
T H E A T A R I C O M P E N D I U M

– CHAPTER 2 –

GEMDOS

Overview – 2.3

T H E A T A R I C O M P E N D I U M

Overview

GEMDOS contains functions which comprise the highest level of TOS. In many cases,
GEMDOS devolves into BIOS calls which handle lower level device access. GEMDOS is
responsible for file, device, process, and high-level input/output management. The current
revision number of GEMDOS is obtained by calling Sversion(). You should note that the
GEMDOS version number is independent of the TOS version number and you should not count
on any particular version of GEMDOS being present based on the TOS version present.

Much of GEMDOS closely resembles its CPM 68k and MS-DOS heritage. In fact, the file
system and function calls are mostly compatible with MS-DOS. MS-DOS format floppy disks
are readable by an Atari computer and vice-versa.

For the creation of MultiTOS , GEMDOS was merged with the MiNT operating environment
which derives many of its calls from the UNIX operating system.

The TOS File System

GEMDOS is responsible for interaction between applications and file-based devices. Floppy
and hard disk drives as well as CD-ROM, WORM, and Magneto-Optical drives are all
accessed using GEMDOS calls.

Prior to the advent of MultiTOS , Atari programmers were limited to the TOS file system for
file storage and manipulation. With the introduction of MultiTOS , it is now possible for
developers to create custom file systems so that almost any conceivable disk format becomes
accessible.

As a default, MultiTOS will manage files between the TOS file system and alternative file
systems to maintain backward compatibility. Applications which wish to support extra file
system features may do so. The Pdomain() call may be used to instruct MultiTOS to stop
performing translations on filenames, etc. Other calls such as Dpathconf() can be used to
determine the requirements of a particular file system.

The explanation of the file system contained herein will limit itself to the TOS file system.

Drive Identifiers
Each drive connected to an Atari system is given a unique alphabetic identifier which is used to
identify it. Drive ‘A’ is reserved for the first available floppy disk drive (usually internal) and
drive ‘B’ for the second floppy disk drive. If only one floppy drive exists, two letters will still
be reserved and GEMDOS will treat drive ‘B’ as a pseudo-drive and request disk swaps as
necessary. This feature is automatically handled by GEMDOS and is transparent to the
application.

2.4 – GEMDOS

T H E A T A R I C O M P E N D I U M

Drives ‘C’ through ‘P’ are available for use by hard disk drives. One letter is assigned per hard
drive partition so a multiple-partition drive will be assigned multiple letters. MultiTOS extends
drive letter assignments to ‘Z’ drive. Drive ‘U’ is a special drive reserved for MultiTOS and is
unavailable for assignment.

The amount of free storage space remaining on a drive along with a drive’s basic configuration
can be determined using the Dfree() call.

GEMDOS Filenames
Under GEMDOS, each file located on a device is given a filename upon its creation which
serves to provide identification for the file. The filename has two parts consisting of a name
from one to eight characters long and an optional file extension of up to three characters long. If
a file extension exists, the two components are separated by a period. The extension should
serve to identify the format of the data whereas the name itself should identify the data itself.

Filenames may be changed after creation with the function Frename(); however, under no
circumstances may two files with the same filename reside in the same directory.

All GEMDOS functions ignore the alphabetic case of file and pathnames. The following
characters are legal filename characters:

Legal GEMDOS Filename Characters
A-Z, a-z, 0-9

! @ # $ % ^ & ()
+ - = ~ ` ; ‘ “ ,

< > | [] () _

GEMDOS Directories
To further organize data, GEMDOS provides file directories (or folders). Each drive may
contain any number of directories which, in turn, may contain files and additional directories.
This organization creates a tree-like structure of files and folders. A file’s location in this tree is
called the path.

Directory names follow the same format as GEMDOS filenames with a maximum filename
length of 8 characters and an optional 3 character extension. The first directory of a disk which
contains all subdirectories and files is called the root directory.

The Dcreate() and Ddelete() system calls are used to create and delete subdirectories.

Two special, system-created subdirectories are present in some directories. A subdirectory with
the name ‘..’ (two periods) refers to the parent of the current directory. The ‘..’ subdirectory is
present in every subdirectory.

A subdirectory with the name ‘.’ refers to the current directory. There is a ‘.’ subdirectory in
every directory.

The TOS File System – 2.5

T H E A T A R I C O M P E N D I U M

GEMDOS Path Specifications
To access a file, a complete path specification must be composed of the drive letter, directory
name(s), and filename. A file named ‘TEST.PRG’ located in the ‘SYSTEM’ directory on drive
‘C’ would have a path specification like the following:

C:\SYSTEM\TEST.PRG

The drive letter is the first character followed by a colon. Each directory and subdirectory is
surrounded by backslashes. If ‘TEST.PRG’ were located in the root directory of ‘C’ the path
specification would be:

C:\TEST.PRG

The drive letter and colon may be omitted causing GEMDOS to reference the default drive as
follows:

\TEST.PRG

A filename by itself will be treated as the file in the default directory and drive. The current
GEMDOS directory and drive may be found with the functions Dgetpath() and Dgetdrv()
respectively. They may be changed with the functions Dsetpath() and Dsetdrv().

Wildcards
The GEMDOS functions Fsfirst() and Fsnext() are used together to enumerate files of a given
path specification. These two functions allow the use of wildcard characters to expand their
search parameters.

The ‘?’ character is used to represent exactly one unknown character. The ‘*’ character is used
to represent any number of unknown characters. The following table gives some examples of the
uses of these characters.

Filename Found Not Found
. All files None
*.GEM TEST.GEM

ATARI.GEM
TEST.G
ATARI.IMG

A?ARI.? ATARI.O
ADARI.C

ADARI.IMG
ATARI.GEM

ATARI.??? ATARI.GEM
ATARI.IMG

ATARI.O
ATARI.C

Disk Transfer Address (DTA)
When using Fsfirst() and Fsnext() to build a list of files, TOS uses the Disk Transfer Address
(DTA) to store information about each file found. The format for the DTA structure is as
follows:

2.6 – GEMDOS

T H E A T A R I C O M P E N D I U M

typedef struct
{

BYTE d_reserved[21]; /* Reserved - Do Not Change */
BYTE d_attrib; /* GEMDOS File Attributes */
UWORD d_time; /* GEMDOS Time */
UWORD d_date; /* GEMDOS Date */
LONG d_length; /* File Length */
char d_fname[14]; /* Filename */

} DTA;

When a process is started, its DTA is located at a point where it could overlay potentially
important system structures. To avoid overwriting memory a process wishing to use Fsfirst()
and Fsnext() should allocate space for a new DTA and use Fsetdta() to instruct the OS to use it.
The original location of the DTA should be saved first, however. Its location can be found with
the call Fgetdta(). At the completion of the operation the old address should be replaced with
Fsetdta().

File Attributes
Every TOS file contains several attributes which define it more specifically. File attributes are
specified when a file is created with Fcreate() and can be altered later with Fattrib() .

The ‘read-only’ attribute bit is set to prevent modification of a file. This bit should be set at the
user’s discretion and not cleared unless the user explicitly requests it.

If the ‘hidden’ attribute is set, the file will not be listed by the desktop or file selector. These
files may still be accessed in a normal manner but will not be present in an Fsfirst() or Fsnext()
search unless the correct Fsfirst() bits are present.

The ‘system’ attribute is unused by TOS but remains for MS-DOS compatibility.

The ‘volume label’ attribute should be present on a maximum of one file per drive. The file
which has it set should be in the root directory and have a length of 0. The filename indicates the
volume name of the drive.

The ‘archive’ attribute is a special bit managed by TOS which indicates whether a file has been
written to since it was last backed up. Any time a Fcreate() call creates a file or Fwrite() is
used on a file, the Archive bit is set. This enables file backup applications to know which files
have been modified since the last backup. They are responsible for clearing this bit when
backing up the file.

File Time/Date Stamp
When a file is first created a special field in its directory entry is updated to contain the date and
time of creation. Fdatime() can be used to access or modify this information as necessary.

File Maintenance
New files should be created with Fcreate(). When a file is successfully created a positive file
handle is returned by the call. That handle is what is used to identify the file for all future
operations until the file is closed. After a file is closed its handle is invalidated.

The TOS File System – 2.7

T H E A T A R I C O M P E N D I U M

Files which are already in existence should be opened with Fopen(). As with Fcreate(), this
call returns a positive file handle upon success which is used in all subsequent GEMDOS calls
to reference the file.

Each process is allocated an OS dependent number of file handles. If an application attempts to
open more files than this limit allows, the open or create call will fail with an appropriate error
code. File handles may be returned to the system by closing the open file with Fclose().

Fopen() may be used in read, write, or read/write mode. In read mode, Fread() may be used to
access existing file contents. In write mode, any original information in the file is not cleared but
the data may be overwritten with Fwrite() . In read/write mode, either call may be used
interchangeably.

