
T H E A T A R I C O M P E N D I U M

– CHAPTER 5 –

HARDWARE

Overview – 5.3

T H E A T A R I C O M P E N D I U M

Overview

This chapter will cover those aspects of Atari software programming that can only be
accomplished by accessing hardware registers directly. In most cases, Atari has provided OS
calls to manipulate the hardware. When an OS call exists to access hardware, it should always
be used to ensure upward and backward compatibility. Keep in mind that access to hardware
registers is limited to those applications operating in supervisor mode only (except where noted
otherwise).

Besides those hardware registers discussed here, a complete list of I/O registers, system
variables, and interrupt vectors are contained in Appendix B: Memory Map.

The 680x0 Processor

Atari computers use the Motorola MC68000 or MC68030. Third party devices have also been
created to allow the use of a MC68010, MC68020, or MC68040 processor. The system cookie
‘_CPU’ should be used to determine the currently installed processor. The following table lists
the 680x0’s interrupt priority assignments:

Level Assignment
7 NMI
6 MK68901 MFP
5 SCC1

4 VBLANK (Sync)
3 VME Interrupter2

2 HBLANK (Sync)
1 Unused

Interrupts may be disabled by setting the system interrupt mask (bits 8-10 of the SR register) to a
value higher than the interrupts you wish to disable. Setting the mask to a value of 7 will
effectively disable all interrupts (except the level 7 non-maskable interrupt).

The Data/Instruction Caches
The Atari TT030 and Falcon030 contain onboard data and instruction caches. These caches may
be controlled by writing to the CACR register (in supervisor mode). The following table lists
longword values that may be written to the CACR to enable or disable the caches:

Value to Write to
CACR

Effect

0xA0A Flush and disable both caches.
0x101 Enable both caches.
0xA00 Flush and disable the data cache.
0x100 Enable the data cache.

1On a computer without an SCC chip, this interrupt is unused.
2On a computer without a VME bus, this interrupt is unused.

5.4 – Hardware

T H E A T A R I C O M P E N D I U M

0xA Flush and disable the instruction cache.
0x1 Enable the instruction cache.

The 68881/882 Floating Point Coprocessor

A MC6888x math coprocessor may be installed in a Mega ST, Mega STe, or a Falcon030. The
TT030 has one installed in its standard configuration. The 6888x is interfaced to the 68000 in
peripheral mode and to the 68030 in coprocessor mode. Thus, the TT030 and Falcon030
computers access the 6888x in coprocessor mode while the Mega ST and MegaSTe computers
access the 6888x in peripheral mode.

Coprocessor Mode
When the 6888x is interfaced in coprocessor mode, using it is as simple as placing floating-point
instructions in the standard instruction stream (use a coprocessor ID of 1). The 68030 will
properly dispatch the instruction and respond to exceptions through the following vectors:

Vector Address Assignment
0x0000001C FTRAPcc Instruction
0x0000002C F-Line Emulator
0x00000034 Co-processor Protocol Violation
0x000000C0 Branch or Set on Unordered Condition
0x000000C4 Inexact Result
0x000000C8 Floating-Point Divide by Zero
0x000000CC Underflow
0x000000D0 Operand Error
0x000000D4 Overflow
0x000000D8 Signaling NAN

Peripheral Mode
Utilizing an installed math coprocessor interfaced using peripheral mode requires the use of
several hardware registers mapped to special coprocessor registers. Unlike most hardware
registers, these do not have to be accessed in supervisor mode. Atari computers map the 6888x
registers to the following locations:

Address Length Register Description
0xFFFFFA40 WORD FPCIR Status register
0xFFFFFA42 WORD FPCTL Control Register
0xFFFFFA44 WORD FPSAV Save Register
0xFFFFFA46 WORD FPREST Restore Register
0xFFFFFA48 WORD FPOPR Operation word register
0xFFFFFA4A WORD FPCMD Command register
0xFFFFFA4C WORD FPRES Reserved
0xFFFFFA4E WORD FPCCR Condition Code Register
0xFFFFFA50 LONG FPOP Operand Register

To execute a floating point instruction, use the following protocol for communicating data with
the 6888x:

The 68881/882 Floating Point Coprocessor – 5.5

T H E A T A R I C O M P E N D I U M

1. Wait for the chip to be idle.

2. Write a valid 6888x command to FPCMD.

3. If necessary for the command, write an operand to FPOP.

4. Wait for the status port to indicate the command is complete.

5. Read any return data from FPOP.

Step one is achieved by waiting for a value of 0x0802 to appear in the status register (after
ANDing with 0xBFFF) as follows:

while((FPCIR & 0xBFFF) != 0x0802) ;

Steps two and three involve writing the command word to FPCMD and any necessary operand
data to FPOP. A primitive response code will be generated (and should be read) between each
write to either FPCMD or FPOP. For a listing of primitive response codes returned by the
68881, consult the MC68881/68882 Floating-Point Coprocessor User’s Manual (2nd
edition), Motorola publication MC68881UM/AD rev. 2, ISBN 0-13-567-009-8.

After the operation is complete (step 4), data may be read from the 68881 in FPOP (step 5).

When sending or receiving data in FPOP, the following chart details the transfer ordering and
alignment:

The following code demonstrates transferring two single precision floating-point numbers to the
68881, multiplying them, and returning the result.

