
T H E A T A R I C O M P E N D I U M

– CHAPTER 7 –

VDI

Overview – 7.3

T H E A T A R I C O M P E N D I U M

Overview

The Virtual Device Interface (VDI) is a collection of drivers designed to provide applications
with a device-independent method of accessing graphically based devices such as monitors,
printers, and plotters. Applications which are written to use the VDI rather than directly
accessing hardware will be compatible with all currently available devices including those
which have not yet been developed.

All Atari systems with TOS in ROM include a VDI screen driver adaptable to each display
resolution the system can support. Soft-loaded screen drivers and drivers for other devices are
loaded through a VDI sub-system called the Graphics Device Operating System (GDOS).

The GDOS system is disk-loaded as a TSR utility at bootup. It loads device drivers based upon
the contents of its configuration file(s).

Applications wishing to use the GDOS extensions must verify its presence using the method
described later in this chapter. If an application’s output will be limited to the screen and no font
other than the system font is needed, then the presence of GDOS is not mandatory.

VDI Workstations

Every system call made to the VDI must include a workstation handle. This handle is a unique
integer which identifies the device and current attribute array. Workstation handles are returned
by the VDI calls v_opnwk() or v_opnvwk().

Workstations provide a lookup array of attributes such as line width, text color, clipping state,
etc. that are unique to it.

Physical Workstations
Each device must be initialized by opening its physical workstation. Opening a physical
workstation causes all drawing and clipping attributes to be reset and the current page (display)
to be reset to the default background color. Only one physical workstation may be opened to a
single device at any given time.

The screen device’s physical workstation is automatically initialized by the AES upon bootup.
Its physical workstation handle may be obtained from the AES call graf_handle().

Devices such as printers and plotters must have their physical workstation opened by the
application wishing to utilize them. When opening a physical workstation the application must
specify a device ID which identifies the device to open. Device identification codes are
assigned as follows:

7.4 – VDI

T H E A T A R I C O M P E N D I U M

VDI Device
Identification Numbers
Screen 1–10
Plotters 11–20
Printers 21–30
Metafiles 31–40
Cameras 41–50
Tablets 51–60
Memory 61–70
Other 71–

These values correspond to the value listed in the leftmost column of the user’s ‘ASSIGN.SYS’
file. The following code segment demonstrates opening a physical workstation to the printer
device with ID #21. It is important to note that the function assumes that the presence of GDOS
has been tested for and was verified.

work_in[0] is set to the desired device ID and work_in[1-9] are filled in with common defaults
for workstation attributes. work_in[10] is set to 2 to indicate raster coordinates as explained
later in this chapter. The function returns a non-zero value if an error occurred.

WORD work_in[11],work_out[57];
WORD handle;

WORD
printer_open(VOID)
{

WORD i;

work_in[0] = 21;
for(i = 1;i < 10; work_in[i++] = 1);
work_in[10] = 2;

v_opnwk(work_in,&handle,work_out);

return (handle == 0);
}

Virtual Workstations
Each physical workstation may have multiple virtual workstations opened which allow
individual applications to maintain separate workstation attributes. In fact, a single application
may open multiple virtual workstations to the same device to manage workstation attributes
more efficiently. Opening a virtual workstation does not affect the current contents of the
display.

Most GEM applications will open a virtual workstation to the current screen device upon
initialization. The following code segment illustrates opening a virtual workstation to the display
device.

The device identification code for the display device must be specified as Getrez() + 2 for all
VDI features to work correctly. All other parameters are passed the same as the example for

Workstation Specifics – 7.5

T H E A T A R I C O M P E N D I U M

opening a physical workstation except that handle must contain the physical workstation handle
of the device for which you wish to obtain a virtual workstation handle.