Every file has an associated file position pointer. This pointer is used to determine the location
for the next read or write operation. This pointer is expressed as a positive offset from the
beginning of the file (position 0) which is set upon first creating or opening a file. The pointer
may be read or modified with the function Fseek().

Existing files may be deleted with the GEMDOS call Fdelete().

File/Record Locking
File and record locking allow portions or all of a file to be locked against access from another
computer over a network or another process in the same system.

All versions of TOS have the ability to support file and record locking but not all have the
feature installed. If the ‘_FLK’ cookie is present in the system cookie jar then the Flock() call is
present. This call is used to create locks on individual sections (usually records) in a file.

Locking a file in use, when possible, is recommended to prevent other processes from modifying
the file at the same time.

Special File Handles
Several special file handles are available for access through the standard
Fopen()/Fread()/Fwrite() calls. They are as follows:

Name Handle Filename Device
GSH_BIOSCON 0xFFFF CON: Console (screen). Special characters

such as the carriage return, etc. are
interpreted.

GSH_BIOSAUX 0xFFFE AUX: Modem (serial port). This is the ST-
compatible port for machines with more
than one.

GSH_BIOSPRN 0xFFFD PRN: Printer (attached to the Centronics
Parallel port).

GSH_BIOSMIDIIN 0xFFFC Midi In
GSH_BIOSMIDIOUT 0xFFFB Midi Out

2.8 – GEMDOS

T H E A T A R I C O M P E N D I U M

GSH_CONIN 0x00 — Standard Input (usually directed to
GSH_BIOSCON)

GSH_CONOUT 0x01 — Standard Output (usually directed to
GSH_BIOSCON)

GSH_AUX 0x02 — Auxillary (usually directed to
GSH_BIOSAUX)

GSH_PRN 0x03 — Printer (usually directed to
GSH_BIOSPRN)

None 0x04 — Unused
None 0x05 — Unused
None 0x06 and up User-Specified User Process File Handles

These files may be treated like any other GEMDOS files for input/output and locking. Access to
these devices is also provided with GEMDOS character calls (see later in this chapter).

File Redirection
Input and output to a file may be redirected to an alternate file handle. For instance you may
redirect the console output of a TOS process to the printer.

File redirection is handled by the use of the Fforce() call. Generally you will want to make a
copy of the file handle with Fdup() prior to redirecting the file so that it may be restored to
normal operation when complete.

Memory Management

Atari systems support two kinds of memory. Standard RAM (sometimes referred to as ‘ST
RAM’) is general purpose RAM that can be used for any purpose including video and DMA.
Current Atari architecture limits the amount of standard RAM a system may have to 14MB.

Alternative RAM (sometimes referred to as ‘TT RAM’) can be accessed faster than standard
RAM but is not suitable for video memory or DMA transfers.

The Malloc() and Mxalloc() calls allocate memory blocks from the system heap. Malloc()
chooses the type of memory it allocates based on fields in the program header (see later in this
chapter). Mxalloc() allows the application to choose the memory type at run-time.

MultiTOS uses memory protection to prevent an errant process from damaging another. It is
possible with Mxalloc() to dynamically set the protection level of an allocated block.

Memory allocated with either Malloc() or Mxalloc() may be returned to the system with
Mfree(). Memory allocated by a process is automatically freed when the process calls Pterm().

GEMDOS Processes

The GEMDOS call Pexec() is responsible for launching executable files. The process which
calls Pexec() is called the parent and the file launched becomes the child. Each process may

GEMDOS Processes – 2.9

T H E A T A R I C O M P E N D I U M

have more than one child process. Depending on the mode used with Pexec(), the child may
share data and address space and/or run concurrently (under MultiTOS) with the parent.
GEMDOS executable files (GEM and TOS applications or desk accessories) contain the
following file header:

Name Offset Contents
PRG_magic 0x00 This WORD contains the magic value

(0x601A).
PRG_tsize 0x02 This LONG contains the size of the TEXT

segment in bytes.
PRG_dsize 0x06 This LONG contains the size of the

DATA segment in bytes.
PRG_bsize 0x0A This LONG contains the size of the BSS

segment in bytes.
PRG_ssize 0x0E This LONG contains the size of the

symbol table in bytes.
PRG_res1 0x12 This LONG is unused and is currently

reserved.
PRGFLAGS 0x16 This LONG contains flags which define

certain process characteristics (as
defined below).

ABSFLAG 0x1A This WORD flag should be non-zero to
indicate that the program has no fixups or
0 to indicate it does.

Since some versions of TOS handle files
with this value being non-zero incorrectly,
it is better to represent a program having
no fixups with 0 here and placing a 0
longword as the fixup offset.

Text Segment 0x1C This area contains the program’s TEXT
segment. A process is started by
JMP’ing to BYTE 0 of this segment with
the address of your processes basepage
at 4(sp).

Data Segment PRG_tsize +
0x1C

This area contains the program’s DATA
segment (if one exists).

Symbol Segment PRG_tsize +
PRG_dsize +

0x1C

This area contains the program’s symbol
table (if there is one). The symbol table
area is used differently by different
compiler vendors. Consult them for the
format.

Fixup Offset PRG_tsize +
PRG_dsize +
PRG_ssize +

0x1C

This LONG indicates the first location in
the executable (as an offset from the
beginning) containing a longword
needing a fixup. A 0 means there are no
fixups.

2.10 – GEMDOS

T H E A T A R I C O M P E N D I U M

Fixup
Information

PRG_tsize +
PRG_dsize +
PRG_ssize +

0x20

This area contains a stream of BYTEs
containing fixup information. Each byte
has a significance as follows:

Value Meaning
0 End of list.
1 Advance 254 bytes.

2-254 (even) Advance this many
bytes and fixup the
longword there.

PRGFLAGS is a bit field defined as follows:

Definition Bit(s) Meaning
PF_FASTLOAD 0 If set, clear only the BSS area on program

load, otherwise clear the entire heap.
PF_TTRAMLOAD 1 If set, the program may be loaded into

alternative RAM, otherwise it must be
loaded into standard RAM.

PF_TTRAMMEM 2 If set, the program’s Malloc() requests may
be satisfied from alternative RAM, otherwise
they must be satisfied from standard RAM.

— 3 Currently unused.
See left. 4 & 5 If these bits are set to 0 (PF_PRIVATE), the

processes’ entire memory space will be
considered private (when memory
protection is enabled).

If these bits are set to 1 (PF_GLOBAL), the
processes’ entire memory space will be
readable and writable by any process (i.e.
global).

If these bits are set to 2
(PF_SUPERVISOR), the processes’ entire
memory space will only be readable and
writable by itself and any other process in
supervisor mode.

If these bits are set to 3 (PF_READABLE),
the processes’ entire memory space will be
readable by any application but only writable
by itself.

— 6-15 Currently unused.

When a process is started by GEMDOS, it allocates all remaining memory, loads the process
into that memory, and JMP’s to the first byte of the application’s TEXT segment with the address
of the program’s basepage at 4(sp). An application should use the basepage information to
decide upon the amount of memory it actually needs and Mshrink() to return the rest to the
system. The exception to this is that desk accessories are only given as much space as they need
(as indicated by their program header) and their stack space is pre-assigned.

GEMDOS Processes – 2.11

T H E A T A R I C O M P E N D I U M

The following code illustrates the proper way to release system memory and allocate your stack
(most ‘C’ startup routines do this for you):

stacksize = $2000 ; 8K

.text

_start:
move.l 4(sp),a0 ; Obtain pointer to basepage
move.l a0,basepage ; Save a copy
move.l $18(a0),a1 ; BSS Base address
adda.l $1C(a0),a1 ; Add BSS size
adda.l #stacksize,a1 ; Add stack size

move.l a1,sp ; Move your stack pointer to
; your new stack.

suba.l basepage,a1 ; TPA size
move.l a1,-(sp)
move.l basepage,-(sp)
clr.w -(sp)
move.w #$4a,-(sp) ; Mshrink()
trap #1
lea 12(sp),sp ; Fix up stack

; and fall through to main
_main:

...

.bss

basepage: ds.l 1

.end

The GEMDOS BASEPAGE structure has the following members:

Name Offset Meaning
p_lowtpa 0x00 This LONG contains a pointer to the Transient

Program Area (TPA).
p_hitpa 0x04 This LONG contains a pointer to the top of the

TPA + 1.
p_tbase 0x08 This LONG contains a pointer to the base of

the text segment
p_tlen 0x0C This LONG contains the length of the text

segment.
p_dbase 0x10 This LONG contains a pointer to the base of

the data segment.
p_dlen 0x14 This LONG contains the length of the data

segment.
p_bbase 0x18 This LONG contains a pointer to the base of

the BSS segment.
p_blen 0x1C This LONG contains the length of the BSS

segment.
p_dta 0x20 This LONG contains a pointer to the

processes’ DTA.