/* Number of iterations before an error is triggered */
#define FPCOUNT 0x80

#define FPCIR ((WORD *)(0xFFFFFA40L))
#define FPCMD ((WORD *)(0xFFFFFA4AL))
#define FPOP ((float *)(0xFFFFFA50L))

5.6 – Hardware

T H E A T A R I C O M P E N D I U M

WORD fpcount, dum;

/* fperr() is user-defined */

#define FPwait() { fpcount = FPCOUNT; \
while((*FPCIR & 0xBFFF) != 0x0802) \

if(!(--fpcount)) fperr(); }

#define FPsglset(r,v) { FPwait(); \
 *FPCMD = (0x5400 | ((r) << 7)); \
 while((*FPCIR & 0xFFF0) != 0x8C00) \

if(!(--fpcount)) fperr(); \
 *FPOP = (v); }

#define FPsglmul(r1,r2) { FPwait(); \
*FPCMD = (0x0027 | ((r2) << 10) | ((r1) << 7)); \
dum = *FPCIR + 1; }

/* dum = FPCIR +1; forces the status register to be read
 (we assume the data’s good) */

#define FPsglget(r,var) { FPwait(); \
*FPCMD = (0x6400 | ((r) << 7)); \
while(*FPCIR != 0xb104) \

if(!(--fpcount)) fperr(); \
var = *FPOP; }

/*
 * void sglmul(float *f1, float *f2);
 *
 * Multiplies f1 by f2. Returns result in f1.
 *
 */

void
sglmul(float &f1, float &f2)
{

FPsglset(0, *f1);
FPsglset(1, *f2);
FPsglmul(0, 1);
FPsglget(0, *f1);

}

Cartridges

All Atari computers support an external 128K ROM cartridge port. Cartridges may be created to
support applications or diagnostic tools. The 128K of address space allocated to cartridges
appears from address 0xFA0000 to 0xFBFFFF. Newer Atari computers support larger
cartridges (this is because the address space would no longer overlap the OS). All program
code must be compiled to be relative of this base address.

The LONG appearing at 0xFA0000 determines the type of cartridge installed as follows:

Cartridge LONG Value
Application 0xABCDEF42

Cartridges – 5.7

T H E A T A R I C O M P E N D I U M

Diagnostic 0xFA52255F

Diagnostic Cartridges
Diagnostic cartridges are executed almost immediately after a system reset. The OS uses a
680x0 JMP instruction to begin execution at address 0xFA0004 after having set the Interrupt
Priority Level (IPL) to 7, entering supervisor mode, and executing a RESET instruction to reset
external hardware devices.

Upon execution, register A6 will contain a return address which should be JMP’d to if you wish
to continue system initialization at any point. The stack pointers will contain garbage. In
addition, keep in mind that no hardware has been initialized, particularly the memory controller.
All system memory sizing and initialization must be performed by the diagnostic cartridge.

Application Cartridges
Application cartridges should contain one or more application headers beginning at location
0xFA0004 as follows (one cartridge may contain one or many applications):

Name Offset Meaning
CA_NEXT 0x00 Pointer to the next application header

(or NULL if there are no more).
CA_INIT 0x04 Pointer to the application’s

initialization code. The high eight bits
of this pointer have a special
meaning as follows:

Bit Set Meaning
0 Execute prior to display

memory and interrupt
vector initialization.

1 Execute just before
GEMDOS is initialized.

2 (unused)
3 Execute prior to boot

disk.
4 (unused)
5 Application is a Desk

Accessory.
6 Application is not a GEM

application.
7 Application needs

parameters.
CA_RUN 0x08 Pointer to application’s main entry

point.
CA_TIME 0x0C Standard GEMDOS time stamp.
CA_DATE 0x0E Standard GEMDOS date stamp.
CA_SIZE 0x10 Size of application in bytes.
CA_NAME 0x14 NULL terminated ASCII filename in

standard GEMDOS 8+3 format.

5.8 – Hardware

T H E A T A R I C O M P E N D I U M

When application cartridges are present, GEMDOS will allow a special ‘c’ (lowercase) drive
to be accessed. Executable files appear on this drive as they would on any standard disk. This
‘drive’ may also be installed on the desktop.

Game Controllers

The Atari 1040STe and Falcon030 support new enhanced joystick controls as well as older
style CX-40 controls. For the usage and polling of the older style controls, refer to the following
section which discusses the IKBD controller. This section will focus specifically on the newer
style of controllers.

Joysticks
Enhanced joysticks are read by a two-step process. The WORD at address 0xFF9202 is written
to using a mask which determines which values may subsequently be read from the WORDs at
address 0xFF9200 and 0xFF9202. Valid mask values and the keys that may be read follow:

Read Controller 0 at 0xFF9200
Write
Mask

Bit 0
Clear

Bit 1
Clear

0xFFFE Pause Fire 0
0xFFFD - Fire 1
0xFFFB - Fire 2
0xFFF7 - Option

Read Controller 1 at 0xFF9200
Write
Mask

Bit 2
Clear

Bit 3
Clear

0xFFEF Pause Fire 0
0xFFDF - Fire 1
0xFFBF - Fire 2
0xFF7F - Option

Read Controller 0 at 0xFF9202
Write
Mask

Bit 8
Clear

Bit 9
Clear

Bit 10
Clear

Bit 11
Clear

0xFFFE Up Down Left Right
0xFFFD Key * Key 7 Key 4 Key 1
0xFFFB Key 0 Key 8 Key 5 Key 2
0xFFF7 Key # Key 9 Key 6 Key 3

Read Controller 1 at 0xFF9202

Mask
Bit 12
Clear

Bit 13
Clear

Bit 14
Clear

Bit 15
Clear

0xFFEF Up Down Left Right
0xFFDF Key * Key 7 Key 4 Key 1
0xFFBF Key 0 Key 8 Key 5 Key 2
0xFF7F Key # Key 9 Key 6 Key 3

The IKBD Controller – 5.9

T H E A T A R I C O M P E N D I U M

To read the joystick, write a mask value corresponding to the row of keys/positions you wish to
interrogate to 0xFF9202. Next, read back a WORD from either 0xFF9200 or 0xFF9202. As
indicated in the table, cleared bits mean that a key is being pressed or a joystick is moved in that
direction.

