
T H E A T A R I C O M P E N D I U M

– CHAPTER 4 –

XBIOS

Overview – 4.3

T H E A T A R I C O M P E N D I U M

Overview

The eXtended Basic Input/Output System (XBIOS) is a software sub-system of TOS which
contains functions used to interact with and control Atari computer hardware. The availability of
many of these functions is dependent on hardware whose presence can be determined by the
current TOS version or by interrogating the system ‘cookie jar’ (see Chapter 3: BIOS for more
details).

Some functions (notably video hardware and storage device related functions) should only be
used by device drivers and system level software as they represent a non-portable method of
hardware interaction which may be unsupported in future Atari computers.

As a general rule, GEMDOS and VDI functions should be used, when possible, rather than
XBIOS calls. The GEMDOS and VDI provide a software abstraction layer which will make
software applications much more compatible across new computer releases.

Video Control

The video capabilities of Atari computer systems have varied greatly since their introduction.
Applications which use the VDI for their video displays will require little if any modifications
to run on new systems. The XBIOS is mostly required for device drivers and other applications
which require more direct control over the video hardware. When present, the ‘_VDO’ entry in
the system cookie jar will reveal information about the video hardware present.

The Physical/Logical Screen
Two separate video display pointers are maintained by the XBIOS at any time. The physical
screen address points to the memory location that the video shifter uses to update the display.
This memory must not be in fast RAM and must be WORD-aligned (original ST computers
expect screen memory to be aligned to a 256-byte boundary).

A second video memory pointer points to the ‘logical’ screen. This memory area is used by the
VDI to output graphics. Normally, the physical screen address is equal to the logical screen
address meaning that VDI output is shown immediately on screen. Software (most commonly
games) can allocate an additional memory block and use these two pointers to page-flip for
smooth animations.

Physbase() and Logbase() return these two addresses. Setscreen() can be used to reset these
addresses and change screen modes. As of TOS 4.0, Setscreen() reinitializes the VDI screen
driver (you must still call vq_extnd() to update your workstations) but will not reinitialize the
AES. This means that if you change resolution using Setscreen(), do not use the AES until the
screen is restored to its original resolution. On TOS versions prior to 4.0, you should not use
any GEM calls while the screen mode is altered.

4.4 – XBIOS

T H E A T A R I C O M P E N D I U M

The Falcon030 function VgetSize() is a utility function that will return the number of bytes that
must be allocated for the specified video mode. When not running on a Falcon030, you will have
to calculate this yourself.

Setting/Determining Screen Resolution
Getrez() was originally a safe method for determining the current video hardware
configuration. As new video modes became available, though, Getrez() became less and less
useful. Currently, Getrez() should be used for only one purpose. The formula Getrez() + 2
should be used to select the VDI physical device ID for the screen so that the proper screen fonts
can be selected. See the description of v_opnvwk() for more details.

In order to provide true screen independence, you should use the values returned by the VDI call
v_opnvwk() to determining the screen resolution your application is using. The XBIOS
provides calls that will determine the current video mode but they are hardware dependent and
will probably stop working as expected as new video hardware is released.

The Getrez() call can reliably determine the video mode of an ST, STe or Mega ST/e. Three
calls have since been added to determine the video mode of the TT030 and Falcon030
computers.

EgetShift() and EsetShift() can be used to interrogate and set the TT030 video mode.
VsetMode() can similarly be used to interrogate and set the Falcon030 video mode. The
Falcon030 call VgetMonitor() can be used to determine the type of attached monitor and,
therefore, the available video modes.

TT030 TOS also provides the calls EsetGray() and EsetSmear(). Together, these calls
duplicate some of the functionally contained in EsetShift() but can be used individually as
desired to configure the special gray-scale and smear modes present in the TT030.

EsetShift() and VsetMode() are designed to change the video modes of the TT030 and
Falcon030 respectively, however, they do not reinitialize the AES or VDI . It is also possible to
change TT030 and Falcon030 video modes using Setscreen(). TT030 modes are set by
supplying the appropriate resolution code (see Getrez() for a list of resolution codes).
Falcon030 modes are set by adding an extra parameter to the call with a special resolution code
of 3. See the explanation for Setscreen() later in this chapter for details.