A more programmer-friendly method of opening workstations involves the use of the
VDI_Workstation structure which is discussed in the reference entry for V_Opnvwk()

WORD work_in[11],work_out[57];
WORD handle;
WORD wcell, hcell, wbox, hbox;

WORD
screen_open(VOID)
{

WORD i;

handle = graf_handle(&wcell, &hcell, &wbox, &hbox);

work_in[0] = Getrez() + 2;
for(i = 1;i < 10;work_in[i++] = 1);
work_in[10] = 2;

v_opnvwk(work_in, &handle, work_out);

return (handle == 0);
}

Workstation Specifics

Coordinate Systems
The VDI defaults to the usage of Raster Coordinates (RC) which places the origin at the upper-
left of the page or display. As an example, the coordinate range for the 1040ST’s monochrome
graphics mode is shown here:

(639, 399)

(0, 0)

RC coordinate ranges vary with the device. It is up to the application to interpret and scale the
size and position of its output appropriately.

With the addition of GDOS, the VDI gains the ability to utilize Normalized Device Coordinates
(NDC). When using NDC, GDOS translates and scales all coordinates to the device as

7.6 – VDI

T H E A T A R I C O M P E N D I U M

appropriate. All devices using NDC will have their origin at the lower-left hand corner of the
display or page as follows:

(32767, 32767)

(0, 0)

Using NDC provides an excellent manner of reducing the overhead of having to internally scale
every coordinate, however, applications which depend on the proper aspect ratio for their output
should consider managing coordinates internally.

Rendering Graphics
Each VDI output function uses attributes set by other related VDI functions to determine
characteristics such as line width, text face, and color. The following table lists VDI attribute
calls and the functions they affect.

To output a VDI object, set each attribute as desired and then make the appropriate call. For
example, to output a line of text in the System font at 9 point colored red, make the following
sequence of calls.

vst_font(handle, 1); /* Select the System Font */
vst_point(handle, 9);
vst_color(handle, 2);
v_ftext(handle, 10, 10, “The Atari Compendium”);

Generalized Device Primitives
GDP’s (Generalized Device Primitives) are basic drawing components available through the
VDI . All current device drivers support all GDP’s though specialized drivers may not be able
to. intout[14-24] may be used to determine the presence of GDP’s. Currently there are 10
supported GDP’s as follows:

Workstation Specifics – 7.7

T H E A T A R I C O M P E N D I U M

GDP
1 Bar (Rectangle)
2 Arc
3 Pie Slice
4 Circle
5 Ellipse
6 Elliptical Arc
7 Elliptical Pie
8 Rounded Rectangle
9 Filled Rounded

Rectangle
10 Justified Graphics Text

VDI Rectangles
Several VDI functions require that a rectangle in VDI format be passed to them. VDI rectangles
are different from AES rectangles in the manner in which they are specified.

To correctly define a VDI rectangle you must specify two coordinate pairs one representing the
upper-left point of the rectangle and the other specifying the lower-right as follows:

(x2, y2)

(x1, y1)

The following two functions provide simple conversion between AES GRECTs and VDI
rectangles in an array.

VOID
Grect2xy(GRECT *g, short *pxy)
{

pxy[0] = g.g_x;
pxy[1] = g.g_y;
pxy[2] = g.g_x + g.g_w - 1;
pxy[3] = g.g_y + g.g_h - 1;

}

VOID
Xy2Grect(short *pxy, GRECT *g)
{

g.g_x = pxy[0];
g.g_y = pxy[1];
g.g_w = pxy[2] - pxy[0] + 1;
g.g_h = pxy[3] - pxy[1] + 1;

}

7.8 – VDI

T H E A T A R I C O M P E N D I U M

Device Types vs. Required Functions
Not all VDI functions are supported by all drivers. The presence of GDP functions may be
checked using the information returned in the intout array after a v_opnwk() call. Other calls
may be checked for by entering a test call and comparing returned information with what would
be expected.

In addition, each type of driver has a certain number of required functions which must be
supported by the device. Each entry in the VDI Function Reference specifies the support
required for a function.

 Write Modes
All VDI graphics primitives are subject to one of four writing modes set by vswr_mode(), with
the exception of vro_cpyfm() which is passed one of sixteen writing modes.

The following logic tables illustrate the effects of each of the four primary modes. Graphic
examples can be found under the reference entry for vswr_mode().

Mode Logic
Replace Destination = Source
Transparent Destination = Source OR Destination
XOR Destination = Source XOR Destination
Reverse Transparent Destination = (NOT Source) AND Destination

Using Color

The color capabilities of VDI devices can be placed into three categories as follows.
Determining which category a device falls into is accomplished by examining the return values
from v_opnvwk(), v_opnwk(), and vq_extnd().

