
T H E A T A R I C O M P E N D I U M

– CHAPTER 6 –

AES

Overview – 6.3

T H E A T A R I C O M P E N D I U M

Overview

The Application Environment Services (AES) compose the highest level of the operating
system. The AES uses the VDI , GEMDOS, and XBIOS to provide a global utility library of
calls which provide applications with the GEM interface. Usage of the AES makes application
development simpler and makes user interfaces more consistent. The services provided by the
AES include:

• Application Control/Interaction

• Event Management

• Menu Services

• Object Rendering/Manipulation

• Form Management

• Graphic Utility Functions

• Scrap (Clipboard) Management

• Common Dialog Display

• Window Management

• Resource Management

• Shell (Desktop) Interaction

System-specific AES information and variables may be determined through reserved fields in
the application’s global array (see appl_init()) or by using the various modes of appl_getinfo().

Process Handling

The AES manages two types of user programs. Normal GEM applications have file extensions
of ‘.PRG’, ‘.APP’, or ‘.GTP’. Desk Accessories have file extensions of ‘.ACC’.

Without MultiTOS , the AES can have a maximum of one application and six desk accessories
(four desk accessories under TOS 1.0) executing concurrently. The currently running application
(or the Desktop if no application is running) is given primary control over the system. Desk
accessories are allocated processor time only when the foreground application releases control
by calling one of the event library functions. An application which does not have a standard
event loop (as illustrated below) will cause desk accessories to stop functioning while it is
being executed.

6.4 – AES

T H E A T A R I C O M P E N D I U M

Under MultiTOS , an unlimited amount of applications and desk accessories may be loaded
concurrently1. MultiTOS is a pre-emptive system where all system processes are given time
regardless of other applications.

Applications

When an application is launched, GEM allocates all remaining system memory and loads the
application into this area2. It is the responsibility of the application to free whatever memory it
doesn’t immediately need for its text, data, bss, and stack area. Most high level languages do this
for you in the startup stub linked with every application.

GEM applications begin with an appl_init() function call. This call will return a valid
application ID if the process can be successfully registered or a -1 if it fails. If the call fails, the
application should immediately exit without making any AES calls. Upon success, however, the
ID should be stored for future use within the application. Applications running under MultiTOS
should call menu_register() to display the program title in the application list rather than the
filename.

The next steps a GEM application will follow are variable, however, most GEM applications
will initialize themselves further by performing some or all of the following steps:

• Open a VDI workstation.

• Verify that the computer the application is being run on has the minimum
requirements (screen resolution, OS versions, memory needs, hardware features)
necessary to continue.

• Load the application ‘.RSC’ file and fix it up as necessary.

• Display the menu bar.

• Change the mouse form to an arrow (the AES defaults to a BUSY_BEE shape).

• Enter the application’s main event loop.

The following represents a basic skeleton for an AES application:

#include <AES.H>
#include <VDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>
#include “skel.h”

#define CNTRL_Q 0x11

1Some MultiTOS versions limit this based upon the available space in the leftmost menu.
2TOS 5.0 does allow the user to set limits on the amount of memory allowed to an application.

Applications – 6.5

T H E A T A R I C O M P E N D I U M

int main(int, char *[]);

extern int _AESglobal[15];

short ap_id;
VDI_Workstation ws; /* See entry for V_Opnvwk() in VDI docs */
OBJECT *mainmenu;

char RSCname[] = “skeleton.rsc”;
char menu_title[] = “ Skeleton”;

int
main(int argc, char *argv[])
{

char *altNoVDIWork = “[3][GEM is unable to|allocate a workstation.|The
program must abort.][OK]”;
char *altNoRSC = “[3][The program cannot locate|SKELETON.RSC. Please

ensure|that it resides in the|same directory as|SKELETON.PRG.][OK]”;
short ret,msg[8],kc,quit,dum;

ap_id = appl_init();
if(ap_id == -1)

return -1;

if(!OpenVwork(&ws))
{

graf_mouse(ARROW, 0L);
form_alert(1, altNoVDIWork);
appl_exit();
return -1;

}

if(!rsrc_load(RSCname))
{

graf_mouse(ARROW, 0L);
form_alert(1, altNoRSC);
v_clsvwk(ws.handle);
appl_exit();
return -1;

}

if(_AESglobal[1] == -1) /* MultiTOS present?
*/

menu_register(ap_id, menu_title); /* Yes, make name pretty. */

rsrc_gaddr(R_TREE, MAINMENU, &mainmenu);

menu_bar(mainmenu,1);
graf_mouse(ARROW, 0L);

quit = FALSE;
while(!quit)
{

ret = evnt_multi(MU_MESAG|MU_KEYBD,2,1,1,0,0,0,0,0,0,0,0,0,0,msg,0,0,
&dum,&dum,&dum,&dum,&kc,&dum);

if(ret & MU_MESAG)
{

6.6 – AES

T H E A T A R I C O M P E N D I U M

switch(msg[0])
{

case MN_SELECTED:
switch(msg[3])
{

. /* Other menu selections */

.

.

case mmExit: /* Defined in SKEL.H */
quit = TRUE;
break;

}
break;

}
}

}

if(ret & MU_KEYBD)
{

switch(kc & 0xFF)
{

. /* Other keyboard equivalents */

.

.
case CNTRL_Q:

quit = TRUE;
break;

}
}

}

menu_bar(mainmenu, 0);
v_clsvwk(ws.handle);
rsrc_free();
appl_exit();
return 0;

}

The Command Line
GEM applications, like TOS applications, may be started with a command line (for a detailed
description of command line processing, see Chapter 2: GEMDOS). ‘.PRG’ files and ‘.APP’
files will have items on the command line if a document file which was registered with the
application was double-clicked or if a valid document file was dropped over the application’s
icon in the Desktop. Launching a ‘.GTP’ application will cause the Desktop to prompt the user
for a command line in the same manner as ‘.TTP’ programs are handled. Applications which
find one or more valid document names on their command line should automatically load them
on program start.

Desk Accessories – 6.7

T H E A T A R I C O M P E N D I U M

Desk Accessories

Upon bootup, any files with the extension ‘.ACC’ found in the root directory of the user’s boot
drive will be loaded and executed up until their first event library call. MultiTOS allows desk
accessories to be loaded and unloaded after bootup.

Unlike applications, desk accessories are not given all of available system memory on startup.
They are only allocated enough memory for their text, data, and bss segments. No stack space is
allocated for a desk accessory either. Many high level language stubs reserve space in the BSS
or overwrite startup code to provide a stack but keep in mind that desk accessory stacks are
usually small compared to applications.

As with applications, GEM desk accessories should begin with an appl_init() function call.
Upon success, the ID should be stored and used within a menu_register() call to place the
applications’ name on the menu bar.

Desk accessories, unlike applications, do not begin user interaction immediately. Most desk
accessories initialize themselves and enter a message loop waiting for an AC_OPEN message.
Some desk accessories wait for timer events or custom messages from another application. After
being triggered, they usually open a window in which user interaction may be performed
(dialogs and alerts may also be presented but are not recommended because they prevent
shuffling between other system processes).

Desk accessories should not use a menu bar and should never exit (unless appl_init() fails) after
calling menu_register(). If an error condition occurs which would make the accessory
unusable, simply enter an indefinite message loop.

Any resources loaded by an accessory should be loaded prior to entering the first event loop and
should never be freed after the accessory has called menu_register(). Resource data for desk
accessories should be embedded in the executable rather than being soft-loaded because memory
allocated to a desk accessory is not freed during a resolution change on TOS versions less than
2.06. This causes resource memory allocated by rsrc_load() to be lost to the system after a
resolution change and will likely cause memory fragmentation.

An AC_CLOSE message is sent to an accessory when it is being closed at the request of the
OS. At this point, it should perform any cleanup necessary to release system resources and close
files opened at AC_OPEN (accessory windows will be closed automatically by the AES).
After cleanup, the event loop should be reentered to wait for subsequent AC_OPEN messages.

