
T H E A T A R I C O M P E N D I U M

— CHAPTER 10 —

XCONTROL

The Extensible Control Panel – 10.3

T H E A T A R I C O M P E N D I U M

The Extensible Control Panel

Overview
XCONTROL is a desk accessory which provides a shell for Control Panel Extensions
(CPX’s). Typical uses for CPX’s include:

• System Configuration (volume, key click, etc.)

• Hardware Configuration (serial port speed, disk access rate, etc.)

• TSR Configuration

Most CPX’s require only 512 bytes of system memory for header storage when not being
executed as they are loaded only when selected by the user.

Applications, games, and other programs not used for configuration purposes should not be
created as CPX’s.

CPX Executable Format
A CPX executable is identical to a standard GEMDOS executable with the exception of an
additional 512 byte header which precedes the standard 28 byte GEMDOS header. When
XCONTROL is initialized at boot time, the header of each CPX contained in the user’s
designated CPX directory is loaded and stored. The header data contains the following
information:

typedef struct _cpxhead
{

UWORD magic; /* Magic = 100 dec */

struct {
unsigned reserved : 13; /* Reserved */
unsigned resident : 1; /* Resident CPX if set */
unsigned bootinit : 1; /* Boot initialize if set*/
unsigned setonly : 1; /* Set only CPX if set */

} flags;

LONG cpx_id; /* CPX ID Value */
UWORD cpx_version; /* CPX Version */
char i_text[14]; /* Icon Text */
UWORD sm_icon[48]; /* Icon Bitmap 32x24 */
UWORD i_color; /* Icon Color */
char title[18]; /* Title (16 char max) */
UWORD t_color; /* Title text color */
char buffer[64]; /* User-storage */
char reserved[306]; /* Reserved */

} CPXHEAD;

Following the 512-byte CPX header the 28-byte GEMDOS header and executable follow.
CPX’s do not have a ‘main()’ function. Execution begins at the first instruction of the TEXT
segment. The first source file you should link should resemble the following:

.xref _cpx_init

10.4 – XCONTROL

T H E A T A R I C O M P E N D I U M

.text
cpxstart:

jmp _cpx_init

.end

Every CPX must have a cpx_init() function.

If you plan to store defaults back into the CPX using CPX_Save() (described later) you should
add to the first source file a statement allocating as much storage as you will need at the
beginning of the DATA segment. For example, the following is a complete stub for a CPX
requiring 10 LONGs of data for permanent storage.

.xref _cpx_init

.globl _save_vars

.text
cpxstart:

jmp _cpx_init

.data

_save_vars:
.dc.l 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

.end

XCONTROL Structures

CPXINFO
A pointer to a CPX’s CPXINFO structure must be returned by the cpx_init() function (‘Set
Only’ CPX’s return NULL). The CPXINFO structure is filled in with pointers to user functions
as follows:

typedef struct
{

WORD (*cpx_call)(GRECT *);
VOID (*cpx_draw)(GRECT *);
VOID (*cpx_wmove)(GRECT *);
VOID (*cpx_timer)(WORD *);
VOID (*cpx_key)(WORD, WORD, WORD *);
VOID (*cpx_button)(MRETS *, WORD *);
VOID (*cpx_m1)(MRETS *, WORD *);
VOID (*cpx_m2)(MRETS *, WORD *);
WORD (*cpx_hook)(WORD, WORD *, MRETS *, WORD *, WORD *);
WORD (*cpx_close)(WORD);

} CPXINFO;

Form CPX’s use only cpx_call() and (optionally) cpx_close(). Event CPX’s use the remaining
members. Members not being used should be set to NULL .