Manipulating the Palette
Prior to the introduction of the TT, Setcolor() and Setpalette() were used to set the 16
available palette entries. Setpalette() sets the entire palette at once whereas Setcolor() sets
colors at an individual level and can also be used to interrogate palette entries.

The ST has 16 palette entries, each supporting any of 512 available colors. The ST specifies
color in components of red, green, and blue. Intensity settings of 0–7 are valid for each color
component. The following list contains the red, green, and blue values for the ST’s default 16
color palette.

Video Control – 4.5

T H E A T A R I C O M P E N D I U M

Index Color Red Green Blue
0 White 7 7 7
1 Red 7 0 0
2 Green 0 7 0
3 Yellow 7 7 0
4 Blue 0 0 7
5 Magenta 7 0 7
6 Cyan 0 7 7
7 Light Gray 5 5 5
8 Dark Gray 3 3 3
9 Light Red 7 3 3

10 Light Green 3 7 3
11 Light Yellow 7 7 3
12 Light Blue 3 3 7
13 Light Magenta 7 3 7
14 Light Cyan 3 7 7
15 Black 0 0 0

You might have noticed that these registers are not mapped the same as VDI color indexes. The
VDI re-maps color requests to its own needs. For a list of these re-mappings, see the entry for
vr_trnfm() . It is also possible to build a remapping table on the fly by plotting one pixel for
each VDI pen on the screen and using the VDI v_get_pixel() call on each to return the VDI and
hardware register index.

Each of the sixteen color registers is bitmapped into a WORD as follows (The first row
indicates color, the second is bit significance):

xxxx xRRR xGGG xBBB
xxxx x321 x321 x321

The STe series expanded the color depth to four bits instead of three which expanded the number
of available colors from 512 to 4096. This changed the layout of these color WORDs as
follows:

xxxx RRRR GGGG BBBB
xxxx 1432 1432 1432

This odd bit layout allowed for backward compatibility to the ST series.

The TT030 supports an expanded palette of 256 entries in 16 banks containing any of 4096
colors. The first bank of colors is still supported by Setcolor() and Setpalette(), however to
access the additional 240 colors, 4 additional palette support calls were added.

Esetpalette(), Egetpalette(), and Esetcolor() provide access to these colors in a similar
manner to Setpalette() and Setcolor(). Esetbank() switches between the 16 available banks of
colors in color modes that support less than 16 colors. You should note that the TT030 color
calls returned the color WORDs to normal bit ordering as follows:

4.6 – XBIOS

T H E A T A R I C O M P E N D I U M

xxxx RRRR GGGG BBBB
xxxx 4321 4321 4321

When using the TT’s special gray mode, the lower eight bits of each hardware register is used as
a gray value from 0–255.

The Falcon030 computer gives up the TT030 calls in favor of a more portable method of setting
the hardware palette (ST calls will remain as compatible as possible). VsetRGB() and
VgetRGB() set color palette entries based on 24-bit true color values. The XBIOS will scale
these values as appropriate for the screen mode.

Advanced Video
Vsync() halts all further processing by the application until a vertical blank interrupt occurs.
This interrupt signals that the video display gun has reached the bottom of the display and is
returning to the top. At this time, a brief period occurs where updates to the screen will not be
immediately apparent to the user. This time is usually used to present flicker-free animation and
redraws.

VsetSync() is used to enable external hardware video synchronization for devices such as
GENLOCK’s. Both the vertical and horizontal syncronizations may be set independent of each
other with this call.

VsetMask() provides easy access to the Falcon030’s overlay mode. This call allows you to
specify bits which will be added or removed to future color definitions created with the VDI
call vs_color(). When a GENLOCK hardware device is connected, pixels with their overlay bit
cleared will be replaceable by the device with external video.

The Falcon030 Sound System

XBIOS sound system calls are only present as of the Falcon030 computer (though their presence
should always be verified by the ‘_SND’ cookie). If you want to program digitized audio that
plays on an STe, TT, and Falcon030, see Chapter 5: Hardware.

The Falcon030 sound system consists of four stereo 16-bit DMA playback and record channels1,
an onboard ADC (microphone jack), DAC (speaker and headphone jack), connection matrix, and
digital signal processor.