The following code represents a basic skeleton for an AES desk accessory:

#include <AES.H>
#include <VDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>

6.8 – AES

T H E A T A R I C O M P E N D I U M

int main(int, char *[]);

short ap_id;
VDI_Workstation ws; /* See entry for V_Opnvwk() in VDI docs */

char menu_title[] = “ Skeleton”;

int
main(int argc, char *argv[])
{

char *altNoVDIWork = “[3][GEM is unable to|allocate a workstation.|The
program must abort.][OK]”;
short ret,msg[8],kc,dum;

ap_id = appl_init();
if(ap_id == -1)

return -1;

if(!OpenVwork(&ws))
{

form_alert(1, altNoVDIWork);
appl_exit();
return -1;

}

menu_id = menu_register(ap_id, menu_title); /* Place name on menu bar
*/

for(;;)
{

evnt_mesag(msg);

switch(msg[0])
{

case AC_OPEN:
if(msg[3] == menu_id)

OpenAccessoryWindow();
break;

case AC_CLOSE:
if(msg[3] == menu_id)
{

v_clsvwk(ws.handle);
break;

}
}

}
}

The Environment String – 6.9

T H E A T A R I C O M P E N D I U M

The Environment String

One AES environment string exists in the system. This environment string is the one initially
allocated for the AES by GEMDOS. The AES environment string should not be confused with
GEMDOS environment strings. Each GEMDOS process receives its own environment string
when launched. This string may have been purposely altered (or omitted) by its parent.

The AES environment string is a collection of variables which the AES (and other processes)
may use as global system variables. Environment data may be set by a CPX designed to
configure the environment, in the user’s GEM.CNF file, or by an application.

In actuality, the environment string is actually one or many string entries separated by NULL
bytes with the full list being terminated by a double NULL byte. Examples of environment string
entries include:

PATH=C:\;D:\;E:\BIN\
TEMP=C:\
AE_SREDRAW=0

The environment variable name is followed by an equal sign which is followed by the variable
data. Multiple arguments (such as path names) may be separated by semicolons or commas3.

The AES call shel_envrn() may be used to search for an environment variable and new modes
of shel_write() (after AES version 4.0) may be used to alter environment variables or copy the
entire environment string.

Most versions of the AES contain a bug which causes the ‘PATH’ environment variable to be
set incorrectly upon bootup to ‘PATH=[nul] A:\[nul][nul] ’. If an environment string like this is
found it may be safely reset or simply ignored.

The Event Dispatcher

Most GEM applications and all desk accessories rely on one of the AES event processing calls
to direct program flow. After program initialization, an application enters a message loop which
waits for and reacts to messages sent by the AES. Five basic types of events are generated by
the AES and each can be read by a specialized event library call as follows:

Event Type AES Function
Message evnt_mesag()
Mouse Button evnt_button()
Keyboard evnt_keybd()
Timer evnt_timer()

3The AES only began recognizing commas as valid argument separators (for the PATH environment variable) as of AES version 1.4.

6.10 – AES

T H E A T A R I C O M P E N D I U M

Mouse Movement evnt_mouse()

In addition to these five basic calls, the AES offers one multi-purpose call which waits for any
combination of the above events called evnt_multi(). The evnt_multi() call is often the most
important function call in any GEM application. A typical message loop follows:

#include <AES.H>

void
MessageLoop(void)
{

short mx, my; /* Mouse Position */
short mb, mc; /* Mouse button/# clicks */
short ks, kc; /* Key state/code */
short quit; /* Exit flag */
short msg[8]; /* Message buffer */
short events; /* What events are valid? */

/* Mask for all events */
#define ALL_EVENTS (MU_MESAG|MU_BUTTON|MU_KEYBD|MU_TIMER|MU_M1|MU_M2)

quit = FALSE;
while(!quit)
{

events = evnt_multi(ALL_EVENTS,
2, 1, 1, /* Single/double clicks */
0, 0, 0, 128, 128, /* M1 event */
1, 0, 0, 128, 128, /* M2 event */
msg, /* Pointer to msg */
1000, 0, /* MU_TIMER every 1 sec. */
&mx, &my, &ks, &kc,
&mc);

if(events & MU_MESAG)
{

switch(msg[0]) /* msg[0] is message type */
{

case MN_SELECTED:
HandleMenuClick(msg);
break;

case WM_CLOSED:
CloseWindow(msg[3]);
break;

/*
 * more message events...
 */

}
}

if(events & MU_BUTTON)
{

/*
 * Handle mouse button event.
 */

}

if(events & MU_KEYBD)

The Event Dispatcher – 6.11

T H E A T A R I C O M P E N D I U M

{
/*
 * Handle keyboard events.
 */

}

if(events & MU_TIMER)
{

/*
 * Handle Timer events.
 */

}

if(events & MU_M1)
{

/*
 * Handle mouse rectangle event 1.
 */

}

if(events & MU_M2)
{

/*
 * Handle mouse rectangle event 2.
 */

}
}

/* Loop will terminate here when ‘quit’ is set to TRUE. */
}

When an event library function is called, the program is effectively halted until a message which
is being waited for becomes available. Not all applications will require all events so the above
code may be considered flexible.

Message Events
Each standard GEM message event (MU_MESAG) uses some or all of an 8 WORD message
buffer. Each entry in this buffer is assigned as follows:

msg[x] Meaning
0 Message type.
1 The application identifier of the process sending the

message.
2 The length of the message beyond 16 bytes (in bytes).

For all standard GEM messages, this values is 0.
3 Depends on message.
4 Depends on message.
5 Depends on message.
6 Depends on message.
7 Depends on message.

The entry for evnt_mesag() later in this chapter has a comprehensive list of all system messages
and the action that should be taken when they are received.

6.12 – AES

T H E A T A R I C O M P E N D I U M

User-Defined Message Events
Applications may write customized messages to other applications (or themselves) using
appl_write(). The structure of the message buffer should remain the same as shown above. If
more than the standard eight WORDs of data are sent, however, appl_read() must be used to
read the additional bytes. It is recommended that user-defined messages be set to a multiple of 8
bytes.

You can use this method to send your own application standard messages by filling in the
message buffer appropriately and using appl_write(). This method is often used to force redraw
or window events.

Mouse Button Events
When a mouse button (MU_BUTTON) event happens, the evnt_button() or evnt_multi() call
is returned with the mouse coordinates, the number of clicks that occurred, and the keyboard
shift state.

Keyboard Events
Keyboard events (MU_KEYBD) are generated whenever a key is struck. The IKBD scan code
(see Appendix F: IKBD Scan Codes) and current key shift state are returned by either
evnt_keybd() or evnt_multi(). If your application is designed to run on machines in other
countries, you might consider translating the scan codes using the tables returned by the XBIOS
call Keytbl() .

Timer Events
evnt_timer() or evnt_multi(MU_TIMER , ...) can be used to request a timer event(s) be
scheduled in a certain number of milliseconds. The time between the actual function call and the
event may, however, be greater than the time specified.

Mouse Rectangle Events
Mouse rectangle events (MU_M1 and/or MU_M2) are generated by evnt_mouse() and
evnt_multi() when the mouse pointer enters or leaves (depending on how you program it) a
specified rectangle.

Resources – 6.13

T H E A T A R I C O M P E N D I U M

Resources

GEM resources consist of object trees, strings, and bitmaps used by an application. They
encapsulate the user interface and make internationalization easier by placing all program strings
in a single file. Resources are generally created using a Resource Construction Set (RCS) and
saved to a .RSC file (see Appendix C: Native File Formats) which is loaded by rsrc_load() at
program initialization time.

Resources may also be embedded as data structures in source code (some utility programs
convert .RSC files to source code). Desk accessories often do this to avoid complications they
have in loading .RSC files.

Resources contain pointers and coordinates which must be fixed up before being used.
rsrc_load() does this automatically, however if you use an embedded resource you must use
rsrc_rcfix() if available or rsrc_obfix() on each object in each object tree to convert the initial
character coordinates of to screen coordinates. This allows resources designed on screens with
different aspect ratios and system fonts to appear the same. In any case, you should test your
resources on several different screens, especially screen resolutions with different aspect ratios
such as ST Medium and ST High.

Once a resource is loaded use rsrc_gaddr() to obtain pointers to individual object trees which
can then be manipulated directly or with the AES Object Library. Replacing resources after
they’re loaded is accomplished with rsrc_saddr().