2.12 – GEMDOS

T H E A T A R I C O M P E N D I U M

p_parent 0x24 This LONG contains a pointer to the
processes’ parent’s basepage.

p_reserved 0x28 This LONG is currently unused and is
reserved.

p_env 0x2C This LONG contains a pointer to the
processes’ environment string.

p_undef 0x30 This area contains 80 unused, reserved bytes.
p_cmdlin 0x80 This area contains a copy of the 128 byte

command line image.

Processes terminate themselves with either Pterm0(), Pterm(), or Ptermres(). Ptermres()
allows a segment of a file to remain behind in memory after the file itself terminates (this is
mainly useful for TSR utilities).

The Atari Extended Argument Specification
When a process calls Pexec() to launch a child, the child may receive a command line up to 125
characters in length. The command line does not normally contain information about the process
itself (what goes in argv[0] in ‘C’). The Atari Extended Argument Specification (ARGV) allows
command lines of any length and correctly passes the child the command that started it. The
ARGV specification works by passing the command tail in the child’s environment rather than in
the command line buffer.

Both the parent and child have responsibilities when wanting to correctly handle the ARGV
specification. If a process wishes to launch a child with a command line of greater than 125
characters it should follow these steps:

1. Allocate a block of memory large enough to hold the existing environment, the
string ‘ARGV=’ and its terminating NULL , a string containing the complete path
and filename of the child process and its terminating NULL , and a string
containing the child’s command line arguments and its terminating NULL .

2. Next, copy these elements into the reserved block in the order given above.

3. Finally, call Pexec() with this environment string and a command line containing a
length byte of 127 and the first 125 characters of the command line with a
terminating NULL .

For a child to correctly establish that a parent process is using ARGV it should check for the
length byte of 127 and the ARGV variable. Some parents may assign a value to ARGV (found
between the ‘ARGV=’ and the terminating NULL byte). It should be skipped over and ignored.
If a child detects that its parent is using ARGV, it then has the responsibility of breaking down
the environment into its components to properly obtain its command line elements.

It should be noted that many compilers include ARGV parsing in their basic startup stubs. In
addition, applications running under MultiTOS should use the AES call shel_write() as it
automatically creates an ARGV environment string.

GEMDOS Vectors – 2.13

T H E A T A R I C O M P E N D I U M

GEMDOS Vectors

GEMDOS reserves eight system interrupt vectors (of which only three are used) for various
system housekeeping. The BIOS function Setexc() should be used to redirect these vectors
when necessary. The GEMDOS vectors are as follows:

Name
Setexc()

Vector Number Usage
VEC_TIMER 0x0100 Timer Tick Vector: This vector is jumped through 50 times

per second to maintain the time-of-day clock and accomplish
other system housekeeping. A process intercepting this
vector does not have to preserve any registers but should
jump through the old vector when completed. Heavy use of
this vector can severly affect system performance. Return
from this handler with RTS.

VEC_CRITICALERR 0x0101 Critical Error Handler: This vector is used by the BIOS to
service critical alerts (an Rwabs() disk error or media
change request). When called, the WORD at 4(sp) is a
GEMDOS error number. On return, D0.L should contain
0x0001000 to retry the operation, 0 to ignore the error, or
0xFFFFFFxx to return an error code (xx). D3-D7 and A3-A6
must be preserved by the handler. Return from this handler
with RTS.

VEC_PROCTERM 0x0102 Process Terminate Vector: This vector is called just prior to
the termination of a process ended with CTRL-C. Return from
this handler with RTS.

— 0x103-0x0107 Currently unused.

MiNT

MiNT is Now TOS (MiNT) is the extension to GEMDOS that allows GEMDOS to multitask
under MultiTOS . MiNT also provides memory protection (on a 68030 or higher) to protect an
errant process from disturbing another.

Processes
MiNT assigns each process a process identifier and a process priority value. The identifier is
used to distinguish the process from others in the multitasking environment. Pgetpid() is used to
obtain the MiNT ID of the process and Pgetppid() can be used to obtain the ID of the processes’
parent.

MiNT also supports networking file systems that support the concept of user and process group
control. The Pgetpgrp(), Psetpgrp(), Pgetuid(), Psetuid(), Pgeteuid(), and Pseteuid() get and
set the process, user, and effective user ID for a process.

MiNT has complete control over the amount of time allocated to individual processes. It is
possible, however, to set a process ‘delta’ value with Pnice() or Prenice() which will be used
by MiNT to decide the amount of processor time a process will get per timeslice. Syield() can
be used to surrender the remaining portion of a timeslice.

2.14 – GEMDOS

T H E A T A R I C O M P E N D I U M

Information about a processes’ resource usage can be obtained by calling Prusage(). These
values can be modified with Psetlimit(). System configuration capabilities may be obtained with
Sysconf().

Each process can have a user-defined longword value assigned to itself with Pusrval().

The functions Pwait(), Pwait3(), and Pwaitpid() attempt to determine the exit codes of stopped
child processes.

Threads
It is possible under MiNT to split a single process into ‘threads’. These threads continue
execution independently as unique processes. The Pfork() and Pvfork() calls are used to split a
process into threads.

The original process that calls Pfork() or Pvfork() is considered the parent and the newly
created process is considered the child.

Child processes created with Pfork() share the TEXT segment of the parent, however they are
given a copy of the DATA and BSS segments. Both the parent and child execute concurrently.

Child processes created with Pvfork() share the entire program code and data space including
the processor stack. The parent process is suspended until the child exits or calls Pexec()’s
mode 200.

Child processes started with either call may make GEM calls but a child process started with
Pfork() must call appl_init() to force GEM to uniquely recognize it as an independent process.
This is not necessary with Pvfork() because all program variables are shared.

The following is a simple example of using a thread in a GEM application:

VOID
UserSelectedPrint(VOID)
{

/* Prevent the user from editing buffer being printed. */
LockBufferFromEdits();

if(Pfork() == 0)
{

/* Child enters here */

appl_init(); /* Required for GEM threads. */

DisplayPrintingWindow(); /* Do our task. */
PrintBuffer();

/* Send an AES message to the parent telling it to unlock buffer. */
SendCompletedMessageToParent();

/* Cleanup and exit thread. */
appl_exit();

MiNT – 2.15

T H E A T A R I C O M P E N D I U M

Pterm(0);
}

/* Parent returns and continues normal execution. */
}

File System Extensions
MiNT provides several new file and directory manipulation functions that work with TOS and
other loadable file systems. The Fcntl() function performs a large number of file-based tasks
many of which apply to special files like terminal emulators and ‘U:\’ files. Fxattr() is used to
obtain a file’s extended attributes. Some extended attributes are not relevant to the TOS file
system and will not return meaningful values (see the Function Reference for details).

Fgetchar() and Fputchar() can be used to get and put single characters to a file. Finstat() and
Foutstat() are used to determine the input or output status of a file. Fselect() is used to select
from a group of file handles those ready to be read from or written to (often used for pipes).

Flink() , Fsymlink(), and Freadlink() are used to create hard and symbolic links to another file.
Links are not supported by all file systems (see the entries for these functions for more details).

Some file systems may support the concept of file ownership and access permissions (TOS does
not). The Fchown() and Fchmod() calls are used to adjust the ownership flags and access
permissions of a file. Pumask() can be used to set the minimum access permissions assigned to
each subsequently created file.

Fmidipipe() is used to redirect the file handles used for MIDI input and output.

MiNT provides four new functions for directory enumeration (they provide similar functionality
to Fsfirst() and Fsnext() with a slightly easier interface). Dopendir() is used to open a directory
for enumeration. Dreaddir() steps through each entry in a directory. Drewinddir() resets the file
pointer to the beginning of the directory. Dclosedir() closes a directory.

Dlock() allows disk-formatters and other utilities which require exclusive access to a drive the
ability to lock a physical device from other processes.

Dgetcwd() allows a process to obtain the current GEMDOS working directory for any process
in the system (including itself).

Dcntl() performs device and file-system specific operations (consult the Function Reference
for more details).

Pseudo Drives
MiNT creates a pseudo drive ‘U:’ which provides access to device drivers, processes, and
other system resources. In addition to creating a directory on drive U: for each system drive,
MiNT may create any of the following directories at the ROOT of the drive:

Folder Name Contents

2.16 – GEMDOS

T H E A T A R I C O M P E N D I U M

\DEV Loaded devices
\PIPE System pipes

\PROC System processes
\SHM Shared memory blocks

Drive directories on ‘U:’ act as if they were accessed by their own drive letter. Folder ‘U:\C\’
contains the same files and folders as ‘C:\’.

The ‘U:\PROC’ Directory
Each system process has a file entry in the ‘U:\PROC’ directory. The filename given a process
in this directory is the basename for the file (without extension) with an extension consisting of
the MiNT process identifier. The MINIWIN.PRG application might have an entry named
‘MINIWIN.003’.

