the driver.

SEE ALSO v_cellarray()

vq_chcells()
VOID vq_chcells(handle, rows, columns)
WORD handle;
WORD * rows, *columns;

vq_chcells() returns the current number of columns and rows on the alpha text
mode of the device.

OPCODE 5

SUB-OPCODE 1

AVAILABILITY Supported by all screen and printer drivers.

PARAMETERS handle specifies a valid workstation handle. rows and columns each point to a
WORD which will be filled in with the current number of rows and columns of
the device (in text mode).

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 1;
contrl[6] = handle;

vdi();

*rows = intout[0];
*columns = intout[1];

SEE ALSO v_curtext()

7.88 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_color()
WORD vq_color(handle, index, flag, rgb)
WORD handle, index, flag;
WORD * rgb;

vq_color() returns RGB information for a particular VDI color index.

OPCODE 26

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. index specifies the VDI color index
of which you wish to inquire. rgb points to an array of 3 WORDs which will be
filled in with the red, green, and blue values (0-1000) of the color index. The
values returned in the RGB array are affected by the value of flag as follows:

Name flag Values returned in rgb

COLOR_REQUESTE
D

0 Return the values as last requested by the user (ie: not
mapped to the actual color value displayed).

COLOR_ACTUAL 1 Return the values as the actual color being displayed.

BINDING contrl[0] = 26;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = index;
intin[1] = flag;

vdi();

rgb[0] = intout[1];
rgb[1] = intout[2];
rgb[2] = intout[3];

return intout[0];

RETURN VALUE vq_color() returns -1 if the specified index is out of range for the device.

COMMENTS Some drivers for color printers do not allow you to modify the color of each
register. A simple test will allow you to determine if the driver will allow you to
change index colors as follows:

• Call vq_color() with a flag value of 0 and save the return.
• Call vs_color() to modify that color index by a signifigant value.
• Call vq_color() with a flag value of 0 and compare with what you set.
• Restore the old value.

vq_curaddress() – 7.89

T H E A T A R I C O M P E N D I U M

• If equivalent values are returned, you may modify each color index.

SEE ALSO vs_color()

vq_curaddress()
VOID vq_curaddress(handle, row, column)
WORD handle;
WORD * row, *column;

vq_curaddress() returns the current position of the alpha text cursor.

OPCODE 5

SUB-OPCODE 15

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. The WORDs pointed to by row and
column will be filled in with the current row and column respectively of the text
cursor in alpha mode.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 15;
contrl[6] = handle;

vdi();

*row = intout[0];
*column = intout[1];

SEE ALSO v_curtext(), vq_chcells()

vq_extnd()
VOID vq_extnd(handle, mode, work_out)
WORD handle, mode;
WORD *work_out;

vq_extnd() returns extra information about a particular workstation.

OPCODE 102

7.90 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. If mode is set to 0 then this call fills
in the array pointed to by work_out with the same 57 WORDs which are returned
by either v_opnwk() or v_opnvwk(). If mode is 1 then the 57 WORDs of
work_out are filled in with other information as follows:

work_out[x]
VDI Structure

Member Meaning
0 screentype Type of display screen:

0 = Not screen.
1 = Separate alpha/ graphic controllers and displays.
2 = Separate alpha/ graphic controllers with common

screen.
3 = Common alpha/ graphic controllers with separate

image memory.
4 = Common alpha/ graphic controllers and image

memory.
(All known devices either return 0 or 4.)

1 bgcolors Number of background colors available.

2 textfx Text effects supported. (Same bitmask as with
vst_effects()).

3 canscale Scaling of rasters:
0 = Can’t scale.
1 = Can scale.

4 planes Number of planes.

5 lut Lookup table supported:
0 = Table not supported.
1 = Table supported.

(True color modes return a value of 0 for lut and >2 for
colors in v_opnvwk()).

See the caveat listed below.
6 rops Performance factor. Number of 16x16 raster operations per

second.
7 cancontourfill v_contourfill() availability:

0 = Not available.
1 = Available.

8 textrot Character rotation capability:
0 = None.
1 = 90 degree increments.
2 = Any angle of rotation.

9 writemodes Number of writing modes available.

10 inputmodes Highest level of input modes available:
0 = None.
1 = Request.
2 = Sample.

11 textalign Text alignment capability flag:
0 = Not available.
1 = Available.

12 inking Inking capability flag.
0 = Device can’t ink.
1 = Device can ink.

vq_extnd() – 7.91

T H E A T A R I C O M P E N D I U M

13 rubberbanding Rubberbanding capability flag:
0 = No rubberbanding.
1 = Rubberbanded lines.
2 = Rubberbanded lines and rectangles.

14 maxvertices Maximum vertices for polyline, polymarker, or filled area (-1
= no maximum).

15 maxintin Maximum length of intin array (-1 = no maximum).

16 mousebuttons Number of mouse buttons.

17 widestyles Styles available for wide lines?
0 = No
1 = Yes

18 widemodes Writing modes available for wide lines?
0 = No
1 = Yes

19-56 reserved1 Reserved for future use.

BINDING WORD i;

contrl[0] = 102;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;i++)
work_out[45+i] = ptsout[i];

COMMENTS See the entry for V_Opnwk() and V_Opnvwk() to see how the vq_extnd()
information and v_opn/v/wk() calls are integrated into a ‘C’ style structure.

CAVEATS The lut member of the VDIWORK structure was originally misdocumented by
Atari with the values reversed. The Falcon030 as well as some third-party true-
color boards return the correct values. Some older boards may not, however.

One alternative method of determining if the current screen is not using a software
color lookup table (i.e. true color) is to compare the value for 2 ^ planes with the
number of colors in the palette found in colors. If this number is different, the VDI
is not using a software color lookup table.

SEE ALSO v_opnwk(), v_opnvwk(), V_Opnwk(), V_Opnvwk()

7.92 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_gdos()
ULONG vq_gdos(VOID)

vq_gdos() determines the availability and type of GDOS present.

OPCODE N/A

AVAILABILITY Supported in ROM by all Atari computers.

BINDING ; Correct binding for vq_gdos. Some compilers
; use the name vq_vgdos for the new version
; and vq_gdos for the old version which
; looked like:
; move.w #-2,d0
; trap #2
; cmp.w #-2,d0
; sne d0
; ext.w d0

_vq_gdos:

move.w #-2,d0
trap #2
rts

RETURN VALUE Currently one of the following values are returned:

Name Value GDOS Type

GDOS_NONE -2 GDOS not installed.

— Any other value. GDOS 1.0, 1.1, or 1.2 installed.

GDOS_FNT 0x5F464E54 (‘_FNT’) FONTGDOS installed.

GDOS_FSM 0x5F46534D (‘_FSM’) FSMGDOS installed.

COMMENTS Calling a GDOS function without GDOS loaded is fatal and will cause a system
crash.

To determine whether FSMGDOS or SpeedoGDOS is loaded look for the
‘FSMC’ cookie in the cookie jar. The cookie value points to a longword which
will contain either ‘_FSM’ or ‘_SPD’.

vq_key_s() – 7.93

T H E A T A R I C O M P E N D I U M

vq_key_s()
VOID vq_key_s(handle, status)
WORD handle;
WORD *status;

vq_key_s() returns the current shift-key status.

OPCODE 128

AVAILABILITY Supported by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. status points to a WORD which is
filled in on function exit with a bit mask containing the current shift key status as
follows:

Name Bit Meaning

K_RSHIFT 0 Right shift key depressed

K_LSHIFT 1 Left shift key depressed

K_CTRL 2 Control key depressed

K_ALT 3 Alternate key depressed

BINDING contrl[0] = 128;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*status = intout[0];

SEE ALSO graf_mkstate()

vq_mouse()
VOID vq_mouse(handle, mb, mx, my)
WORD handle;
WORD *mb, *mx, *my;

vq_mouse() returns information regarding the current state of the mouse.

OPCODE 124

AVAILABILITY Supported by all screen drivers.

7.94 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. mb points to a WORD which will be
filled in upon function exit with a bit mask indicating the current status of the
mouse buttons as follows:

Name Mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08
.
.

Other buttons (0x08 is the mask for the button to
the immediate left of the middle button. Masks
continue leftwards).

mx and my both point to WORDs which will be filled in upon function exit with
the current position of the mouse pointer.

BINDING contrl[0] = 124;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*mb = intout[0];
*mx = ptsout[0];
*my = ptsout[1];

SEE ALSO graf_mkstate(), v_key_s()

vq_scan()
VOID vq_scan(handle, grh, passes, alh, apage, div)
WORD handle;
WORD *grh, *passes, *alh, *apage, *div;

vq_scan() returns information regarding printer banding.

OPCODE 5

SUB-OPCODE 24

AVAILABILITY Supported by all printer drivers.