Objects

Objects can be boxes, buttons, text, images, and more. An object tree is an array of OBJECT
structures linked to form a structured relationship to each other. The OBJECT structure format
is as follows:

typedef struct object
{

WORD ob_next;
WORD ob_head;
WORD ob_tail;
UWORD ob_type;
UWORD ob_flags;
UWORD ob_state;
VOIDP ob_spec;
WORD ob_x;
WORD ob_y;
WORD ob_width;
WORD ob_height;

} OBJECT;

Normally OBJECTs are loaded in an application resource file but it is possible to create and
manipulate them on-the-fly using the objc_add(), objc_delete(), and objc_order() commands.

6.14 – AES

T H E A T A R I C O M P E N D I U M

The first object in an OBJECT tree is called the ROOT object (OBJECT #0). It’s coordinates
are relative to the upper-left hand corner of the screen.

The ROOT object can have any number of children and each child can have children of their
own. In each case, the OBJECT’s coordinates, ob_x, ob_y, ob_width, and ob_height are
relative to that of its parent. The AES call objc_offset() can, however, be used to determine the
exact screen coordinates of a child object. objc_find() is used to determine the object at a given
screen coordinate.

The ob_next, ob_head, and ob_tail fields determine this relationship between parent OBJECTs
and child OBJECTs. The following alert box is an example of an OBJECT tree:

Objects – 6.15

T H E A T A R I C O M P E N D I U M

The tree structure this object has can be represented as follows:

The exact usage of ob_head, ob_next, and ob_tail are as follows:

Element Usage
ob_head This member gives the exact index from the first object in

the OBJECT tree to the first child of the current object. If
the object has no children then this value should be -1.

ob_tail This member gives the exact index from the first object in
the OBJECT tree to the last child of the current object. If
the object has no children then this value should be -1.

ob_next This member gives the exact index from the first object in
the OBJECT tree to the next child at the same level. The
ROOT object should be set to -1. The last child at any
given nesting level should be set to the index of its parent.

The low byte of the ob_type field specifies the object type as follows:

Name ob_type & 0xFF Meaning
G_BOX 20 Box
G_TEXT 21 Formatted Text
G_BOXTEXT 22 Formatted Text in a Box
G_IMAGE 23 Monochrome Image
G_PROGDEF 24 Programmer-Defined Object.

6.16 – AES

T H E A T A R I C O M P E N D I U M

G_IBOX 25 Invisible Box
G_BUTTON 26 Push Button w/String
G_BOXCHAR 27 Character in a Box
G_STRING 28 Unformatted Text
G_FTEXT 29 Editable Formatted Text
G_FBOXTEXT 30 Editable Formatted Text in a Box
G_ICON 31 Monochrome Icon
G_TITLE 32 Menu Title
G_CICON 33 Color Icon (Available as of AES v3.3)

Object Flags
The ob_flags field of the OBJECT structure is a bitmask of different flags that can be applied to
any object as follows:

Name Bit(s) Mask Meaning
SELECTABLE 0 0x0001 Object’s selected state may be toggled by

clicking on it with the mouse.
DEFAULT 1 0x0002 An EXIT object with this bit set will have a

thicker outline and be triggered when the
user presses RETURN.

EXIT 2 0x0004 Clicking on this OBJECT and releasing the
mouse button while still over it will cause the
dialog to exit.

EDITABLE 3 0x0008 Set for FTEXT and FBOXTEXT objects to
indicate that they may receive edit focus.

RBUTTON 4 0x0010 This object is one of a group of radio
buttons. Clicking on it will deselect any
selected objects at the same tree level that
also have the RBUTTON flag set.

Likewise, it will be deselected automatically
when any other object is selected.

LASTOB 5 0x0020 This flag signals to the AES that the current
OBJECT is the last in the object tree.
(Required!)

TOUCHEXIT 6 0x0040 Setting this flag causes the OBJECT to
return an exit state immediately after being
clicked on with the mouse.

HIDETREE 7 0x0080 This OBJECT and all of its children will not
be drawn.

INDIRECT 8 0x0100 This flag cause the ob_spec field to be
interpreted as a pointer to the ob_spec
value rather than the value itself.

FL3DIND 9 0x0200 Setting this flag causes the OBJECT to be
drawn as a 3D indicator. This is appropriate
for radio and toggle buttons. This flag is only
recognized as of AES version 3.4.

FL3DACT 10 0x0400 Setting this flag causes the OBJECT to be
drawn as a 3D activator. This is appropriate
for EXIT buttons. This flag is only recognized
as of AES version 3.4.

Objects – 6.17

T H E A T A R I C O M P E N D I U M

FL3DBAK 9 & 10 0x0600 If these bits are set, the object is treated as
an AES background object. If it is
OUTLINED, the outlined is drawn in a 3D
manner. If its color is set to WHITE and its
fill pattern is set to 0 then the OBJECT will
inherit the default 3D background color. This
flag is only recognized as of AES version
3.4.

SUBMENU 11 0x0800 This bit is set on menu items which have a
sub-menu attachment. This bit also indicates
that the high byte of the ob_type field is
being used by the menu system.

Object States
The ob_state field determines the display state of the OBJECT as follows:

Name Bit Mask Meaning
SELECTED 0 0x0001 The object is selected. An object with this

bit set will be drawn in inverse video
except for G_CICON which will use its
‘selected’ image.

CROSSED 1 0x0002 An OBJECT with this bit set will be drawn
over with a white cross (this state can only
usually be seen over a colored or
SELECTED object).

CHECKED 2 0x0004 An OBJECT with this bit set will be
displayed with a checkmark in its upper-
left corner.

DISABLED 3 0x0008 An OBJECT with this bit set will ignore
user input. Text objects with this bit set will
draw in a dithered pattern.

OUTLINED 4 0x0010 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECTs with this bit set will be drawn
with a double border.

SHADOWED 5 0x0020 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECTs will be drawn with a shadow.

The AES supports the objc_change() call which can be used to change the state of an object and
(optionally) redraw it.

6.18 – AES

T H E A T A R I C O M P E N D I U M

The Object-Specific Field
The ob_spec field contains different data depending on the object type as indicated in the table
below:

Object Contents of ob_spec
G_BOX The low 16 bits contain a WORD containing color

information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_TEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_BOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_IMAGE The ob_spec field points to a BITBLK structure.
G_PROGDEF The ob_spec field points to a APPLBLK structure.
G_IBOX The low 16 bits contain a WORD containing color

information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_BUTTON The ob_spec field contains a pointer to the text to be
contained in the button.

G_BOXCHAR The low 16 bits contain a WORD containing color
information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box. Bits
31-24 contain the ASCII value of the character to display.

G_STRING The ob_spec field contains a pointer to the text to be
displayed.

G_FTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_FBOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_ICON The ob_spec field contains a pointer to an ICONBLK
structure.

G_TITLE The ob_spec field contains a pointer to the text to be
used for the title.

G_CICON The ob_spec field contains a pointer to a CICONBLK
structure.

Object-Specific Structures
Almost all objects reference a WORD containing the object color as defined below (note the
definition below may need to be altered depending upon the bit ordering of your compiler).

typedef struct objc_colorword
{

UWORD borderc : 4; /* Bits 15-12 contain the border color */
UWORD textc : 4; /* Bits 11-8 contain the text color */
UWORD opaque : 1; /* Bit 7 is 1 if opaque or 0 if transparent */
UWORD pattern : 3; /* Bits 6-4 contain the fill pattern index */
UWORD fillc : 4; /* Bits 3-0 contain the fill color */

} OBJC_COLORWORD;

Available colors for fill patterns, text, and borders are listed below:

Objects – 6.19

T H E A T A R I C O M P E N D I U M

Name Value Color
WHITE 0 White
BLACK 1 Black
RED 2 Red
GREEN 3 Green
BLUE 4 Blue
CYAN 5 Cyan
YELLOW 6 Yellow
MAGENTA 7 Magenta
LWHITE 8 Light Gray
LBLACK 9 Dark Gray
LRED 10 Light Red
LGREEN 11 Light Green
LBLUE 12 Light Blue
LCYAN 13 Light Cyan
LYELLOW 14 Light Yellow
LMAGENTA 15 Light Magenta