The file size listed corresponds to the amount of memory the process is using. The time and date
stamp contains the length of time the process has been executing as if it were started on Jan. 1st,
1980 at midnight. The file attribute bits tell special information about a process as follows:

Name
Attribute

Byte Meaning
PROC_RUN 0x00 The process is currently running.
PROC_READY 0x01 The process is ready to run.
PROC_TSR 0x02 The process is a TSR.
PROC_WAITEVENT 0x20 The process is waiting for an event.
PROC_WAITIO 0x21 The process is waiting for I/O.
PROC_EXITED 0x22 The process has been exited but not

yet released.
PROC_STOPPED 0x24 The process was stopped by a

signal.

Loadable Devices
MiNT contains a number of built-in devices and also supports loadable device drivers. Current
versions of MiNT may contain any of the following devices:

Device
Filename Device
CENTR Centronics Parallel Port
MODEM1 Modem Port 1
MODEM2 Modem Port 2
SERIAL1 Serial Port 1
SERIAL2 Serial Port 2
MIDI MIDI ports
PRN PRN: device (usually the Centronics Parallel Port)
AUX AUX: device (usually the RS232 Port)
CON Current Terminal
TTY Current Terminal (same as CON)
STDIN Current File Handle 0 (standard input)
STDOUT Current File Handle 1 (standard output)
STDERR Current File Handle 2 (standard error)
CONSOLE Physical Console (keyboard/screen)

MiNT – 2.17

T H E A T A R I C O M P E N D I U M

MOUSE Mouse (system use only)
NULL NULL device
AES_BIOS AES BIOS Device (system use only)
AES_MT AES Multitasking Device (system use only)

Each of these devices is represented by a filename (as shown in the table above) in the
‘U:\DEV\’ directory. Using standard GEMDOS calls (ex: Fread() and Fwrite()) on these files
yields the same results as accessing the device directly. New devices, including those directly
accessible by the BIOS, may be added to the system with the Dcntl() call using a parameter of
DEV_INSTALL , DEV_NEWBIOS, or DEV_NEWTTY . See the Dcntl() call for details.

MiNT versions 1.08 and above will automatically load device drivers with an extension of
‘.XDD’ found in the root or ‘\MULTITOS’ directory. ‘.XDD’ files are special device driver
executables which are responsible for installing one (or more) new devices. MiNT will load the
file and JSR to the first instruction in the TEXT segment (no parameters are passed). The device
driver executable should not attempt to Mshrink() or create a stack (one has already been
created).

The ‘.XDD’ may then either install its device itself with Dcntl() and return DEV_SELFINST
(1L) in register D0 or return a pointer to a DEVDRV structure to have the MiNT kernel install it
(the ‘U:\DEV\’ filename will be the same as the first eight characters of the ‘.XDD’ file). If for
some reason, the device can not be initialized, 0L should be returned in D0.

When creating a new MiNT device with Dcntl(DEV_INSTALL , devname, &dev_descr) the
structure dev_descr contains a pointer to your DEVDRV structure defined as follows:

typedef struct devdrv
{

LONG (*open)(FILEPTR *f);
LONG (*write)(FILEPTR *f, char *buf, LONG bytes);
LONG (*read)(FILEPTR *f, char *buf, LONG bytes);
LONG (*lseek)(FILEPTR *f, LONG where, LONG whence);
LONG (*ioctl)(FILEPTR *f, WORD mode, VOIDP buf);
LONG (*datime)(FILEPTR *f, WORD *timeptr, WORD rwflag);
LONG (*close)(FILEPTR *f, WORD pid);
LONG (*select)(FILEPTR *f, LONG proc, WORD mode);
LONG (*unselect)(FILEPTR *f, LONG proc, WORD mode);
LONG reserved[3];

} DEVDRV;

Each of the assigned members of this structure should point to a valid routine that provides the
named operation on the device. The routine must preserve registers D2-D7 and A2-A7 returning
its completion code in D0. No operating system TRAPs should be called from within these
routines, however, using the vector tables provided in the kerinfo structure returned from the
Dcntl() call, GEMDOS and BIOS calls may be used. The specific function that each routine is
responsible for is as follows:

2.18 – GEMDOS

T H E A T A R I C O M P E N D I U M

Member Meaning
open This routine is called by the MiNT kernel after a FILEPTR structure has been created for a file

determined to be associated with the device. The routine should perform whatever initialization
is necessary and exit with a standard GEMDOS completion code.

This routine is responsible for validating the sharing mode and other file flags to verify that the file
may be legally opened and should respond with an appropriate error code if necessary.

write This routine should write bytes number of BYTEs from buf to the file specified in FILEPTR. If the
file pointer has the O_APPEND bit set, the kernel will perform an lseek() call to the end of the file
prior to calling this function. If the lseek()/write() series of calls does not guarantee that data will
be written at the end of a file associated with your device, this function must ensure that the data
specified is actually written at the end of the file.

This function should return with a standard GEMDOS error code or the actual number of BYTEs
written to the file when complete.

read This routine should read bytes number of BYTEs from the file specified in FILEPTR and place
them in the buffer buf. This function should return with a standard GEMDOS error code or the
actual number of bytes read by the routine.

lseek This routine should move the file position pointer to the appropriate location in the file as
specified by the parameter where in relation to the seek mode whence. Seek modes are the
same as with Fseek() . The routine should return a GEMDOS error code or the absolute new
position from the start of the file if successful.

ioctl This routine is called from the system’s perspective as Fcntl() and is used to perform file
system/device specific functions. At the very least, your device should support FIONREAD,
FIONWRITE, and the file/record locking modes of Fcntl() . The arg parameter of Fcntl() is
passed as buf.

datime This routine is used to read or modify the date/time attributes of a file. timeptr is a pointer to two
LONGs containing the time and date of the file respectively. These LONGs should be used to
set the file date and time if rwflag is non-zero or filled in with the file’s creation date and time if
rwflag is 0.

This function should return with a standard GEMDOS error code or E_OK (0) if successful.
close This routine is used by the kernel to close an open file. Be aware that if f->links is non-zero,

additional processes still have valid handles to the file. If f->links is 0 then the file is really being
closed. pid specifies the process closing the file and may not necessarily be the same as the
process that opened it.

Device drivers should set the O_LOCK bit on f->flag when the F_SETLK or F_SETLKW ioctl()
call is made. This bit can be tested for when a file is closed and all locks on all files associated
with the same physical file owned by process pid should be removed. If the file did not have any
locks created on it by process pid, then no locks should be removed.

This routine should return with a standard GEMDOS error code or E_OK (0) if successful.
select This routine is called when a call to Fselect() names a file handled by this device. If mode is

O_RDONLY then the select is for reading, otherwise, if mode is O_WRONLY then it is for
writing. If the user Fselect() ’s for both reading and writing then two calls to this function will be
made.

The routine should return 1L if the device is ready for reading or writing (as appropriate) or it
should return 0L and arrange to ‘wake up’ process proc when I/O becomes possible. This is
usually accomplished by calling the wakeselect() member function of the kernel structure. Note
that the value in proc is not the same as a PID and is actually a pointer to a PROC structure
private to the MiNT kernel.

unselect This routine is called when a device waiting for I/O should no longer be waited for. The mode and

MiNT – 2.19

T H E A T A R I C O M P E N D I U M

proc parameters are the same as with select() . As with select() , if neither reading nor writing is
to be waited for, two calls to this function will be made.

This routine should return a standard GEMDOS error code or E_OK (0) if successful.

The FILEPTR structure pointed to by a parameter of each of the above calls is defined as
follows:

typedef struct fileptr
{

WORD links;
UWORD flags;
LONG pos;
LONG devinfo;
fcookie fc;
struct devdrv *dev;
struct fileptr *next;

} FILEPTR;

The members of FILEPTR have significance as follows:

Member Meaning
links This member contains a value indicating the number of copies of this file descriptor currently in

existence.
flags This member contains a bit mask which indicates several attributes (logically OR’ed together) of

the file as follows:

Name Mask Meaning
O_RDONLY 0x0000 File is read-only.
O_WRONLY 0x0001 File is write-only.
O_RDWR 0x0002 File may be read or written.
O_EXEC 0x0003 File was opened to be executed.
O_APPEND 0x0008 Writes start at the end of the file.
O_COMPAT 0x0000 File-sharing compatibility mode.
O_DENYRW 0x0010 Deny read and write access.
O_DENYW 0x0020 Deny write access.
O_DENYR 0x0030 Deny read access.
O_DENYNONE 0x0040 Allow reads and writes.
O_NOINHERIT 0x0080 Children cannot use this file.
O_NDELAY 0x0100 Device should not block for I/O on this file.
O_CREAT 0x0200 File should be created if it doesn’t exist.
O_TRUNC 0x0400 File should be truncated to 0 BYTEs if it already exists.
O_EXCL 0x0800 Open should fail if file already exists.
O_TTY 0x2000 File is a terminal.
O_HEAD 0x4000 File is a pseudo-terminal “master.”
O_LOCK 0x8000 File has been locked.

pos This field is initialized to 0 when a file is created and should be used by the device driver to store
the file position pointer.

devinfo This field is reserved for use between the file system and the device driver and may be used as
desired. The exception to this is if the file is a TTY, in which case devinfo must be a pointer to a
tty structure.

fc This is the file cookie for the file as follows:

typedef struct f_cookie

2.20 – GEMDOS

T H E A T A R I C O M P E N D I U M

{
FILESYS *fs;
UWORD dev;
UWORD aux;
LONG index;

} fcookie;

fs is a pointer to the file system structure responsible for this device. dev is a UWORD giving a
useful device ID (such as the Rwabs() device number). The meaning of aux is file system
dependent. index should be used by file systems to provide a unique means of identifying a file.

dev This is a pointer to the DEVDRV structure of the device driver responsible for this file.
next This pointer may be used by device drivers to link copies of duplicate file descriptors to

implement file locking or sharing code.