PARAMETERS handle specifies a valid workstation handle. passes specifies the number of
graphic passes per printer page.

vq_tabstatus() – 7.95

T H E A T A R I C O M P E N D I U M

The value obtained through the formula grh/div specifies the number of graphics
scan lines per pass. The value obtained by the formula alh/div specifies the
number of graphic scan lines per alpha text line. apage specifies the number of
alpha lines per page.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 24;
contrl[6] = handle;

vdi();

*grh = intout[0];
*passes = intout[1];
*alh = intout[2];
*apage = intout[3];
*div = intout[4];

COMMENTS This call has been previously mis-documented.

vq_tabstatus()
WORD vq_tabstatus(handle)
WORD handle;

vq_tabstatus() determines the availability of a tablet device.

OPCODE 5

SUB-OPCODE 16

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 16;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vq_tabstatus() returns 0 if no tablet is available or 1 if a tablet device is present.

SEE ALSO vq_tdimensions(), vt_origin(), vt_axis(), vt_resolution(), vt_alignment()

7.96 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_tdimensions()
VOID vq_tdimensions(handle, xdim, ydim)
WORD handle;
WORD *xdim, *ydim;

vq_tdimensions() returns the scanning dimensions of the attached graphics tablet.

OPCODE 5

SUB-OPCODE 84

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xdim and ydim point to WORDs
which upon function exit will contain the X and Y dimensions of the tablet
scanning area specified in tenths of an inch.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 84;
contrl[6] = handle;

vdi();

*xdim = intout[0];
*ydim = intout[1];

SEE ALSO vq_tabstatus()

vqf_attributes()
VOID vqf_attributes(handle, attr)
WORD handle;
WORD *attr;

vqf_attributes() returns information regarding the current fill attributes.

OPCODE 37

AVAILABILITY Supported by all devices.

PARAMETERS handle specifies a valid workstation handle. attr points to an array of five
WORDs which upon exit will be filled in as follows:

vqin_mode() – 7.97

T H E A T A R I C O M P E N D I U M

attr[x] Meaning

0 Current fill area interior type (see vsf_interior()).

1 Current fill area color (see vsf_color()).

2 Current fill area style (see vsf_style()).

3 Current writing mode (see vswr_mode()).

4 Current perimeter status (see vsf_perimeter()).

BINDING contrl[0] = 37;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

SEE ALSO vqt_attributes(), vql_attributes(), vqm_attributes()

vqin_mode()
VOID vqin_mode(handle, dev, mode)
WORD handle, dev;
WORD *mode;

vqin_mode() returns the input status of the specified VDI device.

OPCODE 115

AVAILABILITY Supported by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. mode points to a WORD which upon
exit will be filled in with 1 if the specified device is in request mode or 2 if in
sample mode. dev specifies the device to inquire as follows:

Name dev Device

LOCATOR 1 Locator (Mouse, Mouse Buttons, and Keyboard)

VALUATOR 2 Valuator (not currently defined)

CHOICE 3 Choice (not currently defined)

STRING 4 String (Keyboard)

BINDING contrl[0] = 115;

7.98 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 0
contrl[3] = 1;
contrl[6] = handle;

intin[0] = dev;

vdi();

*mode = intout[0];

SEE ALSO vsin_mode()

vql_attributes()
VOID vql_attributes(handle, attr)
WORD handle;
WORD *attr;

vql_attributes() returns information regarding current settings which affects line
drawing functions.

OPCODE 36

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr is an array of 6 WORDs which
describe the current parameters for line drawing as follows:

attr[x] Meaning

0 Line type (see vsl_type()).

1 Line color (see vsl_color()).

2 Writing mode (see vswr_mode()).

3 End style for start of lines (see vsl_ends()).

4 End style for end of lines (see vsl_ends()).

5 Current line width (see vsl_width()).

BINDING contrl[0] = 36;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

vqm_attributes() – 7.99

T H E A T A R I C O M P E N D I U M

attr[5] = intout[5];

SEE ALSO vqm_attributes(), vqt_attributes(), vqf_attributes()

vqm_attributes()
VOID vqm_attributes(handle, attr)
WORD handle;
WORD *attr;

vqm_attributes() returns information regarding current settings which apply to
polymarker output.

OPCODE 36

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr points to an array of 5 WORDs
which specify the current polymarker attributes as follows:

attr[x] Meaning

0 Marker type (see vsm_type()).

1 Marker color (see vsm_color()).

2 Writing mode (see vswr_mode()).

3 Polymarker width (see vsm_height()).

4 Polymarker height (see vsm_height()).

BINDING contrl[0] = 36;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

SEE ALSO vql_attributes(), vqt_attributes(), vqf_attributes()

7.100 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vqp_error()
WORD vqp_error(handle)
WORD handle;

vqp_error() returns error information for the camera driver.

OPCODE 5

SUB-OPCODE 96

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 96;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vqp_error() returns the current error state as follows:

Return Value Error State

0 No error.

1 Open dark slide for print film.

2 No port at location specified by driver.

3 Palette not found at specified port.

4 Video cable disconnected.

5 Memory allocation error.

6 Inadequate memory for buffer.

7 Memory not freed.

8 Driver file not found.

9 Driver file is not correct type.

10 Prompt user to process print film.

COMMENTS Use of this function does not stop the generation of on-screen messages. You must
use vsp_message() to accomplish that.

SEE ALSO vsp_message()

vqp_films() – 7.101

T H E A T A R I C O M P E N D I U M

vqp_films()
VOID vqp_films(handle, films)
WORD handle;
char *films;

vqp_films() returns strings which represent up to five possible film types for the
camera driver to utilize.

OPCODE 5

SUB-OPCODE 91

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. films is a character pointer to a
buffer at least 125 characters in length. Upon return films will be filled in with 5
character strings. Bytes 0-24 will contain a string for the first type of film, bytes
25-49 will contain a string for the second type, and so on. These strings are not
NULL -terminated but are padded with spaces.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 91;
contrl[6] = handle;

vdi();

for(i = 0;i < 125;i++)
films[i] = (char)intout[i];

SEE ALSO vqp_state()

vqp_state()
VOID vqp_state(handle, port, film , lightness, interlace, planes, indices)
WORD handle;
WORD *port, *film , *lightness, *interlace, *planes, *indices;

vqp_state() returns information regarding the current state of the palette driver.

OPCODE 5

7.102 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODE 92

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. The rest of the parameters are all
WORDs which are filled in as follows:

Parameter Meaning

port Communication port number.

film Film type (0 – 4).

lightness Lightness (-3 – 3). A value of 0 specifies the current f-stop setting. A value of
three results in an exposure half as long as normal while a value of 3 results
in an exposure twice as long as normal.

interlace Interlace mode. A value of 0 is non-interlaced, 1 is interlaced.

planes Number of planes (1 – 4)

indices This is actually a WORD array with at least 16 members. (2 ^ planes)
members will be filled in with color codes for the driver. indices[0] and
indices[1] will specify the first color, indices[2] and indices[2] the second,
and so on.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 92;
contrl[6] = handle;

vdi();

*port = intout[0];
*film = intout[1];
*lightness = intout[2];
*interlace = intout[3];
*planes = intout[4];

for(i = 0;i < 21;i++)
indices[i] = intout[5 + i];

SEE ALSO vsp_state()

vqt_advance()
VOID vqt_advance(handle, wch, advx, advy, xrem, yrem)
WORD handle, wch;
WORD *advx, *advy, *xrem, *yrem;

vqt_advance() returns the advance vector and remainder for a character.

vqt_advance32() – 7.103

T H E A T A R I C O M P E N D I U M

OPCODE 247

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wch contains the character which you
desire information for. Upon return the WORDs pointed to by advx, advy, xrem,
and yrem will be filled in with the correct advance vector and remainders.

BINDING contrl[0] = 247;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*advx = ptsout[0];
*advy = ptsout[1];
*xrem = ptsout[2];
*yrem = ptsout[3];

COMMENTS advx and advy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotations. xrem and yrem give the remainder value as
a modulus of 16384. These remainders should be summed by an application an
managed to nudge the advance vector by a pixel when necessary.

SEE ALSO vqt_width(), vqt_extent(), vqt_f_extent()

vqt_advance32()
VOID vqt_advance32(handle, wch, advx, advy)
WORD handle, wch;
fix31 *advx, *advy;

vqt_advance32() is a variation of the binding for vqt_advance() which returns
the advance vector and remainder for a character as two fix31 values..

OPCODE 247

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wch contains the character which you
desire information for. Upon return the fix31s pointed to by advx and advy will be
filled in with the correct advance vector.

7.104 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 247;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*advx = (fix31)((ptsout[4] << 16) | ptsout[5]);
*advy = (fix31)((ptsout[6] << 16) | ptsout[7]);

COMMENTS advx and advy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotations.

SEE ALSO vqt_width(), vqt_extent(), vqt_f_extent()

vqt_attributes()
VOID vqt_attributes(handle, attr)
WORD handle;
WORD *attr;

vqt_attributes() returns information regarding the current attributes which affect
text output.