Paddles
Two paddles may be plugged into each joystick port. Each paddle returns an 8-bit value
indicating its position (0 = full counter-clockwise, 255 = full clockwise) at the addresses
shown below. Unlike joysticks, paddle positions are returned automatically with no need to
write to an address prior to a read. Paddle fire buttons, however, are mapped and read in the
same manner as the joysticks. See the discussion of joysticks above for an explanation.

Byte Address Paddle
0xFF9211 X Paddle 0
0xFF9213 Y Paddle 0
0xFF9215 X Paddle 1
0xFF9217 Y Paddle 1

Light Gun/Pen
Joystick port 0 supports a light gun or pen. The position that the gun is pointing to is returned in
the WORD registers at 0xFF9220 (X position) and 0xFF9222 (Y position). Only the lower 10
bits are significant giving a range of values from 0-1023.

The IKBD Controller

The Atari 16/32 bit computer line uses the Intelligent Keyboard Controller (IKBD) for
keyboard, joystick (old-style CX-40), mouse, and clock communication. The 6850 ACIA serial
communications chip is used to transfer data packets from the IKBD interface to the host
computer.

The TOS calls Bconout(4, ???), Ikbdws(), and Initmous() handle communication to the
controller. Return messages from the controller must be processed by placing a specialized
handler in the vector table returned by the XBIOS call Kbdvbase(). Kbdvbase() returns the
pointer to a vector table as follows:

typedef struct
{

void (*midivec)(UBYTE data); /* Passed in d0 */
void (*vkbderr)(UBYTE data); /* Passed in d0 */
void (*vmiderr)(UBYTE data); /* Passed in d0 */
void (*statvec)(char *packet); /* Passed in a0 */
void (*mousevec)(char *packet); /* Passed in
a0 */
void (*clockvec)(char *packet); /* Passed in
a0 */
void (*joyvec)(char *packet); /* Passed in a0 */
void (*midisys)(VOID);
void (*ikbdsys)(VOID);
char ikbdstate;

5.10 – Hardware

T H E A T A R I C O M P E N D I U M

} KBDVECS;

When an IKBD message is pending, the interrupt handler for the ACIAs calls either the midisys
handler or the ikbdsys handler to retrieve the data and handle any errors. The default action for
the ikbdsys handler is to decide whether the packet contains error, status, joystick, clock, or
mouse information and to route it appropriately to vkbderr, statvec, joyvec, clockvec, or
mousevec. Keyboard packets are handled internally by ikbdsys.

Your handler should be patched into the appropriate vector and, if appropriate, expect the packet
buffer to be pointed to by register A0. Unless your handler is designed to completely replace the
functions of the default handler you should jump through the original vector pointer upon exit,
otherwise simply use the 680x0 RTS instruction.

Each byte received through the keyboard ACIA falls into one of the following categories as
follows:

Category Value(s) Meaning
Keyboard Make Code 0x00–0x7F One of these values is generated each time a key is

depressed.This value may be used with Keytbl() to
generate an ASCII code for the scan code.

Keyboard Break Code 0x80–0xFF This code is generated when a key previously
depressed has been released. It represents the make
code logically OR’ed with 0x80.

Status Packet Header 0xF6 This codes indicate the beginning of a multiple byte
status packet.

Absolute Mouse Position 0xF7 See Below
Relative Mouse Position 0xF8-0xFB See Below
Time-of-Day 0xFC See Below
Joystick Report 0xFD See Below
Joystick 0 Event 0xFE See Below
Joystick 1 Event 0xFF See Below
Status Packet Data Any When the ikbdstate variable (found in the KBDVECS

structure) is non-zero, it represents the number of
remaining bytes to retrieve that are part of a status
packet and should thus not be treated as any of the
above codes.

The IKBD Controller – 5.11

T H E A T A R I C O M P E N D I U M

The Keyboard
Keyboard keys generate both a ‘make’ and ‘break’ code for each complete press and release
respectively. The ‘make’ code is equivalent to the high byte of the IKBD scan code. ‘make’
codes are not related in any way to ASCII codes. They represent the physical position of the key
in the keyboard matrix and may vary in keyboards designed for other countries. The XBIOS
function Keytbl() provides lookup values which make internationalization possible. The key
‘break’ code is the ‘make’ code logically ORed with 0x80.

It should be noted that ‘key repeats’ are not generated by the ACIA but by a coordination of the
ikbdsys and system timer handlers.

The Mouse
The mouse may be programmed to return position reports in either absolute, relative, or keycode
mode (it is by default programmed to return relative position reports).