TEDINFO
G_TEXT , G_BOXTEXT , G_FTEXT , and G_FBOXTEXT objects all reference a TEDINFO
structure in their ob_spec field. The TEDINFO structure is defined below:

typedef struct text_edinfo
{

char * te_ptext;
char * te_ptmplt;
char * te_pvalid;
WORD te_font;
WORD te_fontid;
WORD te_just;
WORD te_color;
WORD te_fontsize;
WORD te_thickness;
WORD te_txtlen;
WORD te_tmplen;

} TEDINFO;

The three character pointer point to text strings required for G_FTEXT and G_FBOXTEXT
objects. te_ptext points to the actual text to be displayed and is the only field used by all text
objects. te_ptmplt points to the text template for editable fields. For each character that the user
can enter, the text string should contain a tilde character (ASCII 126). Other characters are
displayed but cannot be overwritten by the user. te_pvalid contains validation characters for
each character the user may enter. The current acceptable validation characters are:

Character Allows
9 Digits 0-9
A Uppercase letters A-Z plus

SPACE

a Upper and lowercase letters
plus SPACE

6.20 – AES

T H E A T A R I C O M P E N D I U M

N Digits 0-9, uppercase
letters A-Z, and SPACE

n Digits 0-9, upper and
lowercase letters A-Z, and
SPACE

F Valid GEMDOS filename
characters plus question
mark and asterisk

P Valid GEMDOS pathname
characters plus backslash,
colon, question mark, and
asterisk

p Valid GEMDOS pathname
characters plus backslash
and colon

X All characters

As an example the following diagram shows the correct text, template, and validation strings for
obtaining a GEMDOS filename from the user.

String Contents
te_ptext ‘\0’ (NULL char)
te_ptmplt ________.___
te_pvalid FFFFFFFFFFF

te_font may be set to any of the following values:

Name te_font Meaning
GDOS_PROP 0 Use a SpeedoGDOS font (valid only with an AES version

of at least 4.0 and SpeedoGDOS installed).
GDOS_MONO 1 Use a SpeedoGDOS font (valid only with an AES version

of at least 4.1 and SpeedoGDOS installed) and force
monospaced output.

GDOS_BITM 2 Use a GDOS bitmap font (valid only with an AES version
of at least 4.1 and SpeedoGDOS installed).

IBM 3 Use the standard monospaced system font.
SMALL 5 Use the small monospaced system font.

When using a value of GDOS_PROP, GDOS_MONO, or GDOS_BITM , te_fontsize
specifies the font size in points and te_fontid specifies the SpeedoGDOS font identification
number. Selecting the IBM or SMALL font will cause te_fontsize and te_fontid to be ignored.

te_just sets the justification of the text output as follows:

Name te_just Meaning
TE_LEFT 0 Left Justify
TE_RIGHT 1 Right Justify
TE_CNTR 2 Center

Objects – 6.21

T H E A T A R I C O M P E N D I U M

te_thickness sets the border thickness (positive and negative values are acceptable) of the
G_BOXTEXT or G_FBOXTEXT object. te_txtlen and te_tmplen should be set to the length of
the starting text and template length respectively.

BITBLK
G_IMAGE objects contain a pointer to a BITBLK structure in their ob_spec field. The
BITBLK structure is defined as follows:

typedef struct bit_block
{

WORD *bi_pdata;
WORD bi_wb;
WORD bi_hl;
WORD bi_x;
WORD bi_y;
WORD bi_color;

} BITBLK;

bi_pdata should point to a monochrome bit image. bi_wb specifies the width (in bytes) of the
image. All BITBLK images must be a multiple of 16 pixels wide therefore this value must be
even.

bi_hl specifies the height of the image in scan lines (rows). bi_x and bi_y are used as offsets
into bi_pdata. Any data occurring before these coordinates will be ignored. bi_color is a
standard color WORD where the fill color specifies the color in which the image will be
rendered.

ICONBLK
The ob_spec field of G_ICON objects point to an ICONBLK structure as defined below:

typedef struct icon_block
{

WORD * ib_pmask;
WORD * ib_pdata;
char * ib_ptext;
WORD ib_char;
WORD ib_xchar;
WORD ib_ychar;
WORD ib_xicon;
WORD ib_yicon;
WORD ib_wicon;
WORD ib_hicon;
WORD ib_xtext;
WORD ib_ytext;
WORD ib_wtext;
WORD ib_htext;

} ICONBLK;

ib_pmask and ib_pdata are pointers to the monochrome mask and image data respectively.
ib_ptext is a string pointer to the icon text. ib_char defines the icon character (used for drive
icons) and the icon foreground and background color as follows:

6.22 – AES

T H E A T A R I C O M P E N D I U M

ib_char
Bits 15-12 Bits 11-8 Bits 7-0

Icon Foreground
Color

Icon Background
Color

ASCII Character (or 0
for no character).

ib_xchar and ib_ychar specify the location of the icon character relative to ib_xicon and
ib_yicon. ib_xicon and ib_yicon specify the location of the icon relative to the ob_x and ob_y of
the object. ib_wicon and ib_hicon specify the width and height of the icon in pixels. As with
images, icons must be a multiple of 16 pixels in width.

ib_xtext and ib_ytext specify the location of the text string relative to the ob_x and ob_y of the
object. ib_wtext and ib_htext specify the width and height of the icon text area.

CICONBLK
The G_CICON object (available as of AES version 3.3) defines its ob_spec field to be a
pointer to a CICONBLK structure as defined below:

typedef struct cicon_blk
{

ICONBLK monoblk;
CICON * mainlist;

} CICONBLK;

monoblk contains a monochrome icon which is rendered if a color icon matching the display
parameters cannot be found. In addition, the icon text, character, size, and positioning data from
the monochrome icon are always used for the color one. mainlist points to the first CICON
structure in a linked list of color icons for different resolutions. CICON is defined as follows:

typedef struct cicon_data
{

WORD num_planes;
WORD * col_data;
WORD * col_mask;
WORD * sel_data;
WORD * sel_mask;
struct cicon_data * next_res;

} CICON;

num_planes indicates the number of bit planes this color icon contains. col_data and col_mask
point to the icon data and mask for the unselected icon respectively. Likewise, sel_data and
sel_mask point to the icon data and mask for the selected icon. next_res points to the next color
icon definition or NULL if no more are available. Bitmap data pointed to by these variables
should be in VDI device-dependent format (they are stored as device-independent images in a
.RSC file).

The AES searches the CICONBLK object for a color icon that has the same number of planes in
the display. If none is found, the AES simply uses the monochrome icon.

Objects – 6.23

T H E A T A R I C O M P E N D I U M

APPLBLK
G_PROGDEF objects allow programmers to define custom objects and link them transparently
in the resource. The ob_spec field of G_PROGDEF objects contains a pointer to an APPLBLK
as defined below:

typedef struct appl_blk
{

WORD (*ab_code)(PARMBLK *);
LONG ab_parm;

} APPLBLK;

ab_code is a pointer to a user-defined routine which will draw the object. The routine will be
passed a pointer to a PARMBLK structure containing the information it needs to render the
object. The routine must be defined with stack checking off and expect to be passed its
parameter on the stack. ab_parm is a user-defined value which is copied into the PARMBLK
structure as defined below:

typedef struct parm_blk
{

OBJECT *tree;
WORD pb_obj;
WORD pb_prevstate;
WORD pb_currstate;
WORD pb_x;
WORD pb_y;
WORD pb_w;
WORD pb_h;
WORD pb_xc;
WORD pb_yc;
WORD pb_wc;
WORD pb_hc;
LONG pb_parm;

} PARMBLK;

tree points to the OBJECT tree of the object being drawn. The object is located at index
pb_obj.

The routine is passed the old ob_state of the object in pb_prevstate and the new ob_state of the
object in pb_currstate. If pb_prevstate and pb_currstate is equal then the object should be
drawn completely, otherwise only the drawing necessary to redraw the object from
pb_prevstate to pb_currstate are necessary.

pb_x, pb_y, pb_w, and pb_h give the screen coordinates of the object. pb_xc, pb_yc, pb_wc, and
pb_hc give the rectangle to clip to. pb_parm contains a copy of the ap_parm value in the
APPLBLK structure.

The custom routine should return a WORD containing any remaining ob_state bits you wish the
AES to draw over your custom object.