When your application uses the sound system you should first lock it with Locksnd(). This
ensures that other system processes don’t try to access the sound system simultaneously.
Unlocksnd() should be used as soon as the sound system is free.

1Only one output track may be monitored at a time, though the DSP may be programmed as a mixer to combine more tracks while sound
is being output.

The Falcon030 Sound System – 4.7

T H E A T A R I C O M P E N D I U M

Each of four possible source devices can be connected to any or all of the four possible
destination devices using the connection matrix as follows:

External Input

DSP Transmit

DMA Playback

ADC (PSG/Mic)

DAC DSP
Receive

DMA
Record

Ext.
Output

The external input and output are accessible with a specially designed hardware device
connected to the DSP connector.

The Connection Matrix
The sound system call Devconnect() connects sound system components together. You must
specify the source device, destination device(s), source clock, prescaler setting, and
handshaking protocol.

The source clock can be set to either of two internal clocks (25.175 MHz and 32 MHz) or an
external clock. The internal DMA sound routines are only compatible with the 25.175 MHz
clock. Other clock sources are used in conjunction with external hardware devices.

The prescaler sets the actual sample playback and recording rate. A value of 0 will cause the
sound system to use a STe/ TT030 compatible prescaler for outputting sound recorded at
STe/TT030 frequencies. One STe/TT030 frequency, 6.258 kHz, is not supported on the
Falcon030. You can set the STe/TT030 prescaler with the Soundcmd() call. Using values other
than 0 will set the Falcon030 prescaler as documented under the Devconnect() call.

The last parameter you must pass to Devconnect() specifies whether to enable or disable
hardware handshaking. Enabling handshaking will produce data that is 100% error free but will
result in a variable transfer rate which may negatively affect digital sound. Handshaking is
generally only enabled when the data being transferred must be transferred without errors
(usually compressed audio or video data).

Recording/Playing Digital Audio
To record or playback an audio sample, use Setbuffer() to identify the location and length of
your playback/recording buffer. Also, any Devconnect(), Setmode(), and Soundcmd() calls
should be made prior to starting your playback/recording to set the sound hardware to the proper
frequency and mode.

4.8 – XBIOS

T H E A T A R I C O M P E N D I U M

The Falcon030 only supports the recording of 16-bit stereo audio. To generate 8-bit samples
you must scale the values in the buffer from WORDs to BYTEs after recording.

When processing either recording or playback through the DSP, the command Dsptristate() must
be used to connect the DSP to the matrix.

You may use the function Setinterrupt() , as desired, to cause a MFP or Timer A interrupt at the
end of every frame. This is most useful when you are playing or recording in repeat mode and
you wish to use multiple buffers.

Buffptr() may be used to determine the current playback or record buffer pointer as sounds are
being played/recorded.

Setmontracks() is used to define which track which will be output over the computer
speaker/headphones. Settracks() controls which tracks will be used to record/playback data.

Configuring Levels
The function Soundcmd() has four modes which allow the setting and interrogation of the current
levels of attenuation and gain. Gain affects input levels. The higher the value for gain, the louder
the microphone input will be. Attenuation affects output levels. The higher the attenuation setting,
the softer sounds will be output from the computer speaker/headphone jack.

Other Calls
Sndstatus() can be used to tell if a source clock rate was correctly set or if hardware clipping
has occurred on either channel.

Gpio() is used to communicate data over the three general purpose pins of the DSP connector.

The DSP

The Falcon030 comes standard with a Motorola 56001 digital signal processor (DSP). Digital
signal processors are useful for many different purposes such as audio/video compression,
filtering, encryption, modulation, and math functions.

The DSP is able to support both programs and subroutines. Both must be written in 56001
assembly language (or a language which outputs 56001 object code). A full treatment of 56001
assembly language is beyond the scope of this document. Consult the DSP56000/56001 Digital
Signal Processor’s User Manual published by Motorola, Inc. for more information.

The DSP is capable of having many subroutines resident in memory, however, only one program
may be loaded at any time.

When using the DSP you should call Dsp_Lock() to prevent other processes from modifying
your setup and to ensure that you do not modify the work of other processes. Call Dsp_Unlock()

The DSP – 4.9

T H E A T A R I C O M P E N D I U M

when done (the DSP’s MR and IPR registers should have been returned to their original state) to
release the DSP semaphore.