Categories

v_opn/v/wk()
work_out[13]

{ colors }

vq_extnd()
work_out[5]

{ lut }

Monochrome Device1 2 0
Palette-Based Device >= 2 1
True Color Device > 2 0

1Sometimes monochrome devices appear as palette-based devices with two available colors.

VDI Raster Forms – 7.9

T H E A T A R I C O M P E N D I U M

Monochrome Devices
Monochrome devices are only capable of displaying one color. Often, monochrome devices are
instead represented by palette-based devices with two fixed colors.

Palette-Based Devices
Palette-based devices have a fixed number of colors that may be rendered on screen
simultaneously. Each pixel value is used to index into the palette to decide what color to
display. For instance, if you change VDI color #2 to green, draw a box with that color index,
and then change VDI color #2 to red, the box will appear first in green and then turn red.

The first 16 VDI color registers are used by the operating system and should be avoided. If your
application must change them, they should be restored when no longer needed.

True Color Devices
True-color devices allow each pixel to have a unique color value. Rather than palette entries,
colors (work_out[13]) corresponds to the number of available virtual pens. Drawing is
accomplished by using these pens, however, unlike using a palette, changing the color of a pen
does not change any pixel’s color drawn with that pen on the screen.

Whatever color is stored in virtual pen #0 is considered the background color for the purpose of
computing write modes.

It is possible for external devices, printers, plotters, etc. to behave as if they were a true-color
device.

Color Mapping
Color values are defined in the VDI by specifying a red, green, and blue value from 0–1000.
The VDI will scale the value to the closest color possible. vq_color() can be used to determine
the actual color that was set.

VDI Raster Forms

The VDI handles raster forms using three commands, vro_cpyfm(), vrt_cpyfm() , and
vr_trnfm() . vro_cpyfm() and vrt_cpyfm() are responsible for ‘blitting’ raster images between
memory and a workstation. These functions may also be used to copy images from one location
on a workstation to another. ‘Blitting’ is the process of copying memory from one location to
another. Atari computers use the BLiTTER chip (when one is installed) or a software bit blit
algorithm to quickly move memory. While these calls are designed to transfer screen memory, if
carefully used, they may also be used to transfer other types of memory as well.

vr_trnfm() is responsible for the transformation of images between device-specific and VDI
standard format, the two raster image formats recognized by the VDI . Device-specific format is
limited to images in the format of the source device whereas the second is a generic format
recommended for transporting images to non-standard displays.

7.10 – VDI

T H E A T A R I C O M P E N D I U M

VDI Device-Specific Format
Device-specific format simply mimics the layout of pixels and planes on the source device.
When using vro_cpyfm() and vrt_cpyfm() the source form will be transferred to the destination
form in device-specific format2.

If you intend to save images to disk you should first utilize vr_trnfm() to transform the image
into a VDI standard format so that the image can be successfully ported to any display.

VDI Standard Format
VDI standard format is designed to provide a portable method of specifying raster images which
may be displayed on any device. Images stored in VDI standard format must be transformed with
vr_trnfm() before copying them to a workstation.

Images in VDI standard format appear in memory in a plane-by-plane fashion. All of the bits for
plane #0 appear first followed by the bits for plane #1, and so on for as many planes as exist in
the image.

Images may be easily transferred to devices with a higher number of planes by simply inserting
empty bytes to account for planes not present in the source image. This method will only work,
however, with palette based devices.

Vector Handling

The VDI screen driver is also responsible for managing some hardware vectors responsible for
keyboard and mouse input. The functions available for altering these vectors are vex_motv(),
vex_timv(), vex_curv(), and vex_butv(). For further explanation of these calls please see the
VDI Function Reference.

Use of these functions is not recommended with MultiTOS as these vectors are global and affect
all applications. In addition, results are undefined if two or more non-resident applications
utilized these calls at once.

Existing applications which use these calls must have their program flags set to either supervisor
or global memory protection. See the GEMDOS Overview for a discussion of the program flags.