6.24 – AES

T H E A T A R I C O M P E N D I U M

Because the drawing routing will be called from the context of the AES, using the stack heavily
or defining many local variables is not recommended.

Dialogs

Dialog boxes are modal forms of user input. This means that no other interaction can occur
between the user and applications until the requirements of the dialog have been met and it is
exited. A normal dialog box consists of an OBJECT tree with a BOX as its root object and any
number of other controls that accept user input. Both alert boxes and the file selector are
examples of AES provided dialog boxes.

The AES form_do() function is the simplest method of using a dialog box. Simply construct an
OBJECT tree with at least one EXIT or TOUCHEXIT object and call form_do(). All
interaction with the dialog like editable fields, radio buttons, and selectable objects will be
maintained by the AES until the user strikes an EXIT or TOUCHEXIT object. The proper
method for displaying a dialog box is shown in the example below:

WORD
do_dialog(OBJECT *tree, WORD first_edit)
{

GRECT g;
WORD ret;

/* Reserve screen/mouse button */
wind_update(BEG_UPDATE);
wind_update(BEG_MCTRL);

/* Center dialog on screen and put clipping rectangle in g */
form_center(tree, &g.g_x, &g.g_y, &g.g_w, &g.g_h);

/* Reserve screen space and draw growing box */
form_dial(FMD_START, 0, 0, 0, 0, g.g_x, g.g_y, g.g_w, g.g_h);
form_dial(FMD_GROW, g.g_x + g.g_w/2, g.g_y + g.g_h/2, 0, 0, g.g_x, g.g_y,

g.g_w, g.g_h);

/* Draw the dialog box */
objc_draw(tree, ROOT, MAX_DEPTH, g.g_x, g.g_y, g.g_w, g.g_h);

/* Handle dialog */
ret = form_do(tree, first_edit);

/* Deselect EXIT button */
tree[ret].ob_state &= ~SELECTED;

/* Draw shrinking box and release screen area */
form_dial(FMD_SHRINK, g.g_x + g.g_w/2, g.g_y + g.g_h/2, 0, 0, g.g_x, g.g_y,

g.g_w, g.g_h);
form_dial(FMD_FINISH, 0, 0, 0, 0, g.g_x, g.g_y, g.g_w, g.g_h);

/* Release screen/mouse control. */
wind_update(END_MCTRL);
wind_update(END_UPDATE);

Menus – 6.25

T H E A T A R I C O M P E N D I U M

/* Return the object selected */
return ret;

}

You may wish to create your own specialized dialog handling routines or place dialog boxes in
windows to create modeless input. This can be accomplished by using the form_button() ,
form_keybd(), and objc_edit() AES calls. Specific information about these calls may be found
in the Function Reference.

GEM also provides two generic dialog boxes through the form_alert() and form_error() calls.
form_alert() displays an alert dialog with a choice between icons and user-defined text and
buttons. form_error() displays an alert based on predefined system error codes.

Menus

Most GEM applications use a menu bar to allow the user to navigate through program options.
In addition, newer versions of the AES now allow popup menus and drop-down list boxes (a
special form of a popup menu). Menus are simply specially designed OBJECT trees activated
using special AES calls.

The Menu Bar
The menu bar is a special OBJECT which is usually registered in the beginning stages of a
GEM program which contains choices which the user may select to trigger a special menu event
(MN_SELECTED) to be sent to the application’s message loop. Normally, you will use a
resource construction set to create a menu but if you are designing an RCS or must create a menu
bar by hand, the format for the OBJECT structure of a GEM menu bar is shown below:

The ROOT object is a G_IBOX and should be set to the same width and height of the screen. It
has two children, the BAR object and the DROPDOWNS object.

6.26 – AES

T H E A T A R I C O M P E N D I U M

The BAR object is a G_BOX which should be the width of the screen and the height of the
system font plus two pixels for a border line. The DROPDOWNS object is a G_IBOX and
should be of a size large enough to encompass all of the drop-down menu boxes.

The BAR object has one child, the ACTIVE object, it should be the width of the screen and the
height of the system font. It has as many G_TITLE children as there are menu titles.

The DROPDOWNS object has the same number of G_BOX child objects as the ACTIVE
object has G_TITLE children. Each box must be high enough to support the number of
G_STRING menu items and wide enough to support the longest item. Each G_BOX must be
aligned so that it falls underneath its corresponding G_TITLE . In addition, each G_STRING
menu item should be the same length as its parent G_BOX object.

Each G_STRING menu item should be preceded by two spaces. Each G_TITLE should be
preceded and followed by one space. The first G_BOX object should appear under a G_TITLE
object named ‘Desk’ and should contain eight children. The first child G_STRING is
application defined (it usually leads to the ‘About...’ program credits), the second item should
be a disabled separator (‘-----------’) line. The next six items are dummy objects used by the
AES to display program and desk accessory titles.

Utilizing a Menu Bar
Menu bars can be displayed and their handling initiated by calling menu_bar(). In addition,
using this command, a menu bar may be turned off or replaced with another menu bar at any time.

Individual menu items may be altered with three AES calls. menu_icheck() sets or removes a
checkmark from in front of menu items. menu_ienable() enables or disables a menu item.
menu_itext() alters the text of a menu item. After receiving a message indicating that a menu
item has been clicked, perform the action appropriate to the menu item and then call
menu_tnormal() to return the menu title text to normal video.

Hierarchical Menus
AES versions 3.3 and above support hierarchical submenus. When a submenu is attached to a
regular menu item, a right arrow is appended to the end of the menu item text and a submenu is
displayed whenever the mouse is positioned over the menu item. The user may select submenu
items which cause an extended version of the MN_SELECTED message to be delivered
(containing the menu object tree).

Up to 64 submenu attachments may be in effect at any time per process. Attaching a single
submenu to more than one menu item counts as only one attachment.

Submenus should be G_BOX objects with as many G_STRING (or other) child objects as
necessary. One or several submenus may be contained in a single OBJECT tree. If the
submenu’s scroll flag is set, scroll arrows will appear and the menu will be scrollable if it

Menus – 6.27

T H E A T A R I C O M P E N D I U M

contains more items than the currently set system scroll value. Submenus containing user-defined
objects should not have their scroll flag set.

Submenus are attached and removed with the menu_attach() call. A serious bug exists in AES
versions lower than 4.0 which causes menu_attach() to crash the system if you use it to remove
or inquire the state of an existing submenu. This means that submenus may only be removed in
AES versions 4.0 and above. Submenus may be nested to up to four levels though only one level
is recommended.

Submenus may not be attached to menu items in the left-most ‘Desk’ menu. Individual submenu
items may be aligned with the parent object by using menu_istart().

Popup Menus
AES versions 3.3 and above support popup menus. Popup menus share the same OBJECT
structure as hierarchical menus but are never attached to a parent menu item. They may be
displayed anywhere on the screen and are often called in response to selecting a special dialog
item (see Chapter 11: GEM User Interface Guidelines). Popup menus are displayed with the
AES call menu_popup().

Menu Settings
The AES call menu_settings() may be used to adjust certain global defaults regarding the
appearance and timing delays of submenus and popup menus. Because this call affects all system
applications it should only be utilized by a system configuration utility and not by individual
applications.

Drop-Down List Boxes
AES versions 4.0 and later support a special type of popup menu called a drop-down list box.
Setting the menu scroll flag to a value of -1 will cause a popup menu to be displayed as a drop-
down list instead.

A drop-down list reveals up to eight items from a multiple item list to the user. A slider bar is
displayed next to the list and is automatically handled during the menu_popup() call. Several
considerations must be taken when using a drop-down list box:

• Drop-down lists may only contain G_STRING objects.

• If you want to force the AES to always draw scroll bars for the list box, the
OBJECT tree must contain at least eight G_STRING objects. If less than that
number of items exist, pad the remaining items with blanks and set the object’s
DISABLED flag.

• As long as the OBJECT tree has at least eight G_STRING objects, it should not
be padded with any additional objects since the size of the slider is based on the
number of objects.

6.28 – AES

T H E A T A R I C O M P E N D I U M

The Menu Buffer
A special memory area is allocated by the AES so that it may reserve the screen area underneath
displayed menus. A pointer to this memory and its length may be obtained by calling wind_get(
WF_SCREEN, ...). Menu buffer memory may be used as a temporary holding arena for
applications as long as the following rules are maintained:

• The application must not use a menu bar or it must be locked with
wind_update(BEG_UPDATE).