OPCODE 38

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr points to an array containing 10
WORDs which are filled in upon function exit as follows:

attr[x] Meaning

0 Text face (see vst_font()).

1 Text color (see vst_color()).

2 Text rotation (see vst_rotation()).

3 Horizontal alignment (see vst_alignment()).

4 Vertical alignment (see vst_alignment()).

5 Writing mode (see vswr_mode()).

6 Character width (see vst_height()).

7 Character height (see vst_height()).

8 Character cell width (see vst_height()).

9 Character cell height (see vst_height()).

vqt_cachesize() – 7.105

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 38;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];
attr[5] = intout[5];
attr[6] = intout[6];
attr[7] = intout[7];
attr[8] = intout[8];
attr[9] = intout[9];

COMMENTS The values pertaining to character and cell width and have limited usefulness as
they are only constant with non-proportional fonts.

SEE ALSO vql_attributes(), vqm_attributes(), vqf_attributes()

vqt_cachesize()
WORD vqt_cachesize(handle, which, size)
WORD handle, which;
LONG * size;

vqt_cachesize() returns the size of the largest allocatable block of memory in one
of two caches.

OPCODE 255

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. which specifies which cache. A
value of CACHE_CHAR (0) selects the character bitmap cache. A value of
CACHE_MISC (1) selects the miscellaneous cache. The LONG pointed to by
size will be filled in upon function exit with the size of the largest allocatable
block of memory in the selected cache.

BINDING contrl[0] = 255;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = which;

vdi();

7.106 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*size = (LONG)(((LONG)intin[0] << 16) | (LONG)intin[1]);

COMMENTS An application can estimate the amount of memory required to generate a character
and print a warning message if the user attempts to exceed it. FSMGDOS will
simply print a message on screen (you can intercept this with vst_error()) and ask
the user to reboot. You can estimate the amount of memory required for a
particular character in the character bitmap cache with the formula:

(width in pixels + 7)/8 * height in pixels

Likewise, you can estimate the amount of memory needed for the miscellaneous
cache as:

84 * (width + height)

SEE ALSO vst_error(), v_flushcache()

vqt_devinfo()
VOID vqt_devinfo(handle, devid, exists, devstr)
WORD handle, devid;
WORD *exists;
char *devstr;

vqt_devinfo() determines if a particular device ID is available, and if so, the
name of the device driver.

OPCODE 248

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. devid specifies the device ID as
listed in the ‘ASSIGN.SYS’ file. exists is a pointer to a WORD which will be
filled in with DEV_INSTALLED (1) if a device is installed with the specified ID
number or DEV_MISSING (0) if not. If the device does exist, the character buffer
pointer to by devstr will be filled in with the filename of the device padded with
spaces to the standard GEMDOS 8 + 3 format.

BINDING WORD i;

contrl[0] = 248;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = devid;

vqt_extent() – 7.107

T H E A T A R I C O M P E N D I U M

vdi();

*exists = ptsout[0];

for(i = 0;i < contrl[4];i++)
devstr[i] = (char)intout[i];

vqt_extent()
VOID vqt_extent(handle, str, pts)
WORD handle;
char *str;
WORD *pts;

vqt_extent() returns the pixel extent of a string of text.

OPCODE 116

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. str points to a text string to return
extent information for. pts points to an array of 8 WORDs which will be filled in
as follows:

The Atari Compendium
4

1

3

2

pts[x] Meaning

0 X coordinate of point 1.

1 Y coordinate of point 1.

2 X coordinate of point 2.

3 Y coordinate of point 2.

4 X coordinate of point 3.

5 Y coordinate of point 3.

6 X coordinate of point 4.

7 Y coordinate of point 4.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 116;
contrl[1] = 0;
contrl[3] = --i;

7.108 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

COMMENTS This function will also output correct bounding information for rotated text. It is
recommended that vqt_f_extent() be used for outline fonts as it takes special
factors into consideration which makes its output more accurate.

SEE ALSO vqt_f_extent(), vqt_advance(), vqt_width()

vqt_f_extent()
VOID vqt_f_extent(handle, str, pts)
WORD handle;
char *str;
WORD *pts;

vqt_f_extent() returns the bounding box required to enclose the specified string of
text.

OPCODE 240

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS Same as vqt_extent().

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 240;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];

vqt_f_extent16() – 7.109

T H E A T A R I C O M P E N D I U M

pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

COMMENTS As opposed to vqt_extent(), vqt_f_extent() calculates the remainders generated
by outline fonts therefore providing more accurate results.

SEE ALSO vqt_extent(), vqt_width(), vqt_advance()

vqt_f_extent16()
VOID vqt_f_extent(handle, wstr, wstrlen, pts)
WORD handle;
WORD *wstr;
WORD wstrlen;
WORD *pts;

vqt_f_extent16() is a variant binding of vqt_f_extent() that returns the bounding
box required to enclose the specified string of 16-bit Speedo character indexed
text.

OPCODE 240

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wstr points to a 16-bit text string
composed of Speedo character indexes. wstrlen indicates the length of wstr. The
array pointed to by pts is filled in with the same values as vqt_extent().

BINDING WORD i;

for(i = 0; i < wstrlen; i++)
intin[i] = wstr[i];

contrl[0] = 240;
contrl[1] = 0;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

7.110 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS This variation of the vqt_f_extent() binding should only be used when
SpeedoGDOS has been properly configured with vst_charmap().

SEE ALSO vqt_extent(), vqt_width(), vqt_advance()

vqt_fontheader()
VOID vqt_fontheader(handle, buffer, pathname)
WORD *handle;
char *buffer, *pathname;

vqt_fontheader() returns font-specific information for the currently selected
Speedo font.

OPCODE 234

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. buffer should point to a buffer of at
least 421 bytes into which the font header will be copied. pathname should point
to a buffer of at least 128 bytes into which the full pathname of the font’s
corresponding ‘.TDF’ file will be copied.

BINDING WORD i;

contrl[0] = 234;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

vdi();

for(i = 0; i < contrl[4]; i++)
pathname[i] = (char)intout[i];

COMMENTS The font header format and ‘.TDF’ file contents are contained in Appendix G:
Speedo Fonts.

SEE ALSO vqt_fontinfo()

vqt_fontinfo() – 7.111

T H E A T A R I C O M P E N D I U M

vqt_fontinfo()
VOID vqt_fontinfo(handle, first, last, dist, width, effects)
WORD handle;
WORD * first, *last, *dist, *width, *effects;

vqt_fontinfo() returns information regarding the current text font.

OPCODE 131

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. first and last each point to a WORD
which will be filled in with the first and last character in the font respectively. dist
points to an array of 5 WORDs which indicate the distances between the baseline
and the point indicated as follows:

gG Baseline

dist[0]
dist[1]

dist[2]
dist[3]
dist[4]

width specifies the width of the largest cell in the font in pixels not including
effects. effects points to an array of 3 WORDs which contain information relating
to the offsets of the font when printed with the current effects.

T
effects[1]

effects[0]

effects[2] = effects[0] + effects[1]

effects[0] specifies the number of X pixels of the left slant. effects[1] specifies
the number of X pixels of the right slant. effects[2] specifies the extra number of X

7.112 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

pixels to add to compensate for the special effects.

BINDING contrl[0] = 131;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*first = intout[0];
*last = intout[1];
*width = ptsout[0];
dist[0] = ptsout[1];
dist[1] = ptsout[3];
dist[2] = ptsout[5];
dist[3] = ptsout[7];
effects[0] = ptsout[2];
effects[1] = ptsout[4];
effects[2] = ptsout[6];

CAVEATS SpeedoGDOS is not capable of generating values for dist[1] or dist[2] so dist[1]
is set to equal dist[0] and dist[2] is set to equal dist[3].

SEE ALSO vqt_width()

vqt_get_table()
VOID vqt_get_table(handle, map)
WORD handle;
VOID ** map;

vqt_get_table() returns pointers to seven tables which map the Atari character set
to the Bitstream character indexes.

OPCODE 254

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. The location pointed to by map will
be filled in with a pointer to seven internal tables, each 224 WORD size entries
long mapping ASCII characters 32–255 to Bitstream character indexes.

The tables are defined as follows:

Position Table

1st Master mapping.

2nd Bitstream International Character Set

3rd Bitstream International Symbol Set

vqt_name() – 7.113

T H E A T A R I C O M P E N D I U M

4th Bitstream Dingbats Set

5th PostScript Text Set

6th PostScript Symbol Set

7th PostScript Dingbats Set

BINDING contrl[0] = 254;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*(VOID *)map = ((LONG)(intout[0] << 16) | (LONG)intout[1]);

COMMENTS Use of this call allows access to characters outside of the ASCII range but care
must be taken to as this call affects all applications.

vqt_name()
WORD vqt_name(handle, index, fontname)
WORD handle;
WORD index;
char *fontname;

vqt_name() returns the name of the specified font.