DSP Memory
The Falcon030’s DSP contains 96K bytes of RAM for system programs, user programs, and
subroutines. The DSP uses three distinct address spaces, X, Y, and P. Program memory (P)
overlaps both X and Y memory spaces. Because of this, DSP programs should be careful when
referencing memory. The following is a memory map of the DSP:

$FFFF

$7FFF

$3FFF

$01FF

$0000

X Memory Y Memory P Memory

16 K
Shadow

16 K
Shadow

32 K
Program RAM

16 K
External RAM

16 K
External RAM

Internal
RAM

Internal
RAM/ROM

Internal
RAM/ROM

Reserved

Overlaps

X Memory

Overlaps

Y Memory

DSP Word Size
The 56001 uses a 24-bit WORD. Future Atari computers may use different DSP’s with different
WORD sizes. Use the Dsp_GetWordSize() call prior to using the DSP to determine the proper
DSP WORD size.

DSP Subroutines
Subroutines are usually short programs (no longer than 1024 DSP WORDs) which transform
incoming data. Each subroutine must be written to be fully relocatable. When writing
subroutines, start instructions at location $0. All addresses in the subroutine must be relocatable
based on the original PC of $0 in order to function. An alternative to this is to include a stub
program at the start of your subroutine that performs a relocation based upon the start address
assigned by the XBIOS (which is available in X:HRX at subroutine start).

Subroutines should store initialized data within its program space. The memory area from
$3f00–$3fff is reserved for use as the BSS of subroutines. Subroutines must not rely on the
BSS’s data to remain constant between subroutine calls.

4.10 – XBIOS

T H E A T A R I C O M P E N D I U M

Each subroutine must be assigned a unique ability code either by using one predefined by Atari
(none have been published yet) or by using the Dsp_RequestUniqueAbility() call. Since
subroutines are only flushed from the DSP when necessary, an application may be able to use an
existing subroutine with the same ability left by another application by using the
Dsp_InqrSubrAbility() call.

Here is a sample of how to load a DSP subroutine with a non-unique ability code:

if(!DSP_Lock())
{

ability = DSP_RequestUniqueAbility();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(!handle)
{

DSP_FlushSubroutines();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(!handle)

error(“Unable to load DSP subroutine”);
}

if(handle)
{

if(!Dsp_RunSubroutine(handle))
DSP_DoBlock(data_in, size_in, data_out, size_out);

else
error(“Unable to run DSP subroutine!”);

}
}

DSP Programs
Only one DSP program may be resident in memory at once. Prior to loading a DSP program you
should ensure enough memory is available for your program by calling Dsp_Available(). If not
enough memory is available, you may have to flush resident subroutines to free enough memory.

After you have found that enough memory is available, you must reserve it with Dsp_Reserve().
This memory will be reserved until the next Dsp_Reserve() call so you should ensure that you
have called Dsp_Lock() to block other processes from writing over your program.

Programs can be stored in either binary or ASCII (‘.LOD’) format. The function
Dsp_LodToBinary() can be used to convert this data. DSP programs in binary form load much
faster than those in the ‘.LOD’ format.

Dsp_LoadProg() is used to execute programs stored on disk in the ‘.LOD’ format.
Dsp_ExecProg() is used to execute programs stored in memory in binary format.

As with subroutines, programs are assigned a unique ability code that can be determined with
Dsp_GetProgAbility().

Sending Data to the DSP
Several functions transfer data to and from DSP programs and subroutines as follows:

User/Supervisor Mode – 4.11

T H E A T A R I C O M P E N D I U M

• Dsp_DoBlock()

• Dsp_BlkHandshake()

• Dsp_BlkUnpacked()

• Dsp_BlkWords()

• Dsp_BlkBytes()

• Dsp_MultBlocks()

• Dsp_InStream()

• Dsp_OutStream()

You should read the description of each in the function reference and decide which is best suited
for your needs.

Dsp_SetVectors() installs special purpose routines that are called when the DSP sends an
interrupt indicating it is ready to send or receive data. Dsp_RemoveInterrupts() removes these
routines from the vector table in memory.