Upon successful return from the Dcntl() call, a pointer to a kerinfo structure will be returned.
The kerinfo structure is defined below:

typedef LONG (*Func)();

struct kerinfo
{

WORD maj_version;
WORD min_version;
UWORD default_mode;
WORD reserved1;

Func *bios_tab;
Func *dos_tab;

VOID (*drvchng)(UWORD dev);

VOID (*trace)(char *, ...);
VOID (*debug)(char *, ...);
VOID (*alert)(char *, ...);
VOID (*fatal)(char *, ...);

VOIDP (*kmalloc)(LONG size);
VOID (*kfree)(VOIDP memptr);
VOIDP (*umalloc)(LONG size);
VOID (*ufree)(LONG memptr);

WORD (*strnicmp)(char *str1, char *str2, WORD maxsrch);
WORD (*stricmp)(char *str1, char *str2);
char * (*strlwr)(char *str);
char * (*strupr)(char *str);
WORD (*sprintf)(char *strbuf, const char *fmtstr, ...);

VOID (*millis_time)(ULONG ms, WORD *td);
LONG (*unixtim)(UWORD time, UWORD date);
LONG (*dostim)(LONG unixtime);

VOID (*nap)(UWORD n);
VOID (*sleep)(WORD que, WORD cond);
VOID (*wake)(WORD que, WORD cond);
VOID (*wakeselect)(LONG proc);

WORD (*denyshare)(FILEPTR *list, FILEPTR *f);
LOCK * (*denylock)(LOCK *list, LOCK *new);

MiNT – 2.21

T H E A T A R I C O M P E N D I U M

LONG res2[9];
};

The members of the kerinfo structure are defined as follows:

Member Meaning
maj_version This WORD contains the kernel version number.
min_version This WORD contains the minor kernel version number.
default_mode This UWORD contains the default access permissions for a file.
reserved1 Reserved.
bios_tab This is a pointer to the BIOS function jump table. Calling bios_tab[0x00]() is equivalent to

calling Getmpb() and is the only safe way from within a device driver or file system.
dos_tab This is a pointer to the GEMDOS function jump table. Calling dos_tab[0x3D]() is equivalent

to calling Fopen() and is the only safe way from within a device driver or file system.
drvchng This function should be called by a device driver if a media change was detected on the

device during an operation. The parameter dev is the BIOS device number of the device.
trace This function is used to send information messages to the kernel for debugging purposes.
debug This function is used to send error messages to the kernel for debugging purposes.
alert This function is used to send serious error messages to the kernel for debugging purposes.
fatal This function is used to send fatal error messages to the kernel for debugging purposes.
kmalloc Use this internal heap memory management function to allocate memory.
kfree Use this internal heap memory management function to free memory allocated with

kmalloc().
umalloc Use this internal heap memory management function to allocate memory and attach it to the

current process. The memory will be released automatically when the current process exits.
ufree Use this internal heap memory management function to allocate memory allocated with

ufree().
strnicmp This function compares maxsrch characters of str1 to str2 and returns a negative value if

str1 is lower than str2, a positive value if str1 is higher than str2, or 0 if they are equal.
stricmp This function compares two NULL terminated strings, str1 to str2, and returns a negative

value if str1 is lower than str2, a positive value if str1 is higher than str2, or 0 if they are
equal.

strlwr This function converts all alphabetic characters in str to lower case.
strupr This function converts all alphabetic characters in str to upper case.
sprintf This function is the same as the ‘C’ library sprintf() function except that it will only convert

SPRINTF_MAX characters (defined in TOSDEFS.H).
millis_time This function converts the millisecond time value in ms to a GEMDOS time in td[0] and date

in td[1].
unixtim This function converts a GEMDOS time and date in a UNIX format LONG.
dostim This function converts a UNIX format LONG time/date value into a GEMDOS time/date

value. The return value contains the time in the upper WORD and the date in the lower
WORD.

nap This function causes a delay of n milliseconds.
sleep This function causes the current process to sleep, placing it on the system que que until

condition cond is met.
wake This function causes all processes in que que, waiting for condition cond, to be woken.
wakeselect This function wakes a process named by the code proc currently doing a select operation.
denyshare This function determines whether the sharing mode of f conflicts with any of the files given in

the linked list list.
denylock This function determines whether a new lock new conflicts with any existing lock in the

linked list list. The LOCK structure is used internally by the kernel and is defined as follows:

2.22 – GEMDOS

T H E A T A R I C O M P E N D I U M

typedef struct ilock
{

FLOCK l;
struct ilock *next;
LONG reserved[4];

} LOCK;

l is the structure actually containing the lock data (as defined in Fcntl()). next is a pointer to
the next LOCK structure in the linked list or NULL if this is the last lock. reserved is a
pointer to four LONGs currently reserved.

res2 These longwords are reserved for future expansion.

Loadable File Systems
MiNT supports loadable file systems to provide support for those other than TOS (such as
POSIX, HPFS, ISO 9660 CD-ROM, etc.) The MiNT kernel will automatically load file system
‘.XFS’ executables found in the \MULTITOS or root directory. As of MiNT version 1.08, it is
also possible to have a TSR program install a file system with the Dcntl() call.

When the file system is executed by MiNT (i.e. not via Dcntl()), MiNT creates an 8K stack and
shrinks the TPA so a call to Mshrink() is not necessary. The first instruction of the code segment
of the file is JSR’ed to with a pointer to a kerinfo (as defined above) structure at 4(sp). The file
system should use this entry point to ensure that it is running on the minimum version of MiNT
needed and that any other aspects of the system are what is required for the file system to
operate.

It is not necessary to scan existing drives to determine if they are compatible with the file system
as that is accomplished with the file system root() function (defined below). If the file system
needs to make MiNT aware of drives that would not be automatically recognized by the system,
it should update the longword variable _drvbits at location 0x04F2 appropriately.

If the file system was unable to initialize itself or the host system is incapable of supporting it,
the entry stub should return with a value of 0L in d0. If the file system installs successfully, it
should return a pointer to a FILESYS (defined below) structure in d0. A file system should
never call Pterm() or Ptermres().

All file system functions, including the entry stub, must preserve registers d2-d7 and a2-a7. Any
return values should be returned in d0. Function arguments are passed on the stack. The
following listing defines the FILESYS structure:

typedef struct filesys
{

struct filesys *next;
LONG fsflags;
LONG (*root)(WORD drv, fcookie *fc);
LONG (*lookup)(fcookie *dir, char *name, fcookie *fc);
LONG (*creat)(fcookie *dir, char *name, UWORD mode, WORD
attrib,

fcookie *fc);
DEVDRV *(*getdev)(fcookie *fc, LONG *devspecial);

MiNT – 2.23

T H E A T A R I C O M P E N D I U M

LONG (*getxattr)(fcookie *file, XATTR *xattr);
LONG (*chattr)(fcookie *file, WORD attr);
LONG (*chown)(fcookie *file, WORD uid, WORD gid);
LONG (*chmode)(fcookie *file, WORD mode);
LONG (*mkdir)(fcookie *dir, char *name, UWORD mode);
LONG (*rmdir)(fcookie *dir, char *name);
LONG (*remove)(fcookie *dir, char *name);
LONG (*getname)(fcookie *relto, fcookie *dir, char *pathname
);
LONG (*rename)(fcookie *olddir, fcookie *oldname,

fcookie *newdir, fcookie *newname);
LONG (*opendir)(DIR *dirh, WORD tosflag);
LONG (*readdir)(DIR *dirh, char *name, WORD namelen,

fcookie *fc);
LONG (*rewinddir)(DIR *dirh);
LONG (*closedir)(DIR *dirh);
LONG (*pathconf)(fcookie *dir, WORD which);
LONG (*dfree)(fcookie *dir, long *buf);
LONG (*writelabel)(fcookie *dir, char *name);
LONG (*readlabel)(fcookie *dir, char *name);
LONG (*symlink)(fcookie *dir, char *name, char *to);
LONG (*readlink)(fcookie *file, char *buf, short buflen);
LONG (*hardlink)(fcookie *fromdir, char *fromname,

fcookie *todir, char *toname);
LONG (*fscntl)(fcookie *dir, char *name, WORD cmd, LONG arg
);
LONG (*dskchng)(WORD dev);
LONG zero;