OPCODE 130

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. fontname points to a character buffer
of at least 33 characters which will be filled in with the name of font index and a
flag which distinguishes bitmap and outline fonts. fontname[0–31] will contain the
name of the font (not necessarily NULL -terminated).

If FSMGDOS or SpeedoGDOS is installed, fontname[32] will contain a flag
equalling OUTLINE_FONT (1) if the specified font is an outline font or
BITMAP_FONT (0) if it is a bitmap font.

BINDING WORD i;

contrl[0] = 130;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = index;

vdi();

7.114 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

for(i = 0;i < 33;i++)
fontname[i] = intout[i + 1];

return intout[0];

RETURN VALUE vqt_name() returns the unique code value which identifies this font (and is passed
to vst_font()).

SEE ALSO vst_load_fonts(), vst_font()

vqt_pairkern()
VOID vqt_pairkern(handle, char1, char2, x, y)
WORD char1, char2;
fix31 *x, *y;

vqt_pairkern() returns adjustment vector information for the kerning of a
character pair.

OPCODE 235

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. char1 and char2 specify the left and
right members of the character pair to inquire. x and y will be filled with the
adjustment vector for the specified character pair.

BINDING contrl[0] = 235;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = char1;
intin[1] = char2;

vdi();

*x = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[3];

SEE ALSO vqt_trackkern(), vst_kern()

vqt_trackkern() – 7.115

T H E A T A R I C O M P E N D I U M

vqt_trackkern()
VOID vqt_trackkern(handle, x, y)
fix31 *x, *y;

vqt_trackkern() returns the horizontal and vertical adjustment vector for track
kerning.

OPCODE 234

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y are the horizontal and vertical
adjustment vectors currently used to modify character spacing in track kerning.

BINDING contrl[0] = 234;
contrl[1] = 0;
contrl[3] = 0;
contrl[6] = handle;

vdi();

*x = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[2];

SEE ALSO vqt_pairkern(), vst_kern()

vqt_width()
WORD vqt_width(handle, wch, cellw, left, right)
WORD handle, wch;
WORD *cellw, *left, *right;

vqt_width() returns information regarding the width of a character cell.

OPCODE 117

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. The lower eight bits of wch specify
the ASCII character to return width information about. The following three values
are each WORDs which are filled in by the function upon return with information
about the width of the specified character in pixels as illustrated here.

7.116 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

G
left right

cellw

BINDING contrl[0] = 117;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*cellw = ptsout[0];
*left = ptsout[2];
*right = ptsout[4];

return intout[0];

RETURN VALUE vqt_width() returns wch or -1 if an error occurred.

CAVEATS vqt_width() does not take into account remainders when dealing with outline
fonts. It is therefore recommended that vqt_advance() be used instead when
inquiring about outline fonts.

SEE ALSO vqt_advance()

vr_recfl() – 7.117

T H E A T A R I C O M P E N D I U M

vr_recfl()
VOID vr_recfl(handle, pxy)
WORD handle;
WORD *pxy;

vr_recfl() outputs a filled rectangle.

OPCODE 114

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
which give a VDI format rectangle of the object to draw.

BINDING contrl[0] = 114;
contrl[1] = 2;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS vr_recfl() , as opposed to v_bar(), never draws an outline regardless of the
settings of vsf_perimeter().

SEE ALSO v_bar()

vr_trnfm()
VOID vr_trnfm(handle, src, dest)
WORD handle;
MFDB * src, *dest;

vr_trnfm() transforms a memory block from device-independent to device-
dependent and vice-versa.

OPCODE 110

AVAILABILITY Supported by all drivers.

7.118 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. src specifies the MFDB (as defined
in vro_cpyfm()) wheras dest specifies the MFDB of the destination.

BINDING contrl[0] = 110;
contrl[1] =contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

vdi();

CAVEATS While vr_trnfm() will work for in-place transformations, this process can be
time-consuming for large forms.

This call will not translate between forms with multiple planes. For instance, you
can not translate a 2 plane device-independent image to an 8-plane device-specific
image.

COMMENTS To stay compatible with future hardware developments it is recommended that all
images be initially either stored or manually translated to device-independent
format and subsequently converted with this function to match the planar
configuration of the device.

When this call is used to transform forms with either 2 or 4 bit planes, color
translation is performed on each pixel as follows:

Four-Plane Transformations Two Plane

Device VDI Device VDI Device VDI

0000 0 1000 9 00 0

0001 2 1001 10 01 2

0010 3 1010 11 10 3

0011 6 1011 14 11 1

0100 4 1100 12

0101 7 1101 15

0110 5 1110 13

0111 8 1111 1

SEE ALSO vro_cpyfm()

vro_cpyfm() – 7.119

T H E A T A R I C O M P E N D I U M

vro_cpyfm()
VOID vro_cpyfm(handle, mode, pxy, src, dest)
WORD handle, mode;
WORD *pxy;
MFDB * src, *dest;

vro_cpyfm() ‘blits’ a screen or memory block from one location to another.

OPCODE 109

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies valid workstation handle. mode specifies the writing mode as
follows:

Name Mode Result

ALL_WHITE 0 All zeros.

S_AND_D 1 source AND destination

S_AND_NOTD 2 source AND (NOT destination)

S_ONLY 3
(Replace mode)

source

NOTS_AND_D 4
(Erase mode)

(NOT source) AND destination

D_ONLY 5 destination

S_XOR_D 6
(XOR Mode)

source XOR destination

S_OR_D 7 source OR destination

NOT_SORD 8 NOT (source OR destination)

NOT_SXORD 9 NOT (source XOR destination)

NOT_D 10 NOT destination

S_OR_NOTD 11 source OR (NOT destination)

NOT_S 12 NOT source

NOTS_OR_D 13 (NOT source) OR destination

NOT_SANDD 14 NOT (source AND destination)

ALL_BLACK 15 All ones.

pxy points to an array of eight WORDs. pxy[0–3] contains the bounding rectangle
of the source block. pxy[4–7] contains the bounding rectangle of the destination
block. src and dest each point to an MFDB structure which describes the source
and destination memory form. MFDB is defined as follows:

typedef struct
{

7.120 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

/* Memory address (NULL = current screen). If you specify
a value of NULL, the rest of the structure will be filled
out for you. */
VOID *fd_addr;

/* Form width in pixels */
WORD fd_width;

/* Form height in pixels */
WORD fd_height;

/* Form width in WORDs (fd_width + 15)/16 */
WORD fd_wdwidth;

/* Format (0 = device-specific, 1 = VDI format) */
WORD fd_stand;

/* Number of memory planes */
WORD fd_planes;

/* Reserved (set to 0) */
WORD reserved1;
WORD reserved2;
WORD reserved3;

} MFDB;

BINDING contrl[0] = 109;
contrl[1] = 4;
contrl[3] = 1;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy[5];
ptsin[6] = pxy[6];
ptsin[7] = pxy[7];

vdi();

COMMENTS To ‘blit’ a single-plane form to a multi-plane destination, use vrt_cpyfm() .

SEE ALSO vr_trnfm(), vrt_cpyfm()

vrq_choice() – 7.121

T H E A T A R I C O M P E N D I U M

vrq_choice()
VOID vrq_choice(handle, start, final)
WORD handle, start;
WORD * final ;

vrq_choice() accepts input from the ‘choice’ device in request mode.

OPCODE 30

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. start indicates the starting value for
the choice device (1–???). final points to a WORD which will be filled in upon
exit with the results of the request.

BINDING contrl[0] = 30;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = start;

vdi();

*final = intout[0];

COMMENTS Input is sampled until a key is pressed.

SEE ALSO vsm_choice(), vsin_mode()

vrq_locator()
VOID vrq_locator(handle, mx, my, xout, yout, term)
WORD handle, mx, my;
WORD *xout, *yout, *term;

vrq_locator() inputs information from the ‘locator’ device in request mode.

OPCODE 28

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

7.122 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. To start, the mouse cursor is
displayed at the location given by mx and my. When a key or mouse button is
pressed, the call returns. The final location of the mouse pointer is filled into the
2 WORDs pointed to by xout and yout. The WORD pointed to by term is filled
in with the ASCII key of the character that terminated input, 32 (0x20) if the left
mouse button was struck, or 33 (0x21) if the right mouse button was struck.

BINDING contrl[0] = 28;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();

*term = intout[0];

*xout = ptsout[0];
*yout = ptsout[1];

COMMENTS Using this function will confuse the AES’s mouse input functions.

SEE ALSO vsm_locator(), vsin_mode()

vrq_string()
VOID vrq_string(handle, maxlen, echo, outxy, str)
WORD handle, maxlen, echo;
WORD *outxy;
char *str;

vrq_string() waits for input from the ‘string’ device in request mode.

OPCODE 31

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to by str up to maxlen + 1 characters. If echo is
set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to by outxy. If echo is set to 0, no echoing is performed.