• Access to the menu buffer in a multitasking environment is not controlled so
information stored by one application may be overwritten by another. It is
therefore recommended that the menu buffer should not be used under MultiTOS .

Windows

GEM applications usually maintain most user-interaction in windows. Windows are
workspaces created with wind_create() with any of several predefined gadgets (controls)
illustrated in the diagram and table below:

Windows – 6.29

T H E A T A R I C O M P E N D I U M

Name Mask Meaning
NAME 0x0001 Using this mask will cause the AES

to display the window with a title bar
containing a name that the
application should set with
wind_set(WF_NAME, ...).

CLOSER 0x0002 This mask will attach a closer box to
the window which, when pressed, will
send a WM_CLOSED message to
the application.

FULLER 0x0004 This mask displays a fuller box with
the window which, when pressed, will
cause a WM_FULLED message to
be sent to the application.

MOVER 0x0008 This mask allows the user to move
the window by clicking and dragging
on the window’s title bar. This action
will generate a WM_MOVED
message.

INFO 0x0010 This mask creates an information line
just below the title bar which can
contain any user-defined information
as set with wind_set(WF_INFO , ...).

SIZER 0x0020 This mask attaches a sizer object to
the window which, when clicked and
dragged to a new location, will
generate a WM_SIZED message.

UPARROW 0x0040 This mask attaches an up arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

DNARROW 0x0080 This mask attaches a down arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

VSLIDE 0x0100 This mask attaches a vertical slider
object to the window which, when
clicked and dragged, will generate a
WM_VSLID message. Clicking on
the exposed area of the slider will
also generate this message.

LFARROW 0x0200 This mask attaches a left arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

RTARROW 0x0400 This mask attaches a right arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

6.30 – AES

T H E A T A R I C O M P E N D I U M

HSLIDE 0x0800 This mask attaches a horizontal
slider object to the window which,
when clicked and dragged, will
generate a WM_HSLID message.
Clicking on the exposed area of the
slider will also generate this
message.

SMALLER 0x4000 This mask attaches a smaller object
which, when clicked, will generate a
WM_ICONIFIED message. If the
object is CTRL-clicked, a
WM_ALLICONIFY message will be
generated.

This object is only valid in AES v4.1
and higher.

wind_create() returns a window handle which should be stored as it must be referenced on any
further calls that open, alter, close, or delete the window. wind_create() may fail if too many
windows are already open. Different versions of the AES impose different limits on the number
of concurrently open windows.

Calling wind_create() does not automatically display the window. wind_open() displays a
window named by its window handle. Any calls needed to initialize the window (such as setting
the window title, etc.) should be made between the wind_create() and wind_open() calls.

wind_set() and wind_get() can be used to set and retrieve many various window attributes.
Look for their documentation in the function reference for further details.

wind_close() may be used to remove a window from the screen. The window itself and its
attributes are not deleted as a result of this call, however. A subsequent call to wind_open()
will restore a window to the state it was in prior to the wind_close() call. The wind_delete()
function is used to physically delete a window and free any memory it was using.

Two other utility functions for use in dealing with windows are provided by the AES.
wind_calc() will return the border rectangle of a window given the desired work area or the
work area of a window given the desired border area. The call takes into account the sizes of the
various window gadgets.

wind_find() returns the handle of the window currently under the mouse.

Windows – 6.31

T H E A T A R I C O M P E N D I U M

The Desktop Window
The desktop window encompasses the entire screen. It has a constant window handle of
DESK (0) so information about it can be inquired with wind_get(). Calling wind_get() with a
parameter of WF_CURRXYWH will return the size of the screen. Calling wind_get() with a
parameter of WF_WORKXYWH will return the size of the screen minus the size of the menu
bar.

The desktop draws a custom OBJECT tree in its work area. This tree results in the fill pattern
and color seen on screen. An application may create its own custom desktop object tree by using
wind_set() with a parameter of WF_DESKTOP. The OBJECT tree specified should be the
exact size of the desktop work area.

MultiTOS will switch between these object trees as applications are switched. The desktop’s
object tree will be visible whenever an application doesn’t specify one of its own.

The Rectangle List
Whenever a window receives a redraw message or needs to update its window because of its
reasons, it should always constrain output to its current rectangle list. The AES will calculate
the size and position of a group of rectangles that compromise the area of your window not
covered by other overlapping windows.

wind_get() with parameters of WF_FIRSTXYWH and WF_NEXTXYWH is used to return the
current rectangle list. Redrawing inside a window should also only be attempted when the
window semaphore is locked with wind_update(BEG_UPDATE). This prevents the rectangle
list from changing during the redraw and prevents the user from dropping down menus which
might be overwritten. The following code sample illustrates a routine that correctly steps
through the rectangle list:

.

.

. Application Event Loop

.
case WM_REDRAW:

RedrawWindow(msg[3], (GRECT *)&msg[4]);
break;

.

.

VOID
RedrawWindow(WORD winhandle, GRECT *dirty)
{

GRECT rect;

wind_update(BEG_UPDATE);

wind_get(winhandle, WF_FIRSTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,
&rect.g_h);
while(rect.g_w && rect.g_h)
{

6.32 – AES

T H E A T A R I C O M P E N D I U M

if(rc_intersect(dirty, &rect))
{

/*
 * Do your drawing here...constrained to the rectangle in g.
 */

}

wind_get(winhandle, WF_NEXTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,
&rect.g_h);

}

wind_update(END_UPDATE);
}

Window Toolbars
AES versions 4.0 and later support window toolbar attachments. Toolbars are OBJECT trees
containing a number of TOUCHEXIT objects. They are attached to a window using wind_set()
with a parameter of WF_TOOLBAR . The following diagram shows a window with a toolbar:

Example from Atari Works 2.1

Window toolbars are automatically redrawn whenever necessary and their ROOT objects are
automatically repositioned and resized with the window. If any special redrawing is necessary
(ex: changing the visual state of an object after a click), the application may obtain a special
toolbar rectangle list by using wind_get() with parameters of WF_FTOOLBAR and
WF_NTOOLBAR .

If toolbar objects must be modified on WM_SIZED events, simply modify them prior to calling
wind_set(handle, WM_CURRXYWH , ...).

A special note about windows with toolbars concerns the usage of wind_calc(). wind_calc()
doesn’t understand the concept of toolbars. The information it returns must be modified by
adjusting the height of its output rectangles according to the current height of the toolbar object
tree.

The Graphics Library – 6.33

T H E A T A R I C O M P E N D I U M

The Graphics Library

The Graphics Library contain many functions which can be used to provide visual clues to the
user. This library also contains functions to inquire and set information about the mouse pointer.

graf_movebox(), graf_shrinkbox(), and graf_growbox() display animations that can be used to
indicate an impending change in the screen display. graf_dragbox(), graf_rubberbox(), and
graf_slidebox() display visual effects that are interactively changed by the mouse position.

graf_mkstate() is used to inquire the current state of the mouse buttons and mouse position.
graf_mouse() can be used to change the shape of the system mouse. graf_handle() is used to
return the physical handle of the screen (needed to open a VDI workstation) and the metrics of
the system default text font.

The File Selector Library

Two routines are provided by the AES to display and handle the common system file selector.
AES versions less than 1.4 do not support fsel_exinput(). All AES versions support
fsel_input().

Both calls take a GEMDOS pathname and filename as parameters. The pathname should include
a complete path specification including a drive letter, colon, path, and filemask. The filemask
may (and usually does include wildcard characters). The application may also pass a default
filename to the selector.

fsel_exinput() allows the application to specify a replacement title for the file selector which
reminds the user about the action they are taking such as ‘Select a .DOC file to open...’.