DSP State
The HFx bits of the HSR register can be read atomically with the four calls Dsp_Hf0(),
Dsp_Hf1(), Dsp_Hf2(), and Dsp_Hf3(). The current value of the ISR register may be read with
Dsp_Hstat().

DSP programs may also define special host commands at DSP vectors $13 and $14 to be
triggered by the command DSP_TriggerHC().

DSP Debugging
When full control over the DSP is necessary (such is the case for specialized debuggers), the
command Dsp_ExecBoot() can be used to download up to 512 DSP WORDs of bootstrap code.
The DSP will be reset before this happens. This call should only be used by advanced
applications as it will cause other DSP functions to stop working unless those functions are
properly supported.

User/Supervisor Mode

The XBIOS call Supexec() provides access to a special mode of the 680x0 processor called
supervisor mode. Normal programs always execute in user mode. Programs operating in user
mode, however, have less memory access privileges than those operating in supervisor mode.

Some special instructions of the 680x0 may only be executed in supervisor mode. In addition,
any memory reads or writes to locations $0–$7FF or memory-mapped I/O must be made in
supervisor mode.

4.12 – XBIOS

T H E A T A R I C O M P E N D I U M

To use Supexec(), simply pass it the address of a function to be called. When writing the
function in ‘C’, you should be careful to define the function in a way that is safe for your
compiler (see your compiler documentation for details).

While in supervisor mode, the AES should never be called.

MetaDOS

One special XBIOS opcode, Metainit() was reserved for a TOS extension called MetaDOS.
MetaDOS was designed to supplement the OS to allow for more than 16 drives and to provide
the extra support needed for CD-ROM drives. MetaDOS is no longer officially supported by
Atari because of the increased functionality of MultiTOS .

MultiTOS allows the use of all 26 drive letters as well as providing loadable device drivers
and file systems. See Chapter 2: GEMDOS for more information.

Keyboard and Mouse Control

The XBIOS has several functions that provide extended control over the keyboard and mouse.
These functions should be used with care, however, as the keyboard and mouse are ‘global’
devices shared by other processes.

Initmous() is used to change the way the keyboard controller reports mouse movements to the
system. Changing this mode will cause the AES and VDI to be unable to recognize mouse input.

Keytbl() allows you to read and manipulate the tables which translate IKBD scan codes into
ASCII codes. This is essential when you want your application to run on Atari machines with
foreign keyboards. Use Keytbl() to return a pointer to the internal table structure and then
convert keycodes into ASCII by looking codes up in the appropriate table.

Loadable XBIOS Keyboard Tables
TOS versions 5.0 and greater support the loading of external keyboard tables when the ‘_AKP’
cookie is present. In this case, if a file called ‘KEYTBL.TBL’ is found in the ‘\MULTITOS’
directory of the boot drive, it will be loaded upon bootup to provide keyboard mapping changes.
The format of the file is as follows:

Magic Table Identifier Word
This should be a WORD value of 0x2771.

Unshifted Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when no keyboard shift keys are being held down. There is
one entry for each possible scan code.

Shifted Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when the SHIFT key is being held down. There is one entry
for each possible scan code.

Disk Functions – 4.13

T H E A T A R I C O M P E N D I U M

CAPS-LOCK Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when CAPS-LOCK is engaged and no shift keys are being
held. There is one entry for each possible scan code.

Alternate-Unshifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key (and no other) keyboard shift keys are
being held. The list is terminated by a single NULL byte.

Alternate-Shifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key and the SHIFT key is being held. The list is
terminated by a single NULL byte.

Alternate CAPS-LOCK Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key is being held with the CAPS-LOCK mode in
effect. The list is terminated by a single NULL byte.

Bioskeys() returns any mapping changes made by Keytbl() to their original state.

The configuration functions Cursconf() and Kbrate() set the cursor blink rate and keyboard
repeat rates respectively. These settings should only be changed by a CPX or other configuration
utility at the user’s request as they are global and affect all applications.

IKBD Intelligent Keyboard Controller
The IKBD Controller is an intelligent hardware device that handles communications between the
computer and the keyboard matrix. The XBIOS function Ikbdws() can be used to transmit
command strings to the IKBD controller. For further information about the IKBD, consult
Chapter 5: Hardware.