In relative reporting mode, the IKBD generates a mouse packet each time a mouse button is
pressed or released, and every time the mouse is moved over a preset threshold distance (which
is configurable). A relative mouse report packet is headed by a byte value between 0xF8 and
0xFB followed by the X and Y movement of the mouse as signed bytes. If the movement is
greater than can be represented as signed bytes (-128 to 127), multiple packets are sent.

The header byte determines the state of the mouse buttons as follows:

Header Mouse Button State
0xF8 No buttons depressed.
0xF9 Left button depressed.
0xFA Right button depressed.
0xFB Both buttons depressed.

In absolute reporting mode, the IKBD only generates a mouse packet when interrogated. Mouse
packets in absolute mode are headed by a 0xF7 byte followed by the MSB and LSB of the X
value and the MSB and LSB of the Y value respectively. The minimum and maximum X and Y
values are user-definable.

Keycode reporting mode generates keyboard ‘make’ and ‘break’ codes for mouse movements
rather than sending standard mouse packets. Mouse movement is translated into the arrow keys
and the codes 0x74 and 0x75 represent the left and right mouse button respectively. ‘break’
codes are sent immediately after the corresponding ‘make’ code is delivered.

5.12 – Hardware

T H E A T A R I C O M P E N D I U M

The Joystick
The basic CX-40 style joystick controls are still present on every Atari computer. Atari
recommends that these ports should not be supported when STe/Falcon030 enhanced joysticks
are present unless the option for four-player play is desired. While no direct TOS support is
available for reading these ports, it is possible using the IKBD controller in one of several
joystick reporting modes.

Joystick event reporting mode (the default) sends a joystick packet each time the status of one of
the joysticks changes. The joystick packet header is 0xFE if the state of joystick 0 has changed or
0xFF if the status of joystick 1 has changed. This header byte is followed by a BYTE containing
the new state of the joystick as follows:

Bit 7 Bit 0

Trigger State (1 = depressed)

Joystick Position

The four bits corresponding to joystick position can be interpreted as follows:

Joysticks may be interrogated at any time by sending an interrogate command (as described later
in this chapter). The packet response to this command is 0xFD followed by the BYTE report of
joystick 0 and 1 (as shown above).

The joysticks may be placed into joystick monitoring or fire button monitoring mode. In these
modes, all other IKBD communication is stopped and all processor time is devoted to the
processing of packets. Joystick monitoring mode cause the IKBD to send a continuous stream of
two-byte packets as follows: The first byte contains the status of joystick buttons 0 and 1 in bits
1 and 0 respectively. The second byte contains the position state of joystick 0 in the high nibble
and joystick 1 in the lower nibble (the position state can be interpreted as shown in the diagram
above).

The IKBD Controller – 5.13

T H E A T A R I C O M P E N D I U M

Fire button monitoring mode constantly scans joystick button 1 and returns the results in BYTEs
packed with 8 reports each (one per bit). These modes may be paused or halted using the
appropriate commands.

Joystick keycode mode is similar to mouse keycode mode. This mode translates all joystick
position information into arrow keys. A ‘make’ code of 0x74 is generated when joystick button 0
is depressed and a ‘make’ code of 0x75 is generated when joystick button 1 is depressed. The
rate at which the IKBD controller generates these joystick events can be controlled using
commands discussed in the following section.

Time-of-Day
The IKBD controller maintains a separate time-of day clock that is kept synchronized with
GEMDOS time by OS calls. A time-of-day packet may be requested using the method shown
below under IKBD commands.

The response packet from the IKBD is seven bytes in length identified by its header byte of
0xFC and followed by six UBYTES containing the year (last two digits), month, day, hours (0-
24), minutes, and seconds in BCD format (ex: a month byte in December would be 0x12).

IKBD Commands
Commands may be sent to the IKBD using any of the TOS function calls described above. Some
commands may generate packets while other commands change the operating state of the IKBD
controller. Unrecognized command codes are treated as NOPs. The following lists valid IKBD
command codes:

Command
BYTE Result
0x07 Set mouse button action. This command BYTE should be

followed by a BYTE which describes how the mouse
buttons should be treated as follows:

BYTE Meaning
0x00 Default mode.
0x01 Mouse button press triggers an absolute

position report.
0x02 Mouse button release triggers an

absolute position report.
0x03 Mouse button press and release triggers

absolute position reports.
0x04 Mouse buttons report key presses.

0x08 Enable relative mouse position reporting (default).
0x09 Enable absolute mouse position reporting. This

command is followed by the MSB and LSB of the X and Y
coordinate maximum values for the mouse.

0x0A Enable mouse keycode mode. This command is followed
by two BYTEs indicating the maximum number of mouse
‘ticks’ required to generate a keycode for the X and Y
axis respectively.

5.14 – Hardware

T H E A T A R I C O M P E N D I U M

0x0B Set mouse threshold. This command is followed by two
BYTEs which determine the number of mouse ‘ticks’
required to generate a mouse position report in relative
positioning mode.

0x0C Set mouse scale. This command is followed by two
BYTEs which determine the number of mouse ‘ticks’ for
each single coordinate on the X and Y axis respectively.

0x0D Interrogate mouse position. This command generates an
absolute mouse position report.

0x0E Load mouse position. This command sets the mouse
position based on the current coordinate system in
absolute reporting mode. The command is followed by a
filler BYTE of 0x00 and the MSB and LSB of the new X
and Y axis for the mouse.