XCONTROL Structures – 10.5

T H E A T A R I C O M P E N D I U M

XCPB
A pointer to the “XControl Parameter Block” is passed to the cpx_call() function. This pointer
should be copied to a static variable on entry so that other functions may utilize its members.
XCPB is defined as follows:

typedef struct
{

WORD handle;
WORD booting;
WORD reserved;
WORD SkipRshFix;
VOID *reserve1;
VOID *reserve2;
VOID (*rsh_fix)(WORD, WORD, WORD, WORD, OBJECT *, TEDINFO *, char *,

ICONBLK *, BITBLK *, LONG *, LONG *, LONG *, VOID *);
VOID (*rsh_obfix)(OBJECT *, WORD);
WORD (*Popup)(char *items[], WORD, WORD, WORD,

GRECT *, GRECT *);
VOID (*Sl_size)(OBJECT *, WORD, WORD, WORD, WORD,

WORD, WORD);
VOID (*Sl_x)(OBJECT *, WORD, WORD, WORD, WORD, WORD,

void (*)();
VOID (*Sl_y)(OBJECT *, WORD, WORD, WORD, WORD, WORD,

void (*)());
VOID (*Sl_arrow)(OBJECT *, WORD, WORD, WORD, WORD,

WORD, WORD, WORD *, WORD, void (*)());
VOID (*Sl_dragx)(OBJECT *, WORD, WORD, WORD, WORD,

WORD *, void (*)());
VOID (*Sl_dragy)(OBJECT *, WORD, WORD, WORD, WORD,

WORD *, void (*)());
WORD (*Xform_do)(OBJECT *, WORD, WORD *);
GRECT * (*GetFirstRect)(GRECT *);
GRECT * (*GetNextRect)(VOID);
VOID (*Set_Evnt_Mask)(WORD, MOBLK *, MOBLK *, LONG);
WORD (*XGen_Alert)(WORD);
WORD (*CPX_Save)(VOID *, LONG);
VOID * (*Get_Buffer)(VOID);
WORD (*getcookie)(LONG, LONG *);
WORD Country_Code;
VOID (*MFSave)(WORD, MFORM *);

} XCPB;

Almost all of XCPB’s members are pointers to utility functions covered in the XCONTROL
Function Reference at the end of this chapter. The remaining utilized members have the
following meaning:

XCPB Member Meaning
handle This value contains the physical workstation

handle returned by graf_handle() to the Control
Panel for use in calling v_opnvwk() .

booting When XCONTROL is initializing as the result of a
power-on, reset, or resolution change, it loads
each CPX and calls its cpx_init() function with
booting set to TRUE. At all other times,
XCONTROL sets booting to FALSE .

10.6 – XCONTROL

T H E A T A R I C O M P E N D I U M

SkipRshFix When a CPX is first called after being loaded, its
SkipRshFix flag is set to FALSE . The application
should then use xcpb->rsh_fix() to fix its internal
resource tree. xcpb->rsh_fix() sets the CPX’s
SkipRshFlag to TRUE so that the CPX can skip
this step on subsequent calls.

Country_Code This value indicates the country which this version
of the Control Panel was compiled for as follows:

Country_Code Country
0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Swiss (French)
8 Swiss (German)
9 Turkey
10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland

CPX Flavors

Boot Initialization
Any CPX which has its _cpxhead.bootinit flag set will have its cpx_init() function called when
XCONTROL initializes upon bootup. This provides a way for CPX’s to set system
configuration from data the user has saved in previous sessions.

cpx_init() is always called each time the user selects your CPX from the XCONTROL CPX list
prior to calling cpx_call(). If the CPX is being initialized at boot time, the xcpb->booting flag
will be TRUE.

Resident CPX’s
CPX’s which have their _cpxhead.resident flag set will be retained in memory after being
initialized at bootup. In general, this option should not be used unless absolutely necessary.

Resident CPX’s should be aware that variables stored in their DATA and BSS segments will
not be reinitialized each time the CPX is called.

CPX Flavors – 10.7

T H E A T A R I C O M P E N D I U M

Set-Only CPX’s
Set-Only CPX’s are designed to initialize system configuration options each time XCONTROL
initializes (during boot-ups and resolution changes) by calling the cpx_init() function. These
CPX’s will not appear in the XCONTROL list of CPX’s.

Form CPX’s
Every CPX must be either a ‘Form’ or ‘Event’ CPX. Most CPX’s will be Form CPX’s.