Disk Functions

Boot Sectors
Both floppy disks and hard disks share a similar format for boot sectors as follows:

Name Offset Contents
BRA 0x0000 This WORD contains a 680x0 BRA.S instruction to the

boot code in this sector if the disk is executable,
otherwise it is unused.

OEM 0x0002 These six bytes are reserved for use as any necessary
filler information. The disk-based TOS loader program
places the string ‘Loader’ here.

SERIAL 0x0008 The low 24-bits of this LONG represent a unique disk
serial number.

4.14 – XBIOS

T H E A T A R I C O M P E N D I U M

BPS 0x000B This is an Intel format WORD (low byte first) which
indicates the number of bytes per sector on the disk.

SPC 0x000D This is a BYTE which indicates the number of sectors
per cluster on the disk.

RES 0x000E This is an Intel format WORD which indicates the
number of reserved sectors at the beginning of the
media (usually one for floppies).

NFATS 0x0010 This is a BYTE indicating the number of File
Allocation Table’s (FAT’s) on the disk.

NDIRS 0x0011 This is an Intel format WORD indicating the number of
ROOT directory entries.

NSECTS 0x0013 This is an Intel format WORD indicating the number of
sectors on the disk (including those reserved).

MEDIA 0x0015 This BYTE is a media descriptor. Hard disks set this
value to 0xF8, otherwise it is unused.

SPF 0x0016 This is an Intel format WORD indicating the number of
sectors per FAT.

SPT 0x0018 This is an Intel format WORD indicating the number of
sectors per track.

NSIDES 0x001A This is an Intel format WORD indicating the number of
sides on the disk.

NHID 0x001C This is an Intel format WORD indicating the number of
hidden sectors on a disk (currently ignored).

BOOTCODE 0x001E This area is used by any executable boot code. The
code must be completely relocatable as its loaded
position in memory is not guaranteed.

CHECKSUM 0x01FE The entire boot sector WORD summed with this
Motorola format WORD will equal 0x1234 if the boot
sector is executable or some other value if not.

The boot sector may be found on side 0, track 0, sector 1 of each physical disk.

The Floppy Drive
The XBIOS provides several functions used for reading, writing, verifying, and formatting
sectors on the hard disk.

Floprd() and Flopwr() read and write from the floppy drive at the sector level rather than the
file level. For example, these functions could be used to create executable boot sectors on a
floppy disk. Flopver() can be used to verify written sectors against data still in memory.

Formatting a floppy disk is accomplished with Flopfmt() . After a floppy is completely formatted
use the function Protobt() to create a prototype boot sector (as shown above) which can then be
written to sector #1 to make the disk usable by TOS.

ASCI and SCSI DMA
The functions DMAread() and DMAwrite() were added as of TOS 2.00. These functions
provide a method of accessing ACSI and SCSI devices at the sector level.

Disk Functions – 4.15

T H E A T A R I C O M P E N D I U M

ASCI accesses must not use alternate RAM as a transfer buffer because they are performing
DMA. The TT030 uses handshaking for SCSI so alternate RAM transfers are safe. SCSI
transfers on the Falcon030 do, however, use DMA so alternate RAM must be avoided.

If you need to transfer data using these functions to an alternate RAM buffer, use the special
standard memory block pointed to by the cookie ‘_FRB’ as an intermediary point between the
two types of RAM. You must also use the ‘_flock’ system variable (at 0x43E) to lock out other
attempted uses of this buffer.

Each physical hard disk drive must contain a boot sector. The boot sector for hard disk drives is
the same as floppies except for the following locations:

Name Offset Contents
hd_siz 0x01C2 This is a Motorola format LONG that indicates the

number of physical 512-byte sectors on the device.
Partition
Header #0

0x01C6 This section contains a 12 BYTE partition information
block for the first logical partition.

Partition
Header #1

0x01D2 This section contains a 12 BYTE partition information
block for the second logical partition.

Partition
Header #2

0x1DE This section contains a 12 BYTE partition information
block for the third logical partition.

Partition
Header #3

0x1EA This section contains a 12 BYTE partition information
block for the fourth logical partition.

bst_st 0x1F6 This is a Motorola format LONG that indicates the
sector offset to the bad sector list (from the beginning
of the physical disk).

bst_cnt 0x01FA This is a Motorola format LONG that indicates the
number of 512-byte sectors reserved for the bad
sector list.