The Scrap Library

The scrp_read() and scrp_write() calls are provided by the AES to return and set the current
clipboard path. The clipboard is a global resource in which applications can share data.
Applications supporting the clipboard contain an ‘Edit’ menu title which has at least the
following four items, ‘Cut’, ‘Copy’, ‘Paste’, and ‘Delete’. An appropriate action for each is
listed below:

Implementing ‘Cut’ and ‘Copy’
When the user selects ‘Cut’ or ‘Copy’ from the ‘Edit’ menu and an object is selected (‘Cut’ and
‘Copy’ should only be enabled in the menu when an object is selected which may be transferred
to the clipboard) the following steps may be used to transfer the data to the system clipboard:

1. Call scrp_read() to return the name of the current scrap directory. If the returned
string is empty, no clipboard directory has been defined since the computer has

6.34 – AES

T H E A T A R I C O M P E N D I U M

been started. The directory string returned may need to be reformatted. A proper
directory string ends in a backslash, however some applications incorrectly
append a filename to this string.

2. If no clipboard directory was returned or the one specified is invalid, create a
directory in the user’s boot drive called ‘\CLIPBRD’ and write the pathname back
using scrp_write(). For example, if the user’s boot drive was ‘C:’ then your
parameter to scrp_write() would be ‘C:\CLIPBRD\’.

3. Search and delete files in the current clipboard directory with the mask
‘SCRAP.*’.

4. Now write a disk file for the selected data to a file named SCRAP.??? where ‘???’
is the proper file extension for an object of its type. If the object can be
represented in more than one format by your application, write as many formats as
possible all named ‘SCRAP’ with the proper file extension.

5. If the menu choice was ‘Cut’ rather than ‘Copy,’ delete the object from your data
structures and update your application as necessary.

Implementing ‘Paste’
‘Paste’ is used to read a file and insert it appropriately into an application that supports data of
its type. To implement ‘Paste’ follow the steps below:

1. Call scrp_read() to obtain the current system clipboard directory. If the returned
string is empty, no data is in the clipboard.

2. Format the string returned by scrp_read() into a usable pathname and search for
files called ‘SCRAP’ in that path having a file extension of data that your
application supports. Remember, more than one SCRAP.??? file may be present.

3. Load the data and insert it in your application as appropriate.

MultiTOS Notes
The AES, when running under MultiTOS , will create a MiNT semaphore named ‘_SCP’ which
should be used to provide negotiated access to the scrap directory. Access to this semaphore
should be obtained from MiNT prior to any clipboard operation and must be released as soon as
it is complete. Applications should not attempt to destroy this semaphore.

The Shell Library – 6.35

T H E A T A R I C O M P E N D I U M

The Shell Library

The Shell Library was originally intended to provide AES support to the Desktop application.
Many of the routines, however, are useful to other GEM applications. Some functionality of the
Shell Library was discussed earlier in this chapter in ‘The Environment String’.

The Shell Buffer
The Desktop application loads the DESKTOP.INF or NEWDESK.INF file (depending on the
TOS version) into the shell buffer. Prior to TOS 2.00, the shell buffer was 1024 bytes long
meaning that was the maximum length of the DESKTOP.INF file. AES versions 2.00 to 3.30
allocate a buffer 4096 bytes long. AES versions 3.30 and above support variable-length buffers.

The shell buffer contains the ‘working’ copy of the above mentioned system files. The
information in this buffer may be copied by using shel_get(). Likewise, information can be
written to this buffer using shel_put(). Extreme care must be used with these functions as their
misuse can confuse or possibly even crash the Desktop.

Miscellaneous Shell Library Functions
shel_find() is used to locate data files associated with an application. The AES uses this call to
locate application resource files during rsrc_load().

shel_read() returns information about the process which called the application (usually the
Desktop).

shel_write() was originally used only to spawn new applications. With newer AES versions,
though, shel_write() has taken on an enormous functionality and its documentation should be
consulted for more information.

The GEM.CNF File

When running under MultiTOS , the AES will load and process an ASCII text file called
‘GEM.CNF’ which contains command lines that set environment and AES system variables and
may run GEM programs. In addition, a replacement shell program may be specified in this file
(see Chapter 9: Desktop for more information).

AES environment variables may be set in the ‘GEM.CNF’ file with the command ‘setenv’ as in
the following example:

setenv TOSRUN=c:\multitos\miniwin.app

Several AES system variables may also be set in this file as shown in the following example:

AE_FONTID=3

6.36 – AES

T H E A T A R I C O M P E N D I U M

Currently recognized AES system variables that may be set are shown in the following table:

Variable Meaning
AE_FONTID This variable may be set to any valid Speedo outline

font ID which will be used as the AES default text font.

This feature is only valid as of AES version 4.1.
AE_PNTSIZE This variable defines the size of the AES default text

font in points.

This feature is only valid as of AES version 4.1.
AE_SREDRAW Setting this variable to 1 causes the AES to send a full-

screen redraw message whenever an application
starts. Setting it to 0 disables this feature. The default is
1.

AE_TREDRAW Setting this variable to 1 causes the AES to send a full-
screen redraw message whenever an application
terminates. Setting it to 0 disables this feature. The
default is 1.

The ‘GEM.CNF’ file may also be used to automatically start applications as shown in the
following example:

run c:\multitos\tclock.prg

AES Function Calling Procedure

The GEM AES is accessed through a 680x0 TRAP #2 statement. Upon calling the TRAP,
register d0 should contain the magic number 0xC8 and register d1 should contain a pointer to the
AES parameter block. The global data array member of the parameter block is filled in with
information about the AES after an appl_init() call (see appl_init() for more details). The AES
parameter block is a structure containing pointers to several arrays defined as follows:

struct aespb
{

WORD *contrl;
WORD *global;
WORD *intin;
WORD *intout;
LONG *addrin;
LONG *addrout;

};

The control array is filled in prior to an AES call with information about the number of
parameters the function is being passed, the number of return values the function expects, and the
opcode of the function itself as follows:

AES Function Calling Procedure – 6.37

T H E A T A R I C O M P E N D I U M

contrl[x] Contents
0 Function opcode.
1 Number of intin elements the function is

being sent.
2 Number of intout elements the function

is being sent.
3 Number of addrin elements the function

returns.
4 Number of addrout elements the

function returns.

 The intin array and addrin arrays are used to pass integer and address parameters respectively
(consult each individual binding for details).

Upon return from the call, the intout and addrout arrays will be filled in with any appropriate
output values.

To add a binding for the AES to your compiler you will usually write a short procedure that
provides an interface to the AES arrays. The following example illustrates the binding to
graf_dragbox() in this manner:

WORD
graf_dragbox(WORD width, WORD height, WORD start_x, WORD start_y,

WORD box_x, WORD box_y, WORD box_w, WORD box_h,
WORD *end_x, WORD *end_y)

{
contrl[0] = 71;
contrl[1] = 8;
contrl[2] = 3;
contrl[3] = 0;
contrl[4] = 0;

intin[0] = width;
intin[1] = height;
intin[2] = start_x;
intin[3] = start_y;
intin[4] = box_x;
intin[5] = box_y;
intin[6] = box_w;
intin[7] = box_h;

aes();

*end_x = intout[1];
*end_y = intout[2];

return intout[0];
}

6.38 – AES

T H E A T A R I C O M P E N D I U M

The following code is the assembly language function aes() used by the function above:

.globl _aes

.text
_aes:

lea _aespb,a0
move.l a0,d1
move.w #$C8,d0
trap #2
lea _intout,a0
move.w (a0),d0
rts

.data

_aespb: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout

.bss

_contrl: .ds.w 5
_global: .ds.w 15
_intin: .ds.w 16
_intout: .ds.w 7
_addrin: .ds.l 2
_addrout: .ds.l 1

.end

The bindings in the AES Function Reference call a specialized function called crys_if() to
actually call the AES. Many compilers use this method as well (Lattice C calls the function
_AESif()).

crys_if() properly fills in the contrl array and calls the AES. It is passed one WORD parameter
in d0 which contains the opcode of the function minus ten multiplied by four (for quicker table
indexing). This gives an index into a table from which the contrl array data may be loaded. The
crys_if() function is listed below:

* Note that this binding depends on the fact that no current AES call utilizes
* the addrout array

.globl _crys_if

.globl _aespb

.globl _contrl

.globl _global

.globl _intin

.globl _addrin

.globl _intout

.globl _addrout

.text

_crys_if:
lea table(pc),a0 ; Table below

AES Function Calling Procedure – 6.39

T H E A T A R I C O M P E N D I U M

move.l 0(a0,d0.w),d0 ; Load four packed bytes into d0
lea _aespb,a0 ; Load address of _aespb into a0
movea.l (a0),a1 ; Move address of contrl into a1
movep.l d0,1(a1) ; Move four bytes into WORDs at 1(contrl)
move.l a0,d1 ; Move address of _aespb into d1
move.w #$C8,d0 ; AES magic number
trap #2 ; Call GEM
lea _intout,a0 ; Get return value
move.w (a0),d0 ; Put it into d0
rts