2The definitions of vro_cpyfm() and vrt_cpyfm() allow for the specification of the format of the source and destination form, however, this
feature is not currently supported by any version of the operating system. Any call which specifies either the source or destination form to
be in device-independent format will fail.

GDOS – 7.11

T H E A T A R I C O M P E N D I U M

GDOS

The Graphics Device Operating System (GDOS) is a disk-based component of the operating
system which allows disk-loadable device drivers and additional fonts to be accessible through
standard VDI calls.

Several versions of Atari GDOS have been released in addition to several third-party GDOS
‘clones’. All of these forms have stayed backward-compatible with GDOS 1.0, however it is
recommended that programs be written to support newer GDOS calls when it can be determined
that a more recent release of GDOS is present.

Each VDI call documented in the VDI Function Reference specifies if GDOS is required, and
if so, what type.

Determining the Version of GDOS Present
A non-standard VDI call is available to check for the presence of GDOS. The following
machine-code subroutine will return a longword result in d0 which can be used to determine the
variety of GDOS present. Beware of older bindings which looked only for the original GDOS
and returned a 1 or 0 as a result.

.text
_vq_gdos:

move.l #-2,d0
trap #2
rts

.end

The longword return value in d0 can be interpreted as follows:

Name Value Meaning
GDOS_NONE -2 No GDOS is installed.

— Any other value. Original GDOS 1.x is installed.
GDOS_FNT 0x5F464E54

‘_FNT’
FONTGDOS is installed.

GDOS_FSM 0x5F46534D
‘_FSM’

FSM GDOS or SpeedoGDOS is installed. For
information on determining the specific variety of
outline GDOS available, see the description of the
‘FSMC’ cookie in Chapter 3: BIOS

7.12 – VDI

T H E A T A R I C O M P E N D I U M

FSM GDOS vs. SpeedoGDOS
Since FSMGDOS (a QMS/Imagen outline font-based GDOS) was never officially released
from Atari (though shipped in limited quantity with third-party products), some changes have
been made to calls in SpeedoGDOS that were never exploited by developers. For that reason,
these calls will only be documented in the Speedo-compatible way in the VDI Function
Reference. This does mean, however, that use of these calls will cause your application to fail
under the original FSMGDOS.

The calls which were affected are v_getoutline(), v_getbitmap_info(), v_killoutline() , and
vqt_get_table(). In addition, use of the new SpeedoGDOS calls vst_charmap(),
vqt_trackkern() , vqt_pairkern() , vqt_fontheader(), vst_kern(), or any of the older calls
when used with the fix31 data type will fail with the older FSM.

To determine the type of outline-font GDOS installed, look for the ‘FSMC’ cookie. The cookie
value is a pointer to a longword which contains the character string ‘_FSM’ for Imagen-based
FSMGDOS or ‘_SPD’ for Speedo-based FSMGDOS.

GDOS 1.x

GDOS 1.0 and the other 1.x versions which followed it was the original GDOS developed by
Digital Research for Atari. It handled only bitmap fonts and was slow compared to the newer
FONTGDOS which now replaces it.

When a v_opnwk() call is made with GDOS installed, a check is done to see if a driver was
assigned to the device ID specified in the ‘ASSIGN.SYS’ file, and if so, loaded.

All VDI calls which specify the returned handle will subsequently be redirected to the driver.

Not all VDI functions are available with every driver. Check the ‘Availability’ heading for each
specific function in the VDI Function Reference for specific availability.

Bitmap Fonts
Bitmap fonts have the ability to be quickly rendered and highly accurate. They do generally
require more disk space and a font file must be available for each point size and aspect ratio
required. Bitmap fonts follow a special naming convention as follows:

ATSS12LS.FNT
Vendor Code

Font Code Point Size
Device Type

The vendor code is a unique two-letter identifier which specifies the creator of the font. The font
code is a two-letter code which abbreviates the font’s name. The point size field specifies the
point size of the font. The device type is a two-letter abbreviation which should match the aspect
ratio of the device as follows:

FONTGDOS – 7.13

T H E A T A R I C O M P E N D I U M

Device Type Destination Ratio
None or HI 91x91 (Screen Devices)

CG 91x45 (Screen Devices)
LS 300x300 (Laser Printers, Inkjets)
EP 120x144 (Lo-Res Dot-Matrix Printers)
LB 160x72 (Lo-Res Dot-Matrix Printers)
SP 180x180 (Med-Res Dot-Matrix Printers)
QD 240x216 (Med-Res Dot-Matrix Printers)
NP 360x360 (High-Res Dot-Matrix Printers)

For a driver to recognize a bitmap font it must be listed in the user’s ‘ASSIGN.SYS’ file and be
of the correct aspect ratio. No extra fonts are made available to applications until a
vst_load_fonts() call is made.