BINDING WORD i;

contrl[0] = 31;

vrq_valuator() – 7.123

T H E A T A R I C O M P E N D I U M

contrl[1] = 1;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = outxy[0];
ptsin[1] = outxy[1];

vdi();

for(i = 0;i < contrl[4];i++)
str[i] = (char)intout[i];

CAVEATS The echo parameter is not functional. Character output is never echoed. However,
outxy must point to valid memory space or a crash will occur.

COMMENTS Though this binding does not allow for it, if maxlen is specified as negative, then
as many as |maxlen| + 1 characters will be read as keycodes rather than ASCII
codes. The values in intout will occupy the full WORD rather than just the lower
eight bits. A custom binding could be used to take advantage of this.

SEE ALSO vsin_mode(), vsm_string()

vrq_valuator()
VOID vrq_valuator(handle, start, *final , *term)
WORD handle, start;
WORD * final , *term;

vrq_valuator() accepts for input from the valuator device until a terminating
character is entered in request mode.

OPCODE 29

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. start specifies the initial value of the
valuator device (1–100). When a terminating character has been struck, the
WORD pointed to by final will be filled in with the final value of the valuator and
the WORD pointed to by term will be filled in with whatever ASCII character
caused termination.

BINDING contrl[0] = 29;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.124 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = start;

vdi();

*final = intout[0];
*term = intout[1];

COMMENTS The ‘valuator’ is typically the up and down arrow keys. Each key increments or
decrements the value by 10 unless the shift key is held in which case it is
incremented or decremented by 1.

SEE ALSO vsm_valuator(), vsin_mode()

vrt_cpyfm()
VOID vrt_cpyfm(handle, mode, pxy, src, dest, colors)
WORD handle, mode;
WORD *pxy;
MFDB * src, *dest;
WORD *colors;

vrt_cpyfm() ‘blits’ a single-plane source form to a multiple-plane destination.

OPCODE 121

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. mode specifies the writing mode (1–
4, see vswr_mode()). pxy, src, and dest are defined the same as in vro_cpyfm().
colors points to a 2 WORD array which specifies the colors to apply to the
‘blitted’ image. colors[0] is applied to all set bits in the source image and
colors[1] is applied to all of the cleared bits.

BINDING contrl[0] = 121;
contrl[1] = 4;
contrl[3] = 3;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;
intin[1] = colors[0];
intin[2] = colors[1];

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];

vs_clip() – 7.125

T H E A T A R I C O M P E N D I U M

ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy[5];
ptsin[6] = pxy[6];
ptsin[7] = pxy[7];

vdi();

COMMENTS The source form must be a monoplane form.

SEE ALSO vro_cpyfm()

vs_clip()
VOID vs_clip(handle, flag, pxy)
WORD handle, flag;
WORD *pxy;

vs_clip() defines the global clipping rectangle and state for the specified
workstation.

OPCODE 129

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. flag is set to CLIP_OFF (0) to turn
off clipping or CLIP_ON (1) to enable clipping. If flag is CLIP_ON (1) then pxy
should point to a 4 WORD array containing a VDI format rectangle which will
serve as the clipping rectangle, otherwise, pxy can be NULL .

BINDING contrl[0] = 129;
contrl[1] = 2;
contrl[3] = 1;
contrl[6] = handle;

if(intin[0] = flag) {
ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

}

vdi();

COMMENTS All VDI calls are clipped to that workstations current clipping rectangle.

7.126 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vs_color()
VOID vs_color(handle, color, rgb)
WORD handle, color;
WORD * rgb;

vs_color() sets the color of a palette index.

OPCODE 14

AVAILABILITY Supported by all devices.

PARAMETERS handle specifies a valid workstation handle. color specifies the color register of
the color to modify. rgb points to an array of three WORDs which contain the red,
green, and blue values respectively (0–1000) which will be used to map the color
index to the closest color value possible.

BINDING contrl[0] = 14;
contrl[1] = 0;
contrl[3] = 4;
contrl[6] = handle;

intin[0] = color;
intin[1] = rgb[0];
intin[2] = rgb[1];
intin[3] = rgb[2];

vdi();

SEE ALSO Esetcolor(), Setcolor()

vs_curaddress()
VOID vs_curaddress(handle, row, column)
WORD handle, row, column;

vs_curaddress() sets the position of the alpha screen text cursor.

OPCODE 5

SUB-OPCODE 11

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. row and column specify the new

vs_palette() – 7.127

T H E A T A R I C O M P E N D I U M

coordinates of the text cursor.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 11;
contrl[6] = handle;

intin[0] = row;
intin[1] = column;

vdi();

COMMENTS This call is equivalent to the ESC-Y VT-52 code.

SEE ALSO vq_curaddress()

vs_palette()
VOID vs_palette(handle, mode)
WORD handle, mode;

vs_palette() selects a CGA palette.

OPCODE 5

SUB-OPCODE 60

AVAILABILITY This call was originally designed for use on IBM CGA-based computers. Its
usefulness and availability are not guaranteed under any driver so it should thus be
avoided.

PARAMETERS handle specifies a valid workstation handle. A mode value of 0 selects a palette
of red, green, and blue. A mode value of 1 selects a palette of cyan, magenta, and
white.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 1;
contrl[5] = 60;
contrl[6] = handle;

intin[0] = mode;

vdi();

7.128 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsc_form()
VOID vsc_form(handle, newform)
MFORM * newform;

vsc_form() alters the appearance of the mouse pointer.

OPCODE 111

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. newform points to a MFORM
structure defined as follows:

typedef struct
{

WORD mf_xhot; /* X ‘hot spot’ */
WORD mf_yhot; /* Y ‘hot spot’ */
WORD mf_nplanes; /* Number of planes (must be 1) */
WORD mf_fg; /* Foreground color (should be 0) */
WORD mf_bg; /* Background color (should be 1) */
WORD mf_mask[16]; /* 16 WORDs of mask*/
WORD mf_data[16]; /* 16 WORDs of data */

} MFORM;

BINDING WORD i;

contrl[0] = 111;
contrl[1] = 0;
contrl[3] = 37;
contrl[6] = handle;

for(i = 0;i < 37;i++)
intin[i] = ((WORD *)newform)[i];

vdi();

SEE ALSO graf_mouse()

vsf_color()
WORD vsf_color(handle, color)
WORD handle, color;

vsf_color() changes the current fill color.

vsf_interior() – 7.129

T H E A T A R I C O M P E N D I U M

OPCODE 25

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new fill color
index.

BINDING contrl[0] = handle;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = color;

vdi();

RETURN VALUE vsf_color() returns the actual color set (within bounds).

SEE ALSO vst_color(), vsm_color(), vsl_color(), vsf_attributes()

vsf_interior()
WORD vsf_interior(handle, interior)
WORD handle, interior;

vsf_interior() sets the interior type for filled objects.

OPCODE 23

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. interior specifies the interior type as
follows:

Name interior Meaning

FIS_HOLLOW 0 Hollow interior (color index 0).

FIS_SOLID 1 Solid interior (as set by vsf_color()).

FIS_PATTERN 2 Patterned fill. (style set by vsf_style()).

FIS_HATCH 3 Hatched fill. (style set by vsf_style()).

FIS_USER 4 User-defined fill (as set by vsf_udpat()).

BINDING contrl[0] = 23;
contrl[1] = 0;
contrl[3] = interior;
contrl[6] = handle;

7.130 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = interior;

vdi();

RETURN VALUE This call returns the color value actually set (within bounds).

SEE ALSO vsf_style()

vsf_perimeter()
WORD vsf_perimeter(handle, flag)
WORD handle, flag;

vsf_perimeter() sets whether a border will be drawn around most VDI objects.

OPCODE 104

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. flag is set to PERIMETER_OFF (0)
to turn off perimeter drawing and PERIMETER_ON (1) to enable it.

BINDING contrl[0] = 104;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

vdi();

RETURN VALUE This function returns the new value of the perimeter visibility flag.

vsf_style()
WORD vsf_style(handle, style)
WORD handle, style;

vsf_style() defines the style of fill pattern applied to filled objects.

OPCODE 24

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. style specifies the pattern or hatch
index depending upon the last setting of vsf_interior() . Valid pattern indexes are

vsf_style() – 7.131

T H E A T A R I C O M P E N D I U M

as follows:

Valid hatch indexes are as follows:

BINDING contrl[0] = 24;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = style;

vdi();

RETURN VALUE This call returns the actual style set by the call.

COMMENTS The interior type should be set first with vsf_interior() .

SEE ALSO vsf_interior()

7.132 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsf_udpat()
VOID vsf_udpat(handle, pattern, planes)
WORD handle;
WORD *planes;
WORD planes;

vsf_udpat() creates the user-defined fill pattern.

OPCODE 112

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. In palette-based modes, pattern
points to an array of (16 * planes) WORDs which provide the bit pattern for the
fill.

In true-color modes, pattern points to a 16x16 array of LONGs (256 in total)
which each contain 32-bit color information. planes specifies the number of color
planes for the fill. Use 1 for a monochrome fill on any display, a value equal to the
number of planes on the current device for a palette-based color fill or 32 for a
true-color display.