The partition information block is defined as follows:

Name Offset Contents
p_flg 0x00 This is a BYTE size bit field indicating the partition

state. If bit 0 is set, the partition exists, otherwise it
does not. If bit 7 is set, the partition is bootable,
otherwise it is not. Bits 1-6 are unused.

p_id 0x01 This is a three BYTE field that indicates the partition
type as follows:

Contents Meaning
‘GEM’ Regular Partition (<16MB)
‘BGM’ Big Partition (>=16MB)
‘XGM’ Extended Partition

p_st 0x04 This is a Motorola format LONG that indicates the
start of the partition as an offset specified in 512-byte
sectors.

p_size 0x08 This is a Motorola format LONG that indicates the size
of the partition in 512-byte sectors.

4.16 – XBIOS

T H E A T A R I C O M P E N D I U M

A hard disk may have up to four standard (GEM or BGM) partitions or three standard and one
extended (XGM) partition. The first partition of a hard disk must be a standard one.

Extended Partitions
The first sector of an extended partition contains a standard boot sector with hard disk
information except that the hd_siz, bst_st, and bst_cnt fields are unused. At least one, but no
more than two (not necessarily the first two), partition headers are used. The first partition
header is the same as described above except that p_st describes the offset from the beginning of
the extended partition rather than the beginning of the physical disk.

If another partition needs to be linked, the second partition block should contain ‘XGM’ in its
p_id field and an offset to the next extended partition in p_st.

The Bad Sector List
The bad sector list is a group of three-byte entries describing which physical sectors on the hard
disk are unusable. The first three-byte entry contains the number of bad sectors recorded. The
second three-byte entry is a checksum and when added to the entire bad sector list bytewise
should cause the list to BYTE sum to 0xA5. If this is not the case then the bad sector list is
considered bad itself.

The Serial Port

Application writers who develop communication programs will need to use some of the special
functions the XBIOS provides for control of the serial port(s). Older Atari computers support
only one serial port connected by the Multi-Function Peripheral (MFP) chip.

The Atari TT030 contains two MFP chips to provide two serial ports and one Serial
Communications Chip (SCC) which controls two more serial ports. One of the SCC ports,
however, can be switched over to control a Localtalk compatible network port as follows:

Switch to Serial 2 Connector:

Ongibit(0x80);

Switch to LAN connector:

Offgibit(0x7F);

The Mega STe is similar to the TT030, however, it has only one MFP chip to provide one less
serial device.

The Atari Falcon030 uses a SCC chip to drive its single serial port and networking port. The
Falcon030 does contain a MFP chip but it does not control any of the serial device hardware.
The MFP’s ring indicator has, however, been wired across the SCC to provide compatibility
with older applications.

Printer Control – 4.17

T H E A T A R I C O M P E N D I U M

Serial Port Mapping
BIOS input and output calls to device #1 and XBIOS calls which configure the serial port
always refer to the currently ‘mapped’ device as set with Bconmap(). The Modem CPX allows
a user to map any installed device as the default. A program which is aware of the extra ports on
newer machines can access them through their own BIOS device number as follows:

Device
Number Mega ST TT030 Falcon030

1 Currently mapped device.
DEV_AUX

Currently mapped device.
DEV_AUX

Currently mapped device.
DEV_AUX

6 Modem 1 (ST MFP)
DEV_MEGAMODEM1

Modem 1 (ST MFP)
DEV_TTMODEM1

—

7 Modem 2 (SCC B)
DEV_MEGAMODEM2

Modem 2 (SCC B)
DEV_TTMODEM2

Modem (SCC B)
DEV_FALCONMODEM

8 Serial/LAN (SCC A)
DEV_MEGALAN

Serial 1 (TT MFP)
DEV_TTSERIAL1

LAN (SCC A)
DEV_FALCONLAN

9 — Serial 2/LAN (SCC A)
DEV_TTLAN

—

Configuring the Serial Port
Rsconf() and Iorec() set the communication mode and input/output buffers of the currently
mapped serial port. You should note that while some ports support transfer rates of greater than
19200 baud, this is the limit of the Rsconf() call. Other rates must currently be set in hardware
(or with the Fcntl() when MiNT is present).