FONTGDOS

FONTGDOS is the successor to GDOS 1.x. As with the original GDOS, FONTGDOS
supports only bitmap fonts. Its differences are improved driver support, support for bezier
curves, improved error handling, and a much quicker response time.

Bezier Curves
FONTGDOS conforms to the PC-GEM/3 file standard with the inclusion of bezier curve
rendering capability with the v_bez() and v_bez_fill() calls. v_bez_on() must be used to allow
FONTGDOS to allocate the memory necessary for bezier rendering. Likewise v_bez_off()
should be used before an application exits to free any memory used for bezier calls.

Error Support
When GDOS 1.x encountered an error condition, it simply wrote an error message at the top of
the display overwriting a portion of the menu bar and display screen. FONTGDOS allows an
application to disengage this behavior and instead return error codes in a global variable. It is
then the applications responsibility to check this variable after calls which may cause an error
condition. See the VDI Function Reference call vst_error() for more information.

FSMGDOS

FSMGDOS was developed by Atari in conjunction with QMS/Imagen Corp. to provide Imagen
outline fonts which could be displayed at any point size, aspect ratio, or device. It provided all
of the improved features of FONTGDOS with outline fonts and caching capability. This version
of GDOS was, however, never officially released. Third-party manufacturers did ship many
copies of this GDOS to the public. In addition, many developers did update their products to
utilize the special features of FSMGDOS.

Most VDI function calls added with this version of GDOS have remained compatible with
SpeedoGDOS, however, some calls which were never used by developers were changed. This

7.14 – VDI

T H E A T A R I C O M P E N D I U M

means that applications written to support SpeedoGDOS may not be backwardly compatible.
For specific compatibility information, consult the VDI Function Reference.

SpeedoGDOS

SpeedoGDOS is a new variety of FSM which employs outline font technology from Bitstream
using Speedo-format outline fonts. In addition, several new calls were added to gain access to
internal font information and provide true WYSIWYG (What-You-See-Is-What-You-Get)
output.

The fix31 Data Type
SpeedoGDOS optionally allows the use of the fix31 data type in some calls for parameters and
return values. Old bindings designed for the Imagen-based FSM will still function properly.
Newer bindings may be written to take advantage of this data type.

The fix31 data type allows for the internal representation and manipulation of floating-point
values without the use of a floating-point library. It is a 32-bit value with a 1-bit sign and a 31-
bit magnitude. Each value specifies a number in 1/65536 pixels. Examples of this data type
follow:

fix31 Floating Point
0x00010000 1.0
0xFFFF0000 -1.0
0x00018000 1.5

Character advances can be simply be added or subtracted to each other using integer arithmetic.
To convert a fix31 unit to an integer (rounding to 0) use the following code:

x_integer = (WORD)(x_fix31 >> 16);

To convert a fix31 to an integer and round it to the closest integer use the following code:

x_integer = (WORD)((x_fix31 + 32768) >> 16);

Use of fix31 values provides higher character placement accuracy and access to non-integer
point sizes. For specific implementation notes, see the VDI Function Reference entries for
vqt_advance32(), v_getbitmap_info(), vst_arbpt32(), and vst_setsize32().

Kerning
SpeedoGDOS outline fonts have the ability to be kerned using two methods. Track kerning is
global for an entire font and has three settings, normal, tight, and extra tight. Pair kerning works
for individual pair groups of characters. In addition, new pairs may be defined as necessary to
produce the desired output.

Kerning is taken into account with v_ftext() and vqt_advance() only when enabled. Use the
calls vst_kern(), vqt_pairkern() , and vqt_trackkern() to access kerning features.