0x0F Set Y=0 to the bottom. This command changes the origin
of the mouse coordinate system to the upper left of the
screen.

0x10 Set Y=0 to the top. This command changes the origin of
the mouse coordinate system to the lower left of the
screen.

0x11 Resume sending data. This command (or for that matter
any command) will cause the IKBD to resume sending
packet data to the host.

0x12 Disable all mouse packet reporting. Any valid mouse
command resets this state. If the mouse buttons have
been programmed to act like keyboard keys, this
command will have no effect on them.

0x13 Pause output. All output from the IKBD controller is halted
until a ‘Resume’ or other command is received.

0x14 Set joystick event reporting mode. This command causes
a joystick report to be generated whenever the state of
either joystick changes.

0x15 Set joystick interrogation mode. This command causes
the IKBD to generate joystick packets only when
requested by the host.

0x16 Joystick interrogation. This command causes a joystick
packet indicating the status of both joysticks to be
generated.

0x17 Enables joystick monitoring mode. Besides serial
communication and the maintenance of the time-of-day
clock, this command causes only special joystick reports
to be generated.

The command BYTE should be followed by a BYTE
indicating how often the joystick should be polled in
increments of 1/100ths of a second.

0x18 Enables fire button monitoring mode. As above, this
mode limits the IKBD to serial communication, updating
the time-of-day clock, and the reporting of the state of
joystick button 1.

The IKBD Controller – 5.15

T H E A T A R I C O M P E N D I U M

0x19 Set joystick keycode mode. This command is followed by
six BYTEs as follows:

BYTE Meaning
1 The length of time (in tenths of a

second) before the horizontal breakpoint is
 reached.

2 Same as above for the vertical plane.
3 The length of time (in tenths of a

second) between key repeats before the
velocity breakpoint is reached.

4 Same as above for the vertical plane.
5 The length of time (in tenths of a

second) between key repeats after the
velocity breakpoint is reached.

6 Same as above for the vertical plane.
0x1A Disable joystick event reporting.
0x1B Set the time of day clock. This command is followed by

six BYTEs used to set the IKBD clock. These BYTEs are
in binary-coded decimal (BCD) format. Each BYTE
contains two digits (0-9), one in each nibble. The format
for these BYTEs is as follows:

BYTE Meaning
1 Year (last two digits)
2 Month
3 Date
4 Hours (0-23)
5 Minutes (0-59)
6 Seconds (0-59)

0x1C Interrogate the time-of-day clock. This command returns a
packet headed by the value 0xFC followed by six BYTEs
as indicated above.

0x20 Load BYTEs into the IKBD memory. This command is
followed by at least three BYTEs containing the MSB and
LSB of the address into which to load the data, the
number of BYTEs to load (0-127), and the data itself.

0x21 Read BYTEs from the IKBD controller. This command is
followed by two BYTEs containing the MSB and LSB of
the address to read from. This returns a packet headed
by the BYTE values 0xF6 and 0x20 followed by the
memory data.

0x22 Execute a subroutine on the IKBD controller. This
command BYTE is followed by two BYTEs containing the
MSB and LSB of the memory location of the subroutine to
execute.

0x80 Reset the IKBD controller. This command is actually a
two-BYTE command. The BYTE 0x80 must be followed
by a BYTE of 0x01 or the command will be ignored.

5.16 – Hardware

T H E A T A R I C O M P E N D I U M

0x87 Return a status message containing the current mouse
action state. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x07
3 Current mouse action state

(see command 0x07)
4-8 0

0x88 Return a status message containing the current mouse
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 Current mode as follows:

0x08 = Relative mode
0x09 = Absolute mode
0x0A = Keycode mode

3 Absolute mode: MSB of maximum X
position (units to current scale).
Keycode mode: Horizontal distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0

4 Absolute mode: LSB of maximum X
position.
Keycode mode: Vertical distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0

5 Absolute mode: MSB of maximum Y
position (units to current scale).
Keycode mode: 0
Relative mode: 0

6 Absolute mode: LSB of maximum Y
position.
Keycode mode: 0
Relative mode: 0

7-8 0
0X89 Same as 0x88.
0X8A Same as 0x88.

The IKBD Controller – 5.17

T H E A T A R I C O M P E N D I U M

0x8B Return a status message containing the current mouse
threshold state. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0B
3 Number of horizontal mouse ‘ticks’ that

must be traveled prior to sending a mouse
packet.

4 Number of vertical mouse ‘ticks’ that
must be traveled prior to sending a mouse
packet.

5-8 0
0x8C Return a status message containing the current mouse

scaling factor. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0C
3 Horizontal mouse ‘ticks’ between a change

in mouse position on the X axis.
4 Vertical mouse ‘ticks’ between a change

in mouse position on the Y axis.
5-8 0

0x8F Return a status message containing the current origin
point of the Y axis used for mouse position reporting.
After receiving this command the IKBD will respond by
sending a status packet (which may be intercepted at
statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0F = Bottom is (Y=0)

0x10 = Top is (Y=0)
3-8 0

0x90 Same as 0x8F.
0x92 Return a status message containing the current state of

mouse reporting. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x00 = Mouse reporting enabled.