BINDING WORD i;

contrl[0] = 112;
contrl[1] = 0;
contrl[3] = (16 * planes);
contrl[6] = handle;

for(i = 0;i < (16 * planes);i++)
intin[i] = pattern[i];

vdi();

SEE ALSO vsf_interior()

vsin_mode()
WORD vsin_mode(handle, device, mode)
WORD handle, device, mode;

vsin_mode() chooses between request or sample mode for the specified
device.

vsl_color() – 7.133

T H E A T A R I C O M P E N D I U M

OPCODE 33

AVAILABILITY Supported in ROM by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. A mode value of
REQUEST_MODE (1) sets the device to operate in request mode whereas a
value of SAMPLE_MODE (2) operates the device in sample mode. Valid
devices are:

Name device Device

LOCATOR 1 Locator

VALUATOR 2 Valuator

CHOICE 3 Choice

STRING 4 String

BINDING contrl[0] = 33;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = device;
intin[1] = mode;

vdi();

return intout[0];

RETURN VALUE vsin_mode() returns mode.

COMMENTS Using this function will cause the AES to function improperly.

SEE ALSO vrq_valuator(), vrq_string(), vrq_choice(), vrq_locator(), vsm_valuator(),
vsm_string(), vsm_choice(), vsm_locator()

vsl_color()
WORD vsl_color(handle, color)
WORD handle, color;

vsl_color() sets the color for line-drawing functions and objects with perimeters.

OPCODE 17

AVAILABILITY Supported by all drivers.

7.134 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
define for line-drawing.

BINDING contrl[0] = 17;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = color;

vdi();

return intout[0];

RETURN VALUE This function returns the new color set (within bounds).

SEE ALSO vst_color(), vsm_color(), vsf_color()

vsl_ends()
VOID vsl_ends(handle, start, end)
WORD handle, start, end;

vsl_ends() sets the style of end point for the starting and ending points of lines
drawn by the VDI in line-drawing functions and perimeter drawing.

OPCODE 108

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. start and end specify the type of end
cap to use at the start and end of lines respectively as follows:

Name start/end Shape

SQUARE 0

ARROWED 1

ROUND 2

BINDING contrl[0] = 108;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

vsl_type() – 7.135

T H E A T A R I C O M P E N D I U M

intin[0] = start;
intin[1] = end;

vdi();

SEE ALSO vsl_type()

vsl_type()
WORD vsl_type(handle, type)
WORD handle, type;

vsl_type() defines the style of line used in line-drawing functions and perimeter
drawing.

OPCODE 15

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. type defines the style of line as
follows:

Name type Style

SOLID 0

LDASHED 1

DOTTED 2

DASHDOT 3

DASH 4

DASHDOTDOT 5

USERLINE 6
User-defined with vsl_udsty() .

BINDING contrl[0] = 15;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.136 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = type;

vdi();

return intout[0];

RETURN VALUE vsl_style() returns the newly set line type.

SEE ALSO vsl_udsty()

vsl_udsty()
VOID vsl_udsty(handle, pattern)
WORD handle, pattern;

vsl_udsty() sets the user-defined line type.

OPCODE 113

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. pattern is a WORD which defines
the USERLINE style. It is essentially a bit mask which is applied to a solid line
and repeated along the length of the line. A value of 0xFFFF would create a solid
line. A value of 0xAAAA would produce a line where every other pixel was set.

BINDING contrl[0] = 113;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = pattern;

vdi();

COMMENTS You must call vsl_style(handle, 6) to actually utilize this style.

SEE ALSO vsl_style()

vsl_width() – 7.137

T H E A T A R I C O M P E N D I U M

vsl_width()
VOID vsl_width(handle, width)
WORD handle, width;

vsl_width() determines the width of lines drawn with line-drawing functions and
as perimeters to other objects.

OPCODE 16

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. width specifes the width future lines
drawn will be.

BINDING contrl[0] = 16;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = width;

vdi();

COMMENTS The VDI is only capable of drawing lines an odd number of pixels thick. Values
will be rounded down to the first odd number.

Setting a line width higher than 1 may nullify line styles other than solid. Check
vq_extnd() for details.

SEE ALSO vq_extnd()

vsm_choice()
WORD vsm_choice(handle, xout)
WORD handle;
WORD *xout;

vsm_choice() returns the current value of the ‘choice’ device.

OPCODE 30

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

7.138 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. xout points to a WORD which is
filled in on function exit with the current value of the choice device.

BINDING contrl[0] = 30;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*xout = intout[0];

return contrl[4];

RETURN VALUE vsm_choice() returns 1 if an input from the ‘choice’ device was made or 0
otherwise.

SEE ALSO vsin_mode(), vrq_choice()

vsm_color()
WORD vsm_color(handle, color)
WORD handle, color;

vsm_color() defines the color used to render markers.

OPCODE 20

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
define for markers.

BINDING contrl[0] = 20;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vsm_color() returns the new marker color actually set (within bounds).

SEE ALSO v_pmarker(), vsl_color(), vst_color(), vsf_color()

vsm_height() – 7.139

T H E A T A R I C O M P E N D I U M

vsm_height()
WORD vsm_height(handle, size)
WORD handle, size;

vsm_height() sets the height of markers.

OPCODE 19

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. size specifies the height (and width)
of markers to draw in pixels.

BINDING contrl[0] = 19;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = size;

vdi();

return intout[0];

RETURN VALUE vsm_height() returns the marker height actually set.

COMMENTS The DOT marker is not affected by this call. It is always one pixel high and wide.

SEE ALSO v_pmarker()

vsm_locator()
WORD vsm_locator(handle, mx, my, xout, yout, term)
WORD handle, mx, my;
WORD *xout, *yout, *term;

vsm_locator() receives data from the ‘locator’ device in sample mode.

OPCODE 28

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. The mouse pointer is initially drawn

7.140 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

at location (mx, my). The call returns with the final position of the mouse in the
WORDs pointed to by xout and yout.

The WORD pointed to by term will be filled in with a value which specifies the
ASCII value of the key pressed. term will be set to 0x20 if the left mouse button
was pressed or 0x21 if the right mouse button was pressed.

BINDING contrl[0] = 28;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();

*xout = ptsout[0];
*yout = ptsout[1];

*term = intout[0];

return ((contrl[4] << 1) | contrl[2]);

RETURN VALUE vsm_locator() returns one of the following based on its result:

Return Value Meaning

0 Mouse has not moved nor was any key pressed.

1 Mouse has been moved (xout and yout are valid).

2 Key or mouse button has been struck (term is valid).

3 Mouse has moved and a key or mouse button has been struck (xout, yout,
and term are valid).

CAVEATS Using this call will confuse the AES.

SEE ALSO vrq_locator(), vsin_mode()

vsm_string()
WORD vsm_string(handle, maxlen, echo, echoxy, str)
WORD handle, maxlen, echo;
WORD *echoxy;
char *str;

vsm_string() retrieves input from the ‘string’ device.

OPCODE 31

vsm_type() – 7.141

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to by str up to (maxlen + 1) characters. If echo is
set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to by outxy. If echo is set to 0, no echoing is performed.

BINDING WORD i;

contrl[0] = 31;
contrl[1] = 1;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = echoxy[0];
ptsin[1] = echoxy[1];

vdi();

for(i = 0;i < contrl[4];i++)
str[i] = (char)intout[i];

return contrl[4];

RETURN VALUE vsm_string() returns the number of characters actually read.

CAVEATS Using this function will confuse the AES.

COMMENTS Though this binding does not allow for it, if maxlen is specified as negative, then
as many as (|maxlen| + 1) characters will be read as keycodes rather than ASCII
codes. The values in intout will occupy the full WORD rather than just the lower
eight bits. A custom binding could be used to take advantage of this.

SEE ALSO vsin_mode()

vsm_type()
WORD vsm_type(handle, type)
WORD handle, type;

vsm_type() sets the current type of marker.

OPCODE 18

7.142 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. type changes the marker type as follows:

Name type Shape

MRKR_DOT 1 Single Pixel

MRKR_PLUS 2

MRKR_ASTERISK 3

MRKR_BOX 4

MRKR_CROSS 5

MRKR_DIAMOND 6

— 7... Device Dependent

BINDING contrl[0] = 18;
contrl[1] = 0;
contrl[3] = type;
contrl[6] = handle;

intin[0] = type;

vdi();

RETURN VALUE vsm_type() returns the type of marker actually set.

vsm_valuator() – 7.143

T H E A T A R I C O M P E N D I U M

SEE ALSO v_pmarker()

vsm_valuator()
VOID vsm_valuator(handle, x, xout, term, status)
WORD handle, x;
WORD *xout, *term, *status;

vsm_valuator() retrieves input from the ‘valuator’ device in sample mode.