SpeedoGDOS – 7.15

T H E A T A R I C O M P E N D I U M

Caching
All SpeedoGDOS extent and outline rendering calls are cached for improved performance.
Cache files may be loaded or saved to disk as desired to preserve the current state of the cache.
In addition, an application might want to flush the cache before doing an output job to a device
such as a printer to improve performance with new fonts.

The call vqt_cachesize() can be used to estimate the ability of the cache to store data for an
unusually large character and prevent memory overflow errors.

Special Effects
The call vst_scratch() determines the method used when calculating the size of the special
effects buffer. In general an application should not allow the user to use algorithmically
generated effects on Speedo fonts. In most cases, special effects are available by simply
choosing another font.

The problem is that Speedo fonts may be scaled to any size and SpeedoGDOS has no way of
predicting the upper-limit on the size of a character to allocate special effects memory.
Currently, SpeedoGDOS allocates a buffer large enough to hold the largest character possible
from the point sizes in the ‘ASSIGN.SYS’ file and those listed in the ‘EXTEND.SYS’ file. If
your application limits special effects to these sizes then no problems will occur.

If you intend to restrict users to using special effects only with bitmap fonts you may call
vst_scratch() with a mode parameter of 1, memory allocation will be relaxed to only take
bitmap fonts into account. You may also specify a mode parameter of 2 if you plan to allow no
special effects at all. The vst_scratch() call must be made prior to calling vst_load_fonts().

Speedo Character Indexes
Speedo fonts contain more characters than the Atari ASCII set can define. Fonts may be
re-mapped with a CPX using the vqt_get_table() call (this method is not recommended on an
application basis as this call affects all applications in the system).

Another method involves the use of a new call, vst_charmap(). Calling this function with a
mode parameter of 0 causes all functions which take character indexes (like v_ftext(),
vqt_width() , etc.) to interpret characters as WORDs rather than BYTEs and utilize Speedo
International Character Encoding rather than ASCII.

The Function Reference provides two alternate bindings for v_ftext() and v_ftext_offset()
called v_ftext16() and v_ftext_offset16() which correctly output 16-bit Speedo character text
rather than 8-bit ASCII text.

A complete listing of the Bitstream International Character Set is listed in Appendix G: Speedo
Fonts.

Speedo Font IDs

7.16 – VDI

T H E A T A R I C O M P E N D I U M

The function vqt_name() is used with all versions of GDOS to return a unique integer identifier
for each font. Because some bitmap font ID’s conflicted with Bitstream outline font ID’s,
SpeedoGDOS versions 4.20 and higher add 5000 to each of the outline font ID’s to differentiate
them from bitmap fonts.

Device Drivers

Printer and Plotter Drivers
Printer drivers are the most common form of GDOS driver available, though some plotter
drivers do exist. The VDI Function Reference can be used to determine if a particular function
call is required to be available on a particular device. This does not, however, prohibit the
addition of supplementary functions.

Some special printer driver features are available with drivers designed to support them as
follows:

Dot-Matrix Printers

Dot-matrix printers with wide carriages can have their print region expanded by passing a
custom X and Y resolution for the driver in ptsin[0] and ptsin[1] respectively prior to the
v_opnwk() call. In addition, contrl[1] should be set to 1 to indicate the presence of the
parameters.

SLM804

After a v_opnwk() call to an SLM804 driver contrl[0] will contain the MSB and contrl[1] will
contain the LSB of the allocated printer buffer address.

After a v_updwk() call, intout[0] will contain a printer status code as follows:

Name Error Code Meaning
SLM_OK 0x00 No Error
SLM_ERROR 0x02 General Printer Error
SLM_NOTONER 0x03 Toner Empty
SLM_NOPAPER 0x05 Paper Empty

Device Drivers – 7.17

T H E A T A R I C O M P E N D I U M

All Printer Drivers

A user-defined printer buffer may be passed to the v_updwk() call by specifying the address of
the buffer in intin[0] and intin[1] . In addition, contrl[3] must be set to 2 to indicate the new
parameters and contrl[1] must be set to 1 to instruct the VDI to not clear the buffer first.