0x12 = Mouse reporting disabled.
3-8 0

5.18 – Hardware

T H E A T A R I C O M P E N D I U M

0x94 Return a status message containing the current joystick
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6

2 Current mode as follows:
0x14 = Event reporting mode
0x15 = Interrogation mode
0x19 = Keycode mode

3 Keycode mode: This value represents the
amount of time (in tenths of a second)
that keycodes are returned to the host
for horizontal position events at the initial
velocity level (after this time expires, the
secondary velocity level is used).
Event recording mode: 0
Interrogation mode: 0

4 Keycode mode: Same as BYTE 3 for
vertical events.
Event recording mode: 0
Interrogation mode: 0

5 Keycode mode: This value represents the
initial horizontal velocity level (in tenths of a
second). This is the initial rate at which
keycodes are generated.
Event recording mode: 0
Interrogation mode: 0

6 Keycode mode: Same as byte 5 for vertical
events.
Event recording mode: 0
Interrogation mode: 0

7 Keycode mode: This value represents the
secondary horizontal velocity level (in
tenths of a second). This is the rate used
after the amount of time specified in bytes
3-4 expires.
Event recording mode: 0
Interrogation mode: 0

8 Keycode mode: Same as byte 7 for vertical
events.
Event recording mode: 0
Interrogation mode: 0

0x95 Same as 0x94.
0x99 Same as 0x94.

STe/TT030 DMA Sound – 5.19

T H E A T A R I C O M P E N D I U M

0x9A Return a status message containing the current status of
the joystick. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x00 = Joystick enabled

0x1A = Joystick disabled
3-8 0

STe/TT030 DMA Sound

The Atari STe, Mega STe, TT030, and Falcon030 are all equipped with the ability to playback
stereo digital audio. Only the Falcon030, however, has supporting XBIOS calls which eliminate
the need for the programmer to directly access the sound system hardware. Although the
Falcon030 has a more sophisticated sound system than the earlier Atari machines, the hardware
registers have been kept compatible so older applications should function as expected.
Programmers designing Falcon030 applications which use digital audio should use the
appropriate XBIOS calls.

The STe, MegaSTe, and TT030 support 8-bit monophonic or stereophonic sound samples.
Samples should be signed (-128 to 127) with alternating left and right channels (for stereo)
beginning with the left channel. Samples may be played at 50 kHz, 25 kHz, 12.5 kHz, or
6.25 kHz (6.25 kHz is not supported on the Falcon030).

DMA Sound Registers
Several hardware registers control DMA sound output as follows:

Address Bit Layout Meaning
0xFF8900 ---- ---- ---- --cc Sound DMA Control
0xFF8902 ---- ---- 00xx xxxx Frame Base Address High (bits 21-16)
0xFF8904 ---- ---- xxxx xxxx Frame Base Address Middle (bits 15-8)
0xFF8906 ---- ---- xxxx xxx0 Frame Base Address Low (bits 7-1)
0xFF8908 ---- ---- 00xx xxxx Frame Address Counter (bits 21-16)
0xFF890A ---- ---- xxxx xxxx Frame Address Counter (bits 15-8)
0xFF890C ---- ---- xxxx xxx0 Frame Address Counter (bits 7-1)
0xFF890E ---- ---- 00xx xxxx Frame End Address High (bits 21-16)
0xFF8910 ---- ---- xxxx xxxx Frame End Address Middle (bits 15-8)
0xFF8912 ---- ---- xxxx xxx0 Frame End Address Low (bits 7-1)
0xFF8920 0000 0000 m000 00rr Sound Mode Control

Addresses placed in the three groups of address pointer registers must begin on an even address.
In addition, only sounds within the first 4 megabytes of memory may be accessed (this limitation
has been lifted on the Falcon030). Sounds may not be played from alternate RAM.

5.20 – Hardware

T H E A T A R I C O M P E N D I U M

Playing a Sound
To begin sound playback, place the start address of the sound in the Frame Base Address
registers. Place the address of the end of the sound in the Frame End Address registers. The
address of the end of the sound should actually be the first byte in memory past the last byte of
the sample.

Set the Sound Mode Control register to the proper value. Bit 7, notated as ‘m’ should be set to 1
for a monophonic sample or 0 for a stereophonic sample. Bits 0 and 1, notated as ‘r’, control the
sample playback rate as follows:

‘r’ Playback Rate
00 6258 Hz
01 12517 Hz
10 25033 Hz
11 50066 Hz

To begin the sample playback, set bits 0 and 1 of the Sound DMA Control register, notated as
‘c’, as follows:

‘c’ Sound Control
00 Sound Disabled (this will stop any sound

currently being played)
01 Sound Enabled (play once)
11 Sound Enabled (repeat until stopped)

Sound playback may be prematurely halted by writing a 0 to address 0x00FF8900.

Sound Interrupts using MFP Timer A
Discontinuous sample frames may be linked together using the MFP Timer A interrupt. When a
sound is played using repeat mode an interrupt is generated at the end of every frame. By
configuring Timer A to ‘event count’ mode you can ensure the seamless linkage and variable
repeating of frames.

For example, suppose you have three sample frames, A, B, and C, in memory and you want to
play A five times, B five times, and C only once. Use the following steps to properly configure
Timer A and achieve the desired result:

• Use Xbtimer() to set Timer A to event count mode with a data value of 4 (the first
data value should be one less than actually desired since the sound will play once
before the interrupt occurs).

• Configure the sound registers as desired and start sound playback in repeat mode.

• When the interrupt fires, place the address of frame B in the sound playback
registers (these values aren’t actually used until the current frame finishes).

• Reset Timer A’s data register to 5 and exit your interrupt handler.