* Table of AES opcode/control values
* Values are: opcode, intin, intout, addrin
* As stated before, addrout is left at 0 since no AES calls use it

table:
.dc.b 10, 0, 1, 0 ; appl_init
.dc.b 11, 2, 1, 1 ; appl_read
.dc.b 12, 2, 1, 1 ; appl_write
.dc.b 13, 0, 1, 1 ; appl_find
.dc.b 14, 2, 1, 1 ; appl_tplay
.dc.b 15, 1, 1, 1 ; appl_trecord
.dc.b 16, 0, 0, 0 ;
.dc.b 17, 0, 0, 0 ;
.dc.b 18, 1, 3, 1 ; appl_search (v4.0)
.dc.b 19, 0, 1, 0 ; appl_exit
.dc.b 20, 0, 1, 0 ; evnt_keybd
.dc.b 21, 3, 5, 0 ; evnt_button
.dc.b 22, 5, 5, 0 ; evnt_mouse
.dc.b 23, 0, 1, 1 ; evnt_mesag
.dc.b 24, 2, 1, 0 ; evnt_timer
.dc.b 25, 16, 7, 1 ; evnt_multi
.dc.b 26, 2, 1, 0 ; evnt_dclick
.dc.b 27, 0, 0, 0 ;
.dc.b 28, 0, 0, 0 ;
.dc.b 29, 0, 0, 0 ;
.dc.b 30, 1, 1, 1 ; menu_bar
.dc.b 31, 2, 1, 1 ; menu_icheck
.dc.b 32, 2, 1, 1 ; menu_ienable
.dc.b 33, 2, 1, 1 ; menu_tnormal
.dc.b 34, 1, 1, 2 ; menu_text
.dc.b 35, 1, 1, 1 ; menu_register
.dc.b 36, 2, 1, 2 ; menu_popup (v3.3)
.dc.b 37, 2, 1, 2 ; menu_attach (v3.3)
.dc.b 38, 3, 1, 1 ; menu_istart (v3.3)
.dc.b 39, 1, 1, 1 ; menu_settings (v3.3)
.dc.b 40, 2, 1, 1 ; objc_add
.dc.b 41, 1, 1, 1 ; objc_delete
.dc.b 42, 6, 1, 1 ; objc_draw
.dc.b 43, 4, 1, 1 ; objc_find
.dc.b 44, 1, 3, 1 ; objc_offset
.dc.b 45, 2, 1, 1 ; objc_order
.dc.b 46, 4, 2, 1 ; objc_edit
.dc.b 47, 8, 1, 1 ; objc_change
.dc.b 48, 4, 3, 0 ; objc_sysvar (v3.4)
.dc.b 49, 0, 0, 0 ;
.dc.b 50, 1, 1, 1 ; form_do
.dc.b 51, 9, 1, 0 ; form_dial
.dc.b 52, 1, 1, 1 ; form_alert

6.40 – AES

T H E A T A R I C O M P E N D I U M

.dc.b 53, 1, 1, 0 ; form_error

.dc.b 54, 0, 5, 1 ; form_center

.dc.b 55, 3, 3, 1 ; form_keybd

.dc.b 56, 2, 2, 1 ; form_button

.dc.b 57, 0, 0, 0 ;

.dc.b 58, 0, 0, 0 ;

.dc.b 59, 0, 0, 0 ;

.dc.b 60, 0, 0, 0 ;

.dc.b 61, 0, 0, 0 ;

.dc.b 62, 0, 0, 0 ;

.dc.b 63, 0, 0, 0 ;

.dc.b 64, 0, 0, 0 ;

.dc.b 65, 0, 0, 0 ;

.dc.b 66, 0, 0, 0 ;

.dc.b 67, 0, 0, 0 ;

.dc.b 68, 0, 0, 0 ;

.dc.b 69, 0, 0, 0 ;

.dc.b 70, 4, 3, 0 ; graf_rubberbox

.dc.b 71, 8, 3, 0 ; graf_dragbox

.dc.b 72, 6, 1, 0 ; graf_movebox

.dc.b 73, 8, 1, 0 ; graf_growbox

.dc.b 74, 8, 1, 0 ; graf_shrinkbox

.dc.b 75, 4, 1, 1 ; graf_watchbox

.dc.b 76, 3, 1, 1 ; graf_slidebox

.dc.b 77, 0, 5, 0 ; graf_handle

.dc.b 78, 1, 1, 1 ; graf_mouse

.dc.b 79, 0, 5, 0 ; graf_mkstate

.dc.b 80, 0, 1, 1 ; scrp_read

.dc.b 81, 0, 1, 1 ; scrp_write

.dc.b 82, 0, 0, 0 ;

.dc.b 83, 0, 0, 0 ;

.dc.b 84, 0, 0, 0 ;

.dc.b 85, 0, 0, 0 ;

.dc.b 86, 0, 0, 0 ;

.dc.b 87, 0, 0, 0 ;

.dc.b 88, 0, 0, 0 ;

.dc.b 89, 0, 0, 0 ;

.dc.b 90, 0, 2, 2 ; fsel_input

.dc.b 91, 0, 2, 3 ; fsel_exinput

.dc.b 92, 0, 0, 0 ;

.dc.b 93, 0, 0, 0 ;

.dc.b 94, 0, 0, 0 ;

.dc.b 95, 0, 0, 0 ;

.dc.b 96, 0, 0, 0 ;

.dc.b 97, 0, 0, 0 ;

.dc.b 98, 0, 0, 0 ;

.dc.b 99, 0, 0, 0 ;

.dc.b 100, 5, 1, 0 ; wind_create

.dc.b 101, 5, 1, 0 ; wind_open

.dc.b 102, 1, 1, 0 ; wind_close

.dc.b 103, 1, 1, 0 ; wind_delete

.dc.b 104, 2, 5, 0 ; wind_get

.dc.b 105, 6, 1, 0 ; wind_set

.dc.b 106, 2, 1, 0 ; wind_find

.dc.b 107, 1, 1, 0 ; wind_update

.dc.b 108, 6, 5, 0 ; wind_calc

.dc.b 109, 0, 0, 0 ; wind_new

.dc.b 110, 0, 1, 1 ; rsrc_load

.dc.b 111, 0, 1, 0 ; rsrc_free

AES Function Calling Procedure – 6.41

T H E A T A R I C O M P E N D I U M

.dc.b 112, 2, 1, 0 ; rsrc_gaddr

.dc.b 113, 2, 1, 1 ; rsrc_saddr

.dc.b 114, 1, 1, 1 ; rsrc_obfix

.dc.b 115, 0, 0, 0 ; rsrc_rcfix (v4.0)

.dc.b 116, 0, 0, 0 ;

.dc.b 117, 0, 0, 0 ;

.dc.b 118, 0, 0, 0 ;

.dc.b 119, 0, 0, 0 ;

.dc.b 120, 0, 1, 2 ; shel_read

.dc.b 121, 3, 1, 2 ; shel_write

.dc.b 122, 1, 1, 1 ; shel_get

.dc.b 123, 1, 1, 1 ; shel_put

.dc.b 124, 0, 1, 1 ; shel_find

.dc.b 125, 0, 1, 2 ; shel_envrn

.dc.b 126, 0, 0, 0 ;

.dc.b 127, 0, 0, 0 ;

.dc.b 128, 0, 0, 0 ;

.dc.b 129, 0, 0, 0 ;

.dc.b 130, 1, 5, 0 ; appl_getinfo (v4.0)

.data

_aespb: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout
_contrl: .dc.l 0, 0, 0, 0, 0

.bss

* _contrl = opcode
* _contrl+2 = num_intin
* _contrl+4 = num_addrin
* _contrl+6 = num_intout
* _contrl+8 = num_addrout

_global .ds.w 15
_intin .ds.w 16
_intout .ds.w 7
_addrin .ds.l 2
_addrout .ds.l 1

.end