} FILESYS;

The members of the FILESYS structure are interpreted by MiNT as follows:

Member Meaning
next This member is a pointer to the next FILESYS structure in the kernel’s linked list. It should be

left as NULL .
fsflags This is a bit mask of flags which define attributes of the file system as follows:

Name Mask Meaning
FS_KNOPARSE 0x01 Kernel shouldn’t do directory parsing (common for

networked file systems).
FS_CASESENSITIVE 0x02 File system names are case-sensitive (common for

Unix compatible file systems).
FS_NOXBIT 0x04 Files capable of being read are capable of being

executed (present in most file systems).
root This function is called by the kernel to retrieve a file cookie for the root directory of the drive

associated with BIOS device dev. When initializing, the kernel will query each file system, in
turn, to determine which file system should handle a particular drive. If your file system
recognizes the drive specified by dev it should fill in the fcookie structure as appropriate and
return E_OK. If the drive is not compatible with your file system, return an appropriate negative
GEMDOS error code (usually EDRIVE).

2.24 – GEMDOS

T H E A T A R I C O M P E N D I U M

lookup This function should translate a file name into a cookie. If the FS_KNOPARSE bit of fsflags is
not set, name will be the name of a file in the directory specified by the fcookie dir. If the
FS_KNOPARSE bit was set, name will be a path name relative to the specified directory dir.

If the file is found, the fcookie structure fc should be filled in with appropriate details and either
E_OK or EMOUNT (if name is ‘..’ and dir specifies the root directory) should be returned,
otherwise an appropriate error code (like EFILNF) should be returned.

A lookup() call with a NULL name or with a name of ‘.’ should always succeed and return a
cookie representing the current directory. When creating a file cookie, symbolic links should
never be followed.

creat This function is used by the kernel to instruct the file system to create a file named name in the
directory specified by dir with attrib attributes (as defined by Fattrib()) and mode permissions
as follows:

Name Mask Permission
S_IXOTH 0x0001 Execute permission for all others.
S_IWOTH 0x0002 Write permission for all others.
S_IROTH 0x0004 Read permission for all others.
S_IXGRP 0x0008 Execute permission for processes with same group ID.
S_IWGRP 0x0010 Write permission for processes with same group ID.
S_IRGRP 0x0020 Read permission for processes with same group ID.
S_IXUSR 0x0040 Execute permission for processes with same user ID.
S_IWUSR 0x0080 Write permission for processes with same user ID.
S_IRUSR 0x0100 Read permission for processes with same user ID.
S_ISVTX 0x0200 Unused
S_ISGID 0x0400 Alter effective group ID when executing this file.
S_ISUID 0x0800 Alter effective user ID when executing this file.
S_IFCHR 0x2000 File is a BIOS special file.
S_IFDIR 0x4000 File is a directory.
S_IFREG 0x8000 File is a regular file.
S_IFIFO 0xA000 File is a FIFO.
S_IMEM 0xC000 File is a memory region.
S_IFLNK 0xE000 File is a symbolic link.

If the file is created successfully, the fcookie structure fc should be filled in to represent the
newly created file and E_OK should be returned. On an error, an appropriate GEMDOS error
code should be returned.

getdev This function is used by the kernel to identify the device driver that should be used to do file I/O
on the file named by fc. The function should return a pointer to the device driver and place a
user-defined value in the longword pointed to by devspecial. If the function fails, the function
should return and place a negative GEMDOS error code in the longword pointed to by
devspecial.

getxattr This function should fill in the XATTR structure pointed to by xattr with the extended attributes of
file fc. If the function succeeds, the routine should return E_OK, otherwise a negative GEMDOS
error code should be returned.

chattr This function is called by the kernel to instruct the file system to change the attributes of file fc to
those in attr (with only the low eight bits being signifigant). The function should return a standard
GEMDOS error code on exit.

chown This function is called by the kernel to instruct the file system to change the file fc’s group and
user ownership to gid and uid respectively. The kernel checks access permissions prior to
calling this function so the file system does not have to.

MiNT – 2.25

T H E A T A R I C O M P E N D I U M

chmode This function is called by the kernel to instruct the file system to change the access permissions
of file fc to those in mode. The mode parameter passed to this function will never contain
anything but access permission information (i.e. no file type information will be contained in
mode). The call should return a standard GEMDOS error code on exit.

mkdir This function should create a new subdirectory called name in directory dir with access
permissions of mode. The file system should ensure that directories such as ‘.’ and ‘..’ are
created and that a standard GEMDOS error code is returned.

rmdir This function should remove the directory whose name is name and whose cookie is pointed to
by dir. This call should allow the removal of symbolic links to directories and return a standard
GEMDOS error code.

remove This function should delete the file named name that resides in directory dir. If more than one
‘hard’ link to this file exists, then only this link should be destroyed and the file contents should
be left untouched. Symbolic links to file fc, however, should be removed. This function should
not allow the deletion of directories and should return with a standard GEMDOS error code.

getname This function should fill in the buffer pointed to by pathname with as many as PATH_MAX (128)
characters of the path name of directory dir expressed relatively to directory relto. If relto and dir
point to the same directory, a NULL string should be returned.

For example, if relto points to directory “\FOO” and dir points to directory “\FOO\BAR\SUB”
then pathname should be filled in with “\BAR\SUB”.

rename This function should rename the file oldname which resides in directory olddir to the new name
newname which resides in newdir. The file system may choose to support or not support cross-
directory renames. The function should return a standard GEMDOS error code. If no renames
at all are supported then EINVFN should be returned.

opendir This function opens directory dirh for reading. The parameter tosflag is a copy of the flags
member of the DIR structure as defined below:

typedef struct dirstruct
{

fcookie fc; /* Directory cookie */
UWORD index; /* Index of current entry */
UWORD flags; /* TOS_SEARCH (1) or 0 */
char fsstuff[60]; /* File system dependent */

} DIR;

If tosflags (dirstruct.flags) is contains the mask TOS_SEARCH the file system is responsible
for parsing the names into something readable by TOS domain applications. The file system
should initialize the index and fsstuff members of dirh and return an appropriate GEMDOS
error code.

readdir This function should read the next filename from directory dirh. The fcookie structure fc should
be filled in with the details of this file. If dirh->flags does not contain the mask TOS_SEARCH
then the filename should be copied into the buffer pointed to by name. If dirh->flags does
contain the mask TOS_SEARCH then the first four bytes of name should be treated as a
longword and filled in with an index value uniquely identifying the file and the filename should be
copied starting at &name[4].

In either case, if the filename is longer than namelen, rather than filling in the buffer name, the
function should return with ENAMETOOLONG . If this is the last file in the directory, ENMFIL
should be returned, otherwise return E_OK.

rewinddir This function should reset the members of dirh so that any internal pointers point at the first file
of directory dirh. This function should return a standard GEMDOS error code.

closedir This function should clear any allocated memory and clean up any structures used by the search
on dirh. This function should return a standard GEMDOS error code.

2.26 – GEMDOS

T H E A T A R I C O M P E N D I U M

pathconf This function should return information about the directory dir based on mode mode. For mode
values and return values, see Dpathconf() .

dfree This function should return free space information about the drive directory dir is located on.
The format of the buffer pointed to by buf is the same as is used by Dfree() .This function should
return a standard GEMDOS error code.

writelabel This function is used to change the volume name of a drive which contains the directory dir. The
new name name should be used to write (or rename the volume label). If the write is actually an
attempt to rename the label and the file system does not support this function then EACCDN
should be returned. If the file system does not support the concept of volume labels then
EINVFN should be returned. Otherwise, a return value of E_OK is appropriate.

readlabel This function should copy the volume label name of the drive on which directory dir is contained
in the buffer name. If namelen is less than the size of the volume name, ENAMETOOLONG
should be returned. If the concept of volume names is not supported by the file system, EINVFN
should be returned. If no volume name was ever created, EFILNF should be returned. Upon
successful error of the call, E_OK should be returned.

symlink This function should create a symbolic link in directory dir named name. The symbolic link
should contain the NULL terminated string in to. If the file system does not support symbolic
links it should return EINVFN, otherwise a standard GEMDOS error code should be returned.

readlink This function should copy the contents of symbolic link file into buffer buf. If the length of the
contents of the symbolic link is greater than buflen, ENAMETOOLONG should be returned. If
the file system does not support symbolic links, EINVFN should be returned. In all other cases,
a standard GEMDOS error code should be returned.

hardlink This function should create a ‘hard’ link called toname residing in todir from the file named
fromname residing in fromdir. If the file system does not support hard links, EINVFN should be
returned. Otherwise, a standard GEMDOS error code should be returned.

fscntl This function performs a file system specific function on a file whose name is name that resides
in directory dir. The cmd and arg functions parallel those of Dcntl() . In most cases, this function
should simply return EINVFN. If your file system wishes to expose special features to the user
through Dcntrl() then your file system should handle them here as it sees fit.

dskchng This function is used by the kernel to confirm a ‘media change’ state reported by Mediach() . If
the file system agrees that a media change has taken place, it should invalidate any
appropriate buffers, free any allocated memory associated with the device, and return 1. The
kernel will then invalidate any open files and relog the drive with the root() functions of each
installed file system.