The MICROWIRE Interface – 5.21

T H E A T A R I C O M P E N D I U M

• When the second interrupt fires, place the address of frame C in the sound
playback registers.

• Reset Timer A’s data register to 1 and exit your interrupt handler.

• When the final interrupt is triggered, write a 0x01 to the sound control register to
cause sound playback to end at the end of the current frame.

Sound Interrupts using GPIP 7
Another method of generating interrupts at the end of sound frames is by using the MFP’s
General Purpose Interrupt Port (GPIP) 7. This interrupt does not support an event count mode so
it will generate an interrupt at the end of every frame. In addition, the interrupt must be
configured differently depending on the type on monitor connected to the system (this is because
GPIP 7 serves double-duty as the monochrome detect signal).

To program GPIP 7 for interrupts, disable all DMA sound by placing a 0x00 in the sound control
register. Next, check bit 7 of the GPIP port at location 0xFFFA01. If a monochrome monitor is
connected the bit will be 0. The bit will be 1 if a color monitor is connected.

Bit 7 of the MFP’s active edge register (at 0xFFFA03) should be set to the opposite of the GPIP
port’s bit 7. This will cause an interrupt to trigger at the end of every frame. Use Mfpint() to set
the location of your interrupt handler and Jenabint() to enable interrupts. From this point,
interrupts will be generated at the end of every frame playing in ‘play once’ mode or repeat
mode until the interrupt is disabled.

The MICROWIRE Interface

The STe and TT030 computers use the MICROWIRE interface to control volume, mixing of the
PSG and DMA output, and tone control. The original ST is limited to amplitude control through
the use of the appropriate PSG register. The Falcon030 supports new XBIOS calls which allow
volume and mixing control.

The MICROWIRE interface is a write-only device accessed using two hardware registers
0xFFFF8924 (mask) and 0xFFFF8922 (data). To write a command to the MICROWIRE you
must first place the value 0x07FF into the mask register and then write the appropriate command
to the data register. The format for the data WORD is shown below:

x x x x x 1 0 d d d d d d

Bit 15 Bit 0

c c c

Bits labeled ‘x’ will be ignored. Bits 9 and 10 should always be %10 to correctly specify the
device address which is a constant. Bits labeled ‘c’ specify the command and bits labeled ‘d’
contain the appropriate data for the command. The following table explains the valid
MICROWIRE commands:

5.22 – Hardware

T H E A T A R I C O M P E N D I U M

Command ‘ccc’ ‘dddddd’
Set Master Volume 011 Example Value Result

%000000 -80dB Attenuation
%010100 -40dB Attenuation
%101000 0dB Attenuation (Maximum)

Set Left Channel Volume 101 Example Value Result
%000000 -40dB Attenuation
%001010 -20dB Attenuation
%010100 0dB Attenuation (Maximum)

Set Right Channel Volume 100 Example Value Result
%000000 -40dB Attenuation
%001010 -20dB Attenuation
%010100 0dB Attenuation (Maximum)

Set Treble 010 Example Value Result
%000000 -12dB Attenuation
%000110 0dB Attenuation
%001100 +12dB Attenuation (Maximum)

Set Bass 001 Example Value Result
%000000 -12dB Attenuation
%000110 0dB Attenuation
%001100 +12dB Attenuation (Maximum)

Set PSG/DMA Mix 000 Example Value Result
%000000 -12dB Attenuation
%000001 Mix PSG sound output.
%000010 Don’t Mix PSG sound output.

When configuring multiple settings at once, you should program a delay between writes since the
MICROWIRE takes at least 16µsec to completely read the data register. During a read the
MICROWIRE rotates the mask register one bit at a time. You will know a read operation has
completed when the mask register returns to 0x07FF. The following assembly segment illustrates
this by setting the left and right channel volumes to their maximum values:

MWMASK EQU $FFFF8924
MWDATA EQU $FFFF8922

MASKVAL EQU $7FF
HIGHLVOL EQU $554
HIGHRVOL EQU $514

.text

maxvol:
move.w MASKVAL,MWMASK ; First write the mask and data values
move.w #HIGHLVOL,MWDATA

mwwrite:
cmp.w MASKVAL,MWMASK
bne.s mwwrite ; loop until MWMASK reaches $7FF again
move.w #HIGHRVOL,MWDATA ; ok, safe to write second value
rts

.end

Video Hardware – 5.23

T H E A T A R I C O M P E N D I U M

Video Hardware

Video Resolutions
Atari computers support a wide range of video resolutions as shown in the following tables:

Computer System
Modes

(width ´ height ´ colors)
Possible
Colors

ST, Mega ST 320x200x16
640x200x4
640x400x2

512

STe, Mega STe 320x200x16
640x200x4
640x400x2

4096

STacy 640x400x2 N/A
TT030 320x200x256

640x200x4
640x400x2

320x480x256
640x480x16

4096

Falcon030 See below. 262,144

Falcon030 Video Modes
The Falcon030 is equipped with a much more flexible video controller than earlier Atari
computers. The display area may be output on a standard television, an Atari color or
monochrome monitor, or a VGA monitor. Overscan is supported with all monitor configurations
with the exception of VGA. Also, hardware support for NTSC and PAL monitors is software
configurable.