Camera and Tablet Drivers
As of this writing, no camera or tablet drivers existed for Atari GEM . Several functions are
reserved to support them which were developed under PC-GEM, however, many remain
undocumented. Where documentation was available, those calls are included for completeness
in the VDI Function Reference.

The Metafile Driver
‘META.SYS’ drivers are specially designed drivers which create ‘.GEM’ disk files rather than
produce output on a device. When a metafile device is opened, the file ‘GEMFILE.GEM’ is
created in the current GEMDOS path. The function vm_filename() may be used to change the
filename to which the metafile is written to, however, the file ‘GEMFILE.GEM’ must be deleted
by the application.

When a metafile is opened, several defaults relating to the coordinate space and pixel size are
set. Each pixel is assigned a default width and height of 85 microns (1 micron = 1/25400 inch).
This equates to a default resolution of 300dpi.

The device size is specified where Normalized Device Coordinates (NDC) = Raster
Coordinates (RC). The coordinate space of the metafile has (0, 0) in the lower-left corner and (
32767, 32767) in the upper-right. This coordinate system may be modified with vm_coords().
The size of the actual object space being written to the metafile should also be specified with
vm_pagesize() so that an application may correctly clip the objects when reading.

After changing coordinate space, values returned by vq_extnd() related to pixel width, height
and page size will not change. Also, font metrics returned by functions such as vqt_fontinfo()
and vqt_advance() will remain based on the default metafile size information. In most cases,
text metric information should be embedded based on the workstation metrics of the destination
device (such as a screen or printer) anyway.

The metafile is closed when a v_clswk() call is issued. Other applications which read metafiles
will play back the file by issuing commands in the same order as recorded by the driver. For
more information on the metafile format see Appendix C: Native File Formats.

7.18 – VDI

T H E A T A R I C O M P E N D I U M

The Memory Driver
‘MEMORY.SYS’ includes all of the standard VDI calls yet works only in memory and is not
designed to be output to a device. Normally, the memory driver should be assigned in the user’s
‘ASSIGN.SYS’ file as device number 61. Upon calling v_opnwk() to the memory driver,
contrl[1] should be set to 1 and ptsin[0] and ptsin[1] should contain the X and Y extent of the
memory area. Upon return from the call, contrl[0] and contrl[1] will contain the high and low
WORD respectively of the address of the memory device raster. v_updwk() clears the raster.

VDI Function Calling Procedure

The GEM VDI is accessed through a 68x00 TRAP #2 statement. Prior to the TRAP, register d0
should contain the magic number 0x73 and register d1 should contain a pointer to VDI parameter
block. An example binding is as follows:

.text
_vdi:

move.l #_VDIpb,d1
move.l #$73,d0
trap #2
rts

The VDI parameter block is an array of 5 pointers which each point to a specialized array of
WORD values which contain input parameters and function return values. Different versions of
the VDI support different size arrays. The following code contains the ‘worst case’ sizes for
these arrays. Many newer versions of the VDI support larger array sizes. You can inquire what
the maximum array size that VDI supports by examining the work_out array after a v_opnvwk()
or v_opnwk(). Larger array sizes allow more points to be passed at a time for drawing functions
and longer strings to be passed for text functions. The definition of the VDI parameter block
follows:

.data

_contrl: ds.w 12
_intin: ds.w 128
_ptsin: ds.w 256
_intout: ds.w 128
_ptsout : ds.w 256

_VDIpb: dc.l _contrl, _intin, _ptsin
dc.l _intout, _ptsout

.end

The contrl array contains the opcode and number of parameters being passed the function as
follows:

contrl[x] Contents
0 Function Opcode
1 Number of Input Vertices in ptsin
2 Number of Output Vertices in ptsout

VDI Function Calling Procedure – 7.19

T H E A T A R I C O M P E N D I U M

3 Number of Parameters in intin
4 Number of Output Values in intout
5 Function Sub-Opcode
6 Workstation Handle

7–11 Function Specific

contrl[0] , contrl[1] , contrl[3] , contrl[5] (when necessary), and contrl[6] must be filled in by
the application. contrl[2] and contrl[4] are filled in by the VDI on exit. contrl[7-11] are rarely
used, however some functions do rely on them for function-specific parameters.

For specific information on bindings, see the VDI Function Reference.