If a media change has not taken place, simply return a value of 0.
zero This member is reserved for future expansion and must be set to 0L.

MiNT Interprocess Communication

Pipelines
A pipeline is a special file used for data communication in which the data being read or written
is kept in memory. Pipes are created by Fcreate()’ing a file in the special directory ‘U:\PIPE’.
A process which initially opens a pipe is considered the ‘server.’ Processes writing to or
reading from the open pipe are called ‘clients.’ Both servers and clients may read to and write
from the pipe.

Fcreate()’s attr byte takes on a special meaning with pipes as follows:

MiNT Interprocess Communication – 2.27

T H E A T A R I C O M P E N D I U M

Name Bit Meaning
FA_UNIDIR 0x01 If this bit is set, the pipe will be unidirectional (the server

can only write, the client can only read).
FA_SOFTPIPE 0x02 Setting this bit causes reads when no one is writing to

return EOF and writes when no one is reading to raise the
signal SIGPIPE.

FA_TTY 0x04 Setting this bit will make the pipe a pseudo-TTY, i.e. any
characters written by the server will be interpreted (CTRL-C
will cause a SIGINT signal to be generated to all clients).

Fpipe() can also be used to create pipes quickly with the MiNT kernel resolving any name
conflicts. A pipe is deleted when all processes that had obtained a handle to it Fclose() it.

A single process may serve as both the client and the server if it maintains two handles (one
obtained from Fopen() and one from Fcreate()). In addition, child processes of the server may
inherit the file handle, and thus the server end of the pipe.

A special system call, Salert(), sends a string to a pipe called ‘U:\PIPE\ALERT’. If a handler is
present that reads from this pipe, an alert with the text string will be displayed.

Signals
Signals are messages sent to a process that interrupt normal program flow in a way that may be
defined by the receiving application. Signals are sent to a process with the function Pkill() . The
call is named Pkill() because the default action for most signals is the termination of the process.
If a process expects to receive signals it should use Psignal(), Psigsetmask(), Psigblock(), or
Psigaction() to modify that behavior by installing a handler routine, ignoring the signal, or
blocking the signal completely.

Signal handlers should return by executing a 680x0 RTS instruction or by calling Psigreturn().
Current signals sent and recognized by MiNT processes are as follows:

Signal Number Meaning
SIGNULL 0 This signal is actually a dead signal since it has no

effect and is never delivered. Its only purpose is to
determine if a child process has exited. A Pkill()
call with this signal number will return successfully if
the process is still running or fail if not.

SIGHUP 1 This signal indicates that the terminal connected to
the process is no longer valid. This signal is sent by
window managers to processes when the user has
closed your window. The default action for this
signal is to kill the process.

SIGINT 2 This signal indicates that the user has interrupted
the process with CTRL-C. The default action for this
signal is to kill the process.

SIGQUIT 3 This signal is sent when the user presses CTRL-\.
The default action for this signal is to kill the
process.

2.28 – GEMDOS

T H E A T A R I C O M P E N D I U M

SIGILL 4 This signal is sent after a 680x0 Illegal Instruction
Exception has occurred. The default action for this
signal is to kill the process. Catching this signal is
unrecommended.

SIGTRAP 5 This signal is sent after each instruction is executed
when the system is in single-step trace mode.
Debuggers should catch this signal, other
processes should not.

SIGABRT 6 This signal is sent when something has gone wrong
internally and the program should be aborted
immediately. The default action for this signal is to
kill the process. It is unrecommended that you catch
this signal.

SIGPRIV 7 This signal is sent to a process that attempts to
execute an instruction that may only be executed in
supervisor mode while in user mode. The default
action for this signal is to kill the process.

SIGFPE 8 This signal is sent when a division by 0 or floating-
point exception occurs. The default action for this
signal is to kill the process.

SIGKILL 9 This signal forcibly kills the process. There is no
way to catch or ignore this signal.

SIGBUS 10 This signal is sent when a 680x0 Bus Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSEGV 11 This signal is sent when a 680x0 Address Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSYS 12 This signal is sent when an argument to a system
call is bad or out of range and the call doesn’t have
a way to report errors. For instance, Super(0L) will
send this signal when already in supervisor mode.
The default action for this signal is to kill the
process.

SIGPIPE 13 This signal is sent when a pipe you were writing to
has no readers. The default action for this signal is
to kill the process.

SIGALRM 14 This signal is sent when an alarm sent by Talarm()
is triggered. The default action for this signal is to
kill the process.

SIGTERM 15 This signal indicates a ‘polite’ request for the
process to cleanup & exit. This signal is sent when
a process is dragged to the trashcan on the
desktop. The default action for this signal is to kill
the process.

SIGSTOP 17 This signal is sent to a process to suspend it. It
cannot be caught, blocked, or ignored. This signal
is usually used by debuggers.

SIGTSTP 18 This signal is sent when the user presses CTRL-Z
requesting that the process suspend itself. The
default action for this signal is to suspend the
process until a SIGCONT signal is caught.

SIGCONT 19 This signal is sent to restart a process stopped with
SIGSTOP or SIGTSTP. The default action for this
signal is to resume the process.

MiNT Interprocess Communication – 2.29

T H E A T A R I C O M P E N D I U M

SIGCHLD 20 This signal is sent when a child process has exited
or has been suspended. As a default, this signal
causes no action.

SIGTTIN 21 This signal is sent when a process attempts to read
from a terminal in a process group other than its
own. The default action is to suspend the process.

SIGTTOU 22 This signal is sent when a process attempts to write
to a terminal in a process group other than its own.
The default action is to suspend the process.

SIGIO 23 This signal is sent to indicate that I/O is possible on
a file descriptor. The default action for this signal is
to kill the process.

SIGXCPU 24 This signal is sent when the maximum CPU time
allocated to a process has been used. This signal
will continue to be sent to a process until it exits.
The default action for this signal is to kill the
process.

SIGXFSZ 25 This signal is sent to a process when it attempts to
modify a file in a way that causes it to exceed the
processes’ maximum file size limit. The default
action for this signal is to kill the process.

SIGVTALRM 26 This signal is sent to a process which has exceed
its maximum time limit. The default action for this
signal is to kill the process.

SIGPROF 27 This signal is sent to a process to indicate that its
profiling time has expired. The default action for this
signal is to kill the process.

SIGWINCH 28 This signal indicates that the size of the window in
which your process was running has changed. If the
process cares about window size it can use Fcntl()
to obtain the new size. The default action for this
signal is to do nothing.

SIGUSR1 29 This signal is one of two user-defined signals. The
default action for this signal is to kill the process.

SIGUSR2 30 This signal is one of two user-defined signals. The
default action for this signal is to kill the process.

Memory Sharing
With the enforcement of memory protection under MultiTOS , the availability of shared memory
blocks is important for applications wishing to share blocks of memory. A shared memory block
is opened by Fcreate()’ing a file in the directory ‘U:\SHM’. After that, a memory block
allocated with Malloc() or Mxalloc() may be attached to the file with Fcntl(handle, memptr,
SHMSETBLK) .

Any process which uses Fopen() and Fcntl() with a parameter of SHMGETBLK can now read
that memory as if it were a disk file. After a process obtains the address of a shared memory
block with SHMGETBLK the memory is guaranteed to be valid until it calls Mfree() on that
block even if it Fclose()’s the original file handle.

Note that the address returned by Fcntl() may be different in different processes. Because of this,
data in shared memory blocks should not contain absolute pointers.

2.30 – GEMDOS

T H E A T A R I C O M P E N D I U M

When a process is finished with a shared memory block, it should Mfree() the address returned
by the Fcntl() call. A shared memory block is also deleted by the Fdelete() call if the file is
currently unopened by any other processes.

Other Methods of Communication
Psemaphore() can be used to create named flags which can synchronize the behavior of multiple
applications (if adhered to). Pmsg() is used to send simple messages between two processes.