The Falcon030 supports graphic modes of 40 or 80 columns (320 or 640 pixels across)
containing 1, 2, 4, 8, or 16 bits per pixel resulting in 2, 4, 16, 256, or 262,144 colors
respectively. All modes except the 16 bit per pixel mode supply the video shifter with palette
indexes. The 16 bit per pixel mode is a ‘true-color’ mode where each 16 bit value determines
the color rather than being an index into a palette. Each 16 bit WORD value is arranged as
follows:

R R R R R G G G G G G B B B B B

Bit 15 Bit 0

Falcon030 True-Color Video Word

The ‘R’, ‘G’, and ‘B’, represent the red, green, and blue components of the color. Because red
and blue are each allocated five bits, they can represent a color range of 0-31. The green
component is allocated six bits so it can represent a color range of 0-63.

The Falcon030 also supports an overlay mode (see VsetMask()) where certain colors can be
defined as transparent to a connected Genlock (or similar) device. In this mode, the least
signifigant green bit (Bit #5) is treated as the transparent flag bit and the resolution of the green

5.24 – Hardware

T H E A T A R I C O M P E N D I U M

color component is slightly reduced. If the transparent flag bit of a pixel is set, that pixel will
display video from the Falcon030’s video shifter, otherwise the external video source will be
responsible for its display.

Another feature of the Falcon030’s video shifter is an optional interlace/double-line mode.
When operating on a VGA monitor, this mode doubles the pixel height effectively reducing the
vertical screen resolution by half. On any other video display, this mode engages interlacing
which increases the video resolution.

The operating system calls VsetMode() or VsetScreen() can be used to manipulate the
operating mode of the Falcon030’s video shifter. These calls do not, however, do any checking
to ensure the selected video mode is actually attainable on the connected monitor or that the
mode is legal. In particular, you should not attempt to set the video shifter to either 40 column
mode with only one bit per pixel or 80 column VGA mode with 16 bits per pixel.

Video Memory
Most of the available video modes are palette-based. The number of bits required per pixel
depends on the number of palette entries as shown in the table below. The Falcon030 also offers
a true color video mode which requires 16 bits per pixel.

Palette
Entries

Bits per
Pixel

2 1
4 2
16 4

256 8

Directly accessing video memory is normally not recommended because it may create
compatibility problems with future machines and wreak havoc with other system applications.
The VDI provides a rich set of function calls which should be used when outputting to the
screen. The function call vr_trnfm() , for instance, can be useful in transforming video images
into a pattern compatible with the current video shifter. Certain software, however, does need
exclusive access to video memory.

With the exception of the 16-bit true color mode of the Falcon030, all video images are stored in
memory in WORD interleaved format. The video shifter grabs one at a time from each plane
present as shown in the following diagram which represents a 16-color (four plane) screen
layout:

Video Hardware – 5.25

T H E A T A R I C O M P E N D I U M

The Falcon030’s 16-bit true color mode is pixel-packed so that WORD #0 in memory is the
complete color WORD for the pixel at (0, 0), WORD #1 is the complete color WORD for the
pixel at (1, 0), etc.

Fine Scrolling
All Atari computers except the original ST and Mega ST support both horizontal and vertical
fine scrolling in hardware. To accomplish this, an application must place a special handler in
the vertical blank vector (at 0x00000070) which resets the scroll registers and video base
address as needed.

The following registers are manipulated during the vertical-blank period to shift the screen
across any number of virtual ‘screens’:

Register Address Contents
VBASEHI 0xFFFF8200 Low byte contains bits 23-16 of the video

display base address.
VBASEMID 0xFFFF8202 Low byte contains bits 15-8 of the video

display base address.
VBASELO 0xFFFF820C Low byte contains bits 7-0 of the video

display base address.
LINEWID 0xFFFF820E Number of extra WORDs per scanline

(normally 0).
HSCROLL 0xFFFF8264 Low four bits contain the bitwise offset

(0-15) of the screen (normally 0 unless
scrolling is in effect).

VCOUNTHI 0xFFFF8204 Low byte contains bits 23-16 of the
current video refresh address (use with
care).

VCOUNTMID 0xFFFF8206 Low byte contains bits 15-8 of the current
video refresh address (use with care).

VCOUNTLO 0xFFFF8208 Low byte contains bits 7-0 of the current
video refresh address (use with care).

5.26 – Hardware

T H E A T A R I C O M P E N D I U M

To accommodate virtual screens wider than the display can show, set LINEWID to the number
of extra WORDs per scanline. For instance, to create a virtual display two screens wide for a
320x200 16-color display, set LINEWID to 80.

To scroll vertically, simply alter the video base address by adding or subtracting the number of
WORDs per scanline for each line you wish to scroll during the vertical blank.

To scroll horizontally, alter the video base address in WORD increments to move the physical
screen left and right over the virtual screen. This by itself will cause the screen to skip in 16
pixel jumps. To scroll smoothly, use the HSCROLL register to shift the display accordingly.
When HSCROLL is non-zero, subtract one from LINEWID for each plane.

To illustrate this more clearly, imagine a physical screen of 320x200 (16 colors) which is laid
out over 4 virtual screens in a 2x2 grid. The following diagram and table shows example values
to move the physical screen to the desired virtual coordinates:

Sample Values
Virtual Coordinates VBASE Address LINEWID HSCROLL

(0, 0) 0x80000 80 0
(16, 0) 0x80004 80 0
(0, 1) 0x80140 80 0
(1, 0) 0x80000 76 1
(0, 10) 0x80B40 80 0

(100, 100) 0x87BE4 76 4