OPCODE 29

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. x sets the intial value of the
‘valuator’. The WORD pointed to by xout is filled in with the final value of the
device. If a key was pressed its ASCII code is returned in the WORD pointed to
by term. The WORD pointed to by status contains a value as follows:

status Meaning

0 No input was taken.

1 Valuator changed.

2 Key press occurred.

BINDING contrl[0] = 29;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = x;

vdi();

*xout = intout[0];
*term = intout[1];

*status = contrl[4];

SEE ALSO vsin_mode(), vrq_valuator()

7.144 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsp_message()
VOID vsp_message(handle)
WORD handle;

vsp_message() causes the suppression of palette driver messages from the screen.

OPCODE 5

SUB-OPCODE 95

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 95;
contrl[6] = handle;

vdi();

SEE ALSO vqp_error()

vsp_save()
VOID vsp_save(handle)
WORD handle;

vsp_save() saves the current state of the driver to disk.

OPCODE 5

SUB-OPCODE 94

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 94;
contrl[6] = handle;

vdi();

vsp_state() – 7.145

T H E A T A R I C O M P E N D I U M

vsp_state()
VOID vsp_state(handle, port, film , lightness, interlace, planes, indexes)
WORD handle, port, film , lightness, interlace, planes;
WORD * indexes;

vsp_state() sets the palette driver state.

OPCODE 5

SUB-OPCODE 93

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. port specifies the communication
port number of the camera device. film specifies the index of the desired type of
film (0–4).

lightness specifies the modification to apply to the camera’s default f-stop setting
(-3–3). A value of 0 uses the default setting. A value of -3 results in an exposure of
half of the default length whereas a value of 3 doubles the exposure time. interlace
is set to 0 for non-interlaced or 1 for interlaced output.

planes specifies the number of planes to output (1–4). indexes points to an array of
16 WORDs which define the color codes for the palette.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 20;
contrl[5] = 93;
contrl[6] = handle;

intin[0] = port;
intin[1] = film;
intin[2] = lightness;
intin[3] = interlace;
intin[4] = planes;
for(i = 0;i < 16;i++)

intin[i + 5] = indexes[i];

vdi();

SEE ALSO vqp_state()

7.146 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_alignment()
VOID vst_alignment(handle, halign, valign, *hout, *vout)
WORD handle, halign, valign;
WORD *hout, *vout;

vst_alignment() affects the vertical and horizontal alignment of normal and
justified text.

OPCODE 39

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. halign and valign affects where the
coordinate specified by v_gtext() or v_justified() actually applies to as follows:

Compendium

Left Justified (0) Center Justified (1) Right Justified(2)

halign:

valign:

Top (5)
Ascent Line (2)
Half Line (1)

Base Line (0)
Descent (4)
Bottom (3)

On return, the WORDs pointed to by hout and vout are filled in with the values
actually set.

BINDING contrl[0] = 39;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = halign;
intin[1] = valign;

vdi();

*hout = intout[0];
*vout = intout[1];

SEE ALSO v_gtext(), v_justified()

vst_arbpt() – 7.147

T H E A T A R I C O M P E N D I U M

vst_arbpt()
WORD vst_arbpt(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
WORD point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_arbpt() selects any point size for an outline font.

OPCODE 246

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. point specifies the point size at
which to render outline text.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 246;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_arbpt() returns the point size actually selected.

COMMENTS This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS’ file.

To specify a fractional point size, use vst_arbpt32().

SEE ALSO vst_arbpt32(), vst_point(), vst_height()

7.148 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_arbpt32()
fix31 vst_arbpt(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
fix31 point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_arbpt32() selects a fractional point size for an outline font.

OPCODE 246

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. point specifies the point size at
which to render outline text as a fix31 value.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 246;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 16);
intin[1] = (WORD)(point & 0xFFFF);

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return (((fix31)intout[0] << 16) | (fix31)intout[1]);

RETURN VALUE vst_arbpt32() returns the point size actually selected.

COMMENTS This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS’ file.

SEE ALSO vst_arbpt(), vst_point(), vst_height()

vst_charmap() – 7.149

T H E A T A R I C O M P E N D I U M

vst_charmap()
VOID vst_charmap(handle, mode)
WORD handle, mode;

vst_charmap() chooses between the standard Atari ASCII interpretation of text
strings or translation of Bitstream character indexes.

OPCODE 236

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode should be MAP_ATARI (1) to
specify Atari ASCII characters or MAP_BITSTREAM (0) for Bitstream
mappings.

BINDING contrl[0] = 236;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

COMMENTS Bitstream character indexes are WORD sized rather than BYTE sized. A list of
Bitstream character mappings can be found in Appendix G.

vst_color()
WORD vst_color(handle, color)
WORD handle, color;

vst_color() sets the current text color.

OPCODE 22

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
apply to text.

BINDING contrl[0] = 22;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.150 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = color;

vdi();

return intout[0];

RETURN VALUE vst_color() returns the text color actually set (within bounds).

SEE ALSO vsl_color(), vsm_color(), vsf_color()

vst_effects()
WORD vst_effects(handle, effects)
WORD handle, effects;

vst_effects() defines which special effects are to be applied to text.

OPCODE 106

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. effects is a bit mask which specifies
one or more special effects to apply to text as follows:

Name Bit Meaning

THICKENED 0 Thickened

LIGHT 1 Lightened

SKEWED 2 Skewed

UNDERLINED 3 Underlined

OUTLINED 4 Outlined

SHADOWED 5 Shadowed (not currently supported)

BINDING contrl[0] = 106;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = effects;

vdi();

return intout[0];

RETURN VALUE vst_effects() returns the actual effects set by the call.

COMMENTS Special effects do not, in general, work well with outline text (besides

vst_error() – 7.151

T H E A T A R I C O M P E N D I U M

underlining). To compensate, most type families have bold and italic faces in
addition to the vst_skew() call.

SEE ALSO vst_skew()

vst_error()
VOID vst_error(handle, mode, error)
WORD handle, mode;
WORD *error;

vst_error() provides a method to obtain errors from GDOS and suppress text
messages on screen.

OPCODE 245

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode specifies the error reporting
mode. A value of SCREEN_ERROR (1) (default) causes error messages to be
outputted to the screen as text.

A value of APP_ERROR (0) suppresses these messages and instead places an
error code in the WORD pointed to by error whenever an error occurs leaving it
up to the application to process errors correctly. Prior to making this call and after
each reported error, the application is responsible for resetting the value pointed
to by error to 0.The following is a list of possible error codes:

Name error Meaning

NO_ERROR 0 No error.

CHAR_NOT_FOUND 1 Character not found in font.

FILE_READERR 8 Error reading file.

FILE_OPENERR 9 Error opening file.

BAD_FORMAT 10 Bad file format.

CACHE_FULL 11 Out of memory/cache full.

MISC_ERROR -1 Miscellaneous error.

BINDING contrl[0] = 245;
contrl[1] = 0;
contrl[3] = 3;
contrl[6] = handle;

intin[0] = mode;
*(LONG *)&intin[1] = (LONG)error;

7.152 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Once setting the error mode to 0, an application should check the error variable
after each of the following calls:

v_gtext() v_justified() vst_point()
vst_height() vst_font() vst_arbpt()
vqt_advance() vst_setsize() vqt_fontinfo()
vqt_name() vqt_width() vqt_extent()
v_opnwk() v_opnvwk() vst_load_fonts()
vst_unload_fonts() v_ftext() vqt_f_extent()

vst_font()
WORD vst_font(handle, index)
WORD handle, index;

vst_font() sets the current text font.

OPCODE 21

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. index specifies the index (as returned
by vqt_name()) of the font to enable.

BINDING contrl[0] = 21;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = index;

vdi();

return intout[0];

RETURN VALUE vst_font() returns the index of the font actually set.

SEE ALSO vqt_name()

vst_height() – 7.153

T H E A T A R I C O M P E N D I U M

vst_height()
VOID vst_height(handle, height, wchar, hchar, wcell, hcell)
WORD handle, height;
WORD *wchar, *hchar, *wcell, *hcell;

vst_height() sets the height of the current text face (in pixels).

OPCODE 12

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. height specifies the height (in pixels)
at which to render text. Upon return, the WORDs pointed to by wchar, hchar,
wcell, and hcell will be filled in with the width and height of the character and the
width and height of the character cell respectively.

BINDING contrl[0] = 12;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = 0;
ptsin[1] = height; /* Passed in ptsin[1] because of VDI bug.

*/

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

COMMENTS vst_height() works on both bitmap and outline fonts. The font will be scaled to fit
within the height given. This doesn’t always give good results with bitmap text.

SEE ALSO vst_point(), vst_arbpt()

vst_kern()
VOID vst_kern(handle, tmode, pmode, tracks, pairs)
WORD handle, tmode, pmode;
WORD * tracks, *pairs;

vst_kern() sets the track and pair kerning values.