MiNT Debugging

MiNT allows a processes’ TEXT, DATA, and BSS space to be read and written to with
standard GEMDOS file commands by opening the process on ‘U:\PROC\’ A file named
“TEST” with a MiNT identification of 10 could be opened by specifying the name as
‘U:\PROC\TEST.10’ or ‘U:\PROC\.10’. Opening a file to ‘U:\PROC\.-1’ will open your own
process whereas opening a file to ‘U:\PROC\.-2’ will open your parent process.

Tracing
A process may be setup for tracing in a number of ways. A child process may be started in trace
mode by OR’ing 0x8000 with the Pexec() mode number in a Pexec() call. A process may also
trace another process by opening it as described above and using the Fcntl() call with a
parameter of PTRACESFLAGS. Processes may start tracing on themselves if their parent is
prepared for it.

When in trace mode, the process being traced halts and generates a SIGCHLD signal to its
tracer after every instruction (unless this action is modified). The example below shows how to
obtain the process ID of the stopped child and the signal that caused the child to stop.

#define WIFSTOPPED(x) (((int)((x) & 0xFF)==0x7F) && ((int)(((x)>>8)&0xFF)!=0))
#define WSTOPSIG(x) ((int)(((x)>>8) & 0xFF))

void
HandleSignal(LONG signo)
{

WORD pid;
WORD childsignal;
ULONG r;

if(signo == SIGCHLD)
{

r = Pwait3(0x2, 0L);
if(WIFSTOPPED(r))
{

pid = r >> 16;
childsignal = WSTOPSIG(r);

}
}

}

After reception of this signal, the child process may be restarted with Fcntl() using either the
PTRACEGO, PTRACEFLOW , or PTRACESTEP commands. Setting PTRACEFLOW or

MiNT Debugging – 2.31

T H E A T A R I C O M P E N D I U M

PTRACESTEP causes a SIGTRAP signal to be raised on the next program flow change (ex:
BRA or JMP) or the instruction respectively.

Modifying the Process Context
A processes’ registers may be modified during tracing using the method as illustrated in the
following example:

struct context
{

LONG regs[15]; // Registers d0-d7, a0-a6
LONG usp; // User stack pointer
WORD sr; // Status register
LONG pc; // Program counter
LONG ssp; // Supervisor stack pointer
LONG tvec; // GEMDOS terminate vector
char fstate[216]; // Internal FPU state
LONG fregs[3*8]; // Registers FP0-FP7
LONG fctrl[3] // Registers FPCR/FPSR/FPIAR

// More undocumented fields exist here
} c;

void
ModifyContext(LONG handle)
{

LONG curprocaddr, ctxtsize;

Fcntl(handle, &curprocaddr, PPROCADDR);
Fcntl(handle, &ctxtsize, PCTXTSIZE);

curprocaddr -= 2 * ctxtsize;

Fseek(curprocaddr, handle, SEEK_SET);
Fread(handle, (LONG)sizeof(struct context), &c);

/* Modify context c here */

Fseek(curprocaddr, handle, SEEK_SET);
Fwrite(handle, (LONG)sizeof(struct context), &c);

}

MiNT Debugging Keys
MiNT may be programmed to output special debugging messages to the debugging device
through the use of special system keys. The supported system keys are shown in the table below:

Key Combination Meaning
CTRL-ALT-F1 Increase the system debugging level by one.
CTRL-ALT-F2 Decrease the system debugging level by one.
CTRL-ALT-F3 Cycle the BIOS output device number used for system

debugging messages. This key cycles BIOS devices in
the order 1-6-7-8-9-2.

CTRL-ALT-F4 Restore debugging output to the console device.
CTRL-ALT-F5 Output a memory usage map to the debugging device.
CTRL-ALT-F6 Output a list of all system processes to the debugging

device.

2.32 – GEMDOS

T H E A T A R I C O M P E N D I U M

CTRL-ALT-F7 Toggles debug ‘logging’ off and on. When debug logging
is on, a 50-line buffer is maintained which contains recent
debugging messages. Each time a new debugging
message is output, the entire 50 line buffer is output as
well.

CTRL-ALT-F8 Outputs the 50-line debug log to the debugging device.
CTRL-ALT-F9 Outputs the system memory map to the debugging

device. The memory protection flags of each page are
shown.

CTRL-ALT-F10 Outputs an extended system memory map to the
debugging device. The memory protection status,
owner’s PID, and format of each memory block are output
to the debugging device.

CTRL-ALT-F1 and CTRL-ALT-F2 alter the current system debugging level. MiNT supports four
debugging levels as follows:

Level Meaning
0 Only fatal OS errors are reported to the debugging device

(this is the default mode).
1 Processor exceptions are output to the debugging

device.
2 Processor exceptions and failed system calls are output

to the debugging device.
3 Constant MiNT status reports, processor exceptions, and

failed system calls are output to the debugging device.

The MINT.CNF File

MultiTOS looks for an ASCII text file upon bootup called ‘MINT.CNF’ which may be used to
execute commands or set MiNT variables. The following table illustrates what commands are
recognized in the ‘MINT.CNF’ file:

Command Example Meaning
cd cd c:\multitos Change the GEMDOS

working directory.
echo echo “Atari Computer Booting...” Echo a string to the screen.
ren ren c:\test.prg c:\test.app Rename a file.
sln sln c:\level1\level2\level3 u:\deep Create a symbolic link on

drive ‘U:’.
alias alias x: u:\proc Create an alias drive.
exec exec c:\sam.prg Execute a program.

The following MiNT variables may be set in the ‘MINT.CNF’ file:

GEMDOS Character Functions – 2.33

T H E A T A R I C O M P E N D I U M

Variable Meaning
INIT Execute the named TOS program. For example:

INIT=c:\multitos\sam.prg

GEM Execute the named GEM program. For example:

GEM=c:\multitos\miniwin.app

CON Redirect console input and output to the named file.
For example:

CON=u:\dev\modem1

PRN Redirect printer output to the named file. For
example:

PRN=c:\spool.txt

DEBUG_LEVEL Set the MiNT debugging level (default is 0). For
example:

DEBUG_LEVEL=1

DEBUG_DEVNO Set the BIOS device number that MiNT will send
debugging messages to. For example:

DEBUG_DEVNO=1

SLICES Set the number of 20ms time slices given to an
application at a time (the default is 2). For example:

SLICES=3

MAXMEM Set the maximum amount of memory (in kilobytes)
any application can be allocated (the default is
unlimited). For example:

MAXMEM=8192

BIOSBUF Enable/Disable Bconout() optimizations. The
parameter should be ‘Y’ to enable or ‘N’ to disable
these optimizations. For example:

BIOSBUF=Y

GEMDOS Character Functions

GEMDOS provides a number of functions to communicate on a character basis with the default
system devices. Because of irregularities with these calls in some TOS versions, usage of the
BIOS functions is usually recommended instead (the BIOS does not support redirection,
however).

The GEMDOS character functions are illustrated in the table below:

Device: Input Output Status
con: Cconin() - Character

Cnecin() - No Echo
Cconrs() - String

Cconout() - Character
Cconws() - String

Cconis() - Input
Cconos() - Output

prn: None Cprnout() Cprnos()

2.34 – GEMDOS

T H E A T A R I C O M P E N D I U M

aux: Cauxin() Cauxout() Cauxis() - Input
Cauxos() - Output

N/A Crawio() and Crawcin() Crawio() Cconis() - Input
Cconos() - Output

GEMDOS Time & Date Functions

GEMDOS provides four functions for the manipulation of time. Tsetdate() and Tsettime() set
the date and time respectively. Tgetdate() and Tgettime() get the date and time respectively.

As of TOS 1.02, the GEMDOS time functions also update the BIOS time.

GEMDOS Function Calling Procedure

GEMDOS system functions are called via the TRAP #1 exception. Function arguments are
pushed onto the current stack in reverse order followed by the function opcode. The calling
application is responsible for correctly resetting the stack pointer after the call.

GEMDOS may utilize registers D0-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example for Super() illustrates calling GEMDOS from assembly language:

clr.l -(sp)
move.w #$20,-(sp)
trap #1
addq.l #4,sp

‘C’ compilers often provide a reusable interface to GEMDOS that allows new GEMDOS calls
to be added with a macro as in the following example:

#define Super(a) gemdos(0x20, a)

The gemdos() function used in the above macro can be written in assembly language as follows:

.globl _gemdos

.text
_gemdos:

move.l (sp)+, t1sav ; Save return address
trap #1 ; Call GEMDOS
move.l t1sav,-(sp) ; Restore return address
rts

.bss

t1sav: ds.l 1 ; Return address storage

.end

GEMDOS Function Calling Procedure – 2.35

T H E A T A R I C O M P E N D I U M

GEMDOS is not guaranteed to be re-entrant and therefore should not be called from an interrupt
handler.