MFP Interrupts
Each MFP chip supports a number of interrupts used by the serial port and other system needs.
The function Mfpint() should be used to set define a function in your application that handles
one of these interrupts. Jenabint() and Jdisint() are used to enable/disable these interrupts
respectively.

All MFP interrupt calls only work on ST compatible MFP serial ports. The RS-232 ring
indicator is the only interrupt that has been wired through the MFP on a Falcon. Because of this,
the ring indicator interrupt is the only RS-232 interrupt that may be changed with Mfpint() on a
Falcon.

SCC Interrupts
The XBIOS functions used for setting MFP interrupts do not affect the SCC interrupts regardless
of the Bconmap() mapping. Refer to the memory map for the location of SCC interrupt registers.

Printer Control

The XBIOS contains two functions used for controlling printers. Both functions are very
outdated and should not be relied on in any ST.

4.18 – XBIOS

T H E A T A R I C O M P E N D I U M

Scrdmp() triggers the built-in ALT-HELP screen dump code. Prtblk() enables the built-in screen
dump routine of the ST printing only the desired block to an Atari or Epson dot-matrix printer.

Setprt() configures the built-in screen dump routine as to the basic configuration of the attached
printer.

Other XBIOS Functions

NVMaccess() accesses the non-volatile RAM present in the TT, Mega STe, and Falcon030.
You should not read or write to this area as all of its locations are currently reserved.

The functions Settime() and Gettime() set the BIOS time and date. As of TOS 1.02, they also
update the GEMDOS time as well.

Besides the sound capabilities of the XBIOS when running on a Falcon, the function Dosound()
generates music on any Atari computer using the FM sound generator. The function works at the
interrupt level processing a ‘sound command list’ you specify. It can be used to reproduce a
single tone or a complete song in as many as three parts of harmony.

Random() generates a pseudo-random number using a built-in algorithm whose seed comes from
the system 60kHz clock.

Ssbrk() is used by the operating system to reserve system RAM before GEMDOS is initialized.
It should not be used by application programmers.

Puntaes() is useful only when using a disk-loaded version of TOS. It clears the OS from RAM
and reboots the computer.

Midiws() is a similar function to Ikbdws() in that it writes to the MIDI controller. It is more
useful at transferring large amounts of MIDI data than Bconout().

The Dbmsg() XBIOS call is added by supporting debuggers as a method of transferring
debugging messages between the application and debugger. The Atari Debugger (DB) currently
supports this interface.

XBIOS Function Calling Procedure

XBIOS system functions are called via the TRAP #14 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

The XBIOS, like the BIOS may utilize registers D0-D2 and A0-A2 as scratch registers and their
contents should not be depended upon at the completion of a call. In addition, the function
opcode placed on the stack will be modified.

XBIOS Function Calling Procedure – 4.19

T H E A T A R I C O M P E N D I U M

The following example for Getrez() illustrates calling the XBIOS from assembly language:

move.w #$04,-(sp)
trap #14
addq.l #6,sp

A ‘C’ binding for a generic XBIOS handler would be as follows:

_xbios:
; Save the return code from the stack
move.l (sp)+,trp14ret
trap #14
move.l trp14ret,-(sp)
rts

.bss
trp14ret:

.ds.l 1

The XBIOS is re-entrant to three levels, however there is no depth checking performed so
interrupt handlers should avoid intense XBIOS usage. In addition, no disk or printer usage
should be attempted from the system timer interrupt, critical error, or process-terminate
handlers.

Calling the XBIOS from an Interrupt
The BIOS and XBIOS are the only two OS sub-systems which may be called from an interrupt
handler. Precisely one interrupt handler at a time may use the XBIOS as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2

myhandler:
sub.l #savamt,savptr

; BIOS calls may be performed here

add.l #savamt,savptr

rte ; (or rts?)

Certain XBIOS calls are not re-entrant because they call GEMDOS routines. The Setscreen()
function, and any DSP function which loads data from disk should not be attempted during an
interrupt.

It is not possible to use this method to call XBIOS functions during an interrupt when running
under MultiTOS .