7.154 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 237

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. tmode specifies the track kerning
mode as follows:

Name tmode Meaning

TRACK_NONE 0 No track kerning

TRACK_NORMAL 1 Normal track kerning

TRACK_TIGHT 2 Tight track kerning

TRACK_VERYTIGHT 3 Very tight track kerning

Setting pmode to PAIR_ON (1) turns pair kerning on. Setting it to PAIR_OFF (0)
turns pair kerning off.

The WORD pointed to by tracks is filled in with the track kerning mode actually
set. pairs points to a WORD which is filled in with the number of defined
character kerning pairs.

BINDING contrl[0] = 237;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = tmode;
intin[1] = pmode;

vdi();

*tracks = intout[0];
*pairs = intout[1];

SEE ALSO vqt_trackkern(), vqt_pairkern()

vst_load_fonts()
WORD vst_load_fonts(handle, rsrvd)
WORD handle, rsrvd;

vst_load_fonts() loads disk-based font information into memory.

OPCODE 119

AVAILABILITY Available with any form of GDOS.

vst_point() – 7.155

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. rsrvd is currently unused and must be
0.

BINDING contrl[0] = 119;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = rsrvd;

vdi();

RETURN VALUE vst_load_fonts() returns the number of extra fonts loaded.

COMMENTS Calling this function more than once before calling vst_unload_fonts() will return
0.

SEE ALSO vst_unload_fonts(), vqt_name()

vst_point()
WORD vst_point(handle, point, wchar, hchar, wcell, hcell)
WORD handle, height;
WORD *wchar, *hchar, *wcell, *hcell;

vst_point() sets the height of the current text face in points (1/72 inch).

OPCODE 107

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. point specifies a valid point size to
set the current text face to. This means an appropriate bitmap font or a point size
enumerated in the ‘EXTEND.SYS’ file.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 107;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

7.156 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_point() returns the point size actually set.

COMMENTS If a point size which doesn’t exist for the current face is selected, the next valid
size down is selected.

SEE ALSO vst_arbpt(), vst_height()

vst_rotation()
WORD vst_rotation(handle, angle)
WORD handle, angle;

vst_rotation() sets the angle at which graphic text is drawn.

OPCODE 13

AVAILABILITY Supported by all drivers. For specific character rotation abilities, check the values
returned in vq_extnd().

PARAMETERS handle specifies a valid workstation handle. angle specifies the angle at which to
rotate text in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 13;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = angle;

vdi();

return intout[0];

vst_scratch() – 7.157

T H E A T A R I C O M P E N D I U M

RETURN VALUE vst_rotation() returns the value of rotation actually set.

COMMENTS Bitmap fonts may only be rotated at 0, 90, and 270 degrees. Outline fonts may be
rotated at any angle with FSM.

vst_scratch()
VOID vst_scratch(handle, mode)
WORD handle, mode;

vst_scratch() allows FSMGDOS or SpeedoGDOS to change its method of
allocating a scratch buffer for better efficiency.

OPCODE 244

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode specifies the scratch buffer
allocation mode as follows:

Name mode Meaning

SCRATCH_BOTH 0 Scratch buffers should be allocated which are large
enough for FSM/Speedo and bitmap fonts with any
combination of special effects.

SCRATCH_BITMAP 1 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts with no effects and
bitmap fonts with effects.

SCRATCH_NONE 2 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts and bitmap fonts with no
special effects.

BINDING contrl[0] = 244;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

COMMENTS Atari recommends that at least mode 1 be set prior to a vst_load_fonts() call to
prevent scratch buffer overruns.

The size of the scratch buffer is based on the size of the largest point size specified in
the ‘EXTEND.SYS’ file. Attempting to add effects to a character higher in point size
than this will cause a buffer overrun.

7.158 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_setsize()
WORD vst_setsize(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
WORD point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_setsize() sets the width of outline characters.

OPCODE 252

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A value for point
equivalent to the same point size specified in vst_arbpt() will result in a correctly
proportioned character.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_setsize() returns the size actually set.

COMMENTS This call only works with outline fonts. At the next vst_point(), vst_height(), or
vst_arbpt() the size will be reset to the correct proportions (width in points =
height in points).

To set a fractional size, use vst_setsize32().

vst_setsize32() – 7.159

T H E A T A R I C O M P E N D I U M

SEE ALSO vst_arbpt(), vst_setsize32()

vst_setsize32()
fix31 vst_setsize(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
fix31 point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_setsize() sets the width of outline characters as a fix31 fractional value.

OPCODE 252

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A value for point
equivalent to the same point size specified in vst_arbpt() will result in a correctly
proportioned character.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 8);
intin[1] = (WORD)point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return ((fix31)intout[0] << 16) | (fix31)intout[1];

RETURN VALUE vst_setsize32() returns the size actually set.

COMMENTS This call only works with outline fonts. At the next vst_point(), vst_height(), or
vst_arbpt() the size will be reset to the correct proportions (width in points =
height in points).

7.160 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO vst_setsize(), vst_arbpt()

vst_skew()
WORD vst_skew(handle, skew)
WORD handle, skew;

vst_skew() sets the skew amount for fonts.

OPCODE 253

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. skew specifies the amount to skew in
tenths of degrees from -900 to 900. Negative values skew to the left and positive
values skew to the right. skew values of -900 or 900 will result in a flat line.

BINDING contrl[0] = 253;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = skew;

vdi();

return intout[0];

RETURN VALUE vst_skew() returns the skew value actually set.

COMMENTS This call should only be used with outline fonts. Note that this call generates a true
‘skew’ effect independent of that generated by vst_effects() which is an
algorithmic ‘skew’. The algorithmic ‘skew’ may be used on bitmap fonts but is
rather unpleasant applied to outline fonts.

SEE ALSO vst_effects()

vst_unload_fonts()
VOID vst_unload_fonts(handle, select)
WORD handle, select;

vst_unload_fonts() frees memory associated with disk-loaded fonts.

OPCODE 120

vswr_mode() – 7.161

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available under any form of GDOS.

PARAMETERS handle specifies a valid workstation handle. select is reserved and should be 0.

BINDING contrl[0] = 120;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = select;

vdi();

SEE ALSO vst_load_fonts()

vswr_mode()
WORD vswr_mode(handle, mode)
WORD handle, mode;

vswr_mode() defines the writing mode for rendering VDI objects.

OPCODE 32

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. mode specifies a writing mode as
follows:

Name mode Example

MD_REPLACE 1

+ =

MD_TRANS 2

+ =

7.162 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

MD_XOR 3

+ =

MD_ERASE 4

+ =

BINDING contrl[0] = 32;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

return intout[0];

RETURN VALUE vswr_mode() returns the writing mode set.

COMMENTS In true-color modes, MD_ERASE and MD_TRANS work a little differently, they
write (or avoid writing on) whatever color is currently held in VDI color 0 (as
opposed to the actual register reference of 0).

vt_alignment()
VOID vt_alignment(handle, dx, dy)
WORD handle, dx, dy;

vt_alignment() allows an offset to be specifies that will be applied to all
coordinates output from the graphics tablet.

OPCODE 5

SUB-OPCODE 85

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. dx and dy are the delta offsets from

vt_axis() – 7.163

T H E A T A R I C O M P E N D I U M

(0, 0) to apply to values from the graphics tablet.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 85;
contrl[6] = handle;

intin[0] = dx;
intin[1] = dy;

vdi();

COMMENTS This call is used to ‘fine-tune’ the true starting point of the tablet.

SEE ALSO vt_origin()

vt_axis()
VOID vt_axis(handle, xres, yres, *xout, *yout)
WORD handle, xres, yres;
WORD *xout, *yout;

vt_axis() sets the horizontal and vertical resolution for the graphics tablet (in
lines).

OPCODE 5

SUB-OPCODE 82

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xres and yres specify the new
horizontal and vertical resoultion of the tablet respectively. Upon return, the
WORDs pointer to by xout and yout are filled in with the resolution actually set.

BINDING contrl[0]= 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 82;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[0];
*yout = intout[1];

7.164 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO vt_alignment(), vt_origin()

vt_origin()
VOID vt_origin(handle, xorigin, yorigin)
WORD handle, xorigin, yorigin;

vt_origin() sets the origin point for the tablets’ upper-left point.

OPCODE 5

SUB-OPCODE 83

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xorigin and yorigin specify the new
upper-left point recognized by the tablet.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 83;
contrl[6] = handle;

intin[0] = xorigin;
intin[1] = yorigin;

vdi();

SEE ALSO vt_axis(), vt_alignment()

vt_resolution()
VOID vt_resolution(handle, xres, yres, *xout, *yout)
WORD xres, yres;
WORD *xout, *yout;

vt_resolution() sets the horizontal and vertical resolution of the graphics tablet (in
lines per inch).

OPCODE 5

SUB-OPCODE 81

vt_resolution() – 7.165

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xres and yres specify the new
horizontal and vertical resolution values for the tablet respectively. Upon return,
the WORDs pointed to by xout and yout are filled in with the values actually set.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 81;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[0];
*yout = intout[1];

SEE ALSO vt_axis()