In a Form CPX, XCONTROL handles most user-interaction and messaging by relaying
messages through a callback function. XCONTROL is responsible for redraws (although the
CPX does have a hook to do non-AES object redraws) and form handling. A simple ‘C’ outline
for a Form CPX follows:

/* Example Form CPX Skeleton */

#include “skel.h”
#include “skel.rsh”
#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init(Xcpb)
XCPB *Xcpb;
{

xcpb = Xcpb;

appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */

/* Returning TRUE here tells XCONTROL to retain the header
 * for later access by the user. If CPX is Set-Only,
 * return FALSE.
 */

return ((CPXINFO *) TRUE)
}
else
{

/* If you haven’t already done so, fix resource tree.
 *
 * DEFINE’s and variables are from an RSH file generated
 * by the Atari Resource Construction Set.
 */

if(!SkipRshFix)

10.8 – XCONTROL

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_fix)(NUM_OBS, NUM_FRSTR, NUM_FRIMG, NUM_TREE,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = NULL;
cpxinfo.cpx_wmove = NULL;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = NULL;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
 * messages.
 */

return (&cpxinfo);
}

}

BOOLEAN
cpx_call(rect)
GRECT *rect;
{

/* Put MAINFORM tree in *tree for object macros */

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];
WORD button, quit = FALSE;
WORD msg[8];

ObX(ROOT) = rect->g_x;
ObY(ROOT) = rect->g_y;

objc_draw(tree, ROOT, MAX_DEPTH, PTRS(rect));

do
{

button = (*xcpb->Xform_do)(tree, 0, msg);

/* Be sure and mask off double-clicks if you’re
 * not interested in them.
 */

if((button & 0x8000) && (button != 0xFFFF)) {
button &= 0x7FFF;

button &= 0x7FFF;

switch(button)
{

/* Check for EXIT or TOUCHEXIT resource objects */

case OK:
break;

case CANCEL:
break;

case -1:

CPX Flavors – 10.9

T H E A T A R I C O M P E N D I U M

switch(msg[0])
{

case WM_REDRAW:
break;

case AC_CLOSE:
quit = TRUE;
break;

case WM_CLOSED:
quit = TRUE;
break;

case CT_KEY:
break;

}
break;

}
} while(!quit);

return(FALSE);
}

Event CPX’s
CPX’s which are not possible as Form CPX’s may be designed as Event CPX’s.

Event CPX’s accomplish most of their work in several callback functions identified to the
Control Panel by the CPXINFO structure and called when the appropriate message is received.
An outline for a typical Event CPX follows:

/* Example Event CPX Skeleton */

#include “skel.h”
#include “skel.rsh”
#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();
void cpx_draw(), cpx_wmove(), cpx_key();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init(Xcpb)
XCPB *Xcpb;
{

xcpb = Xcpb;

appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */

/* Returning TRUE here tells XCONTROL to retain the header
 * for later access by the user. If CPX is Set-Only,
 * return FALSE.
 */

10.10 – XCONTROL

T H E A T A R I C O M P E N D I U M

return ((CPXINFO *) TRUE)
}
else
{

/* If you haven’t already done so, fix resource tree.
 *
 * DEFINE’s and variables are from RSH file generated
 * by the Atari Resource Construction Set.
 */

if(!SkipRshFix)
(*xcpb->rsh_fix)(NUM_OBS, NUM_FRSTR, NUM_FRIMG, NUM_TREE,

rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = cpx_draw;
cpxinfo.cpx_wmove = cpx_wmove;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = cpx_key;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
 * messages.
 */

(*xcpb->Set_Evnt_Mask)(MU_MESAG | MU_KEYBD, NULL, NULL, -1L);

return (&cpxinfo);
}

}

BOOLEAN
cpx_call(rect)
GRECT *rect;
{

/* Put MAINFORM tree in *tree for object macros */

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];

ObX(ROOT) = rect->g_x;
ObY(ROOT) = rect->g_y;

objc_draw(tree, ROOT, MAX_DEPTH, PTRS(rect));

return (TRUE);
}

VOID
cpx_draw(rect)
GRECT *rect;
{

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];
GRECT *xrect, rect;

xrect = (*xcpb->GetFirstRect)(rect);

CPX File Formats – 10.11

T H E A T A R I C O M P E N D I U M

while(xrect)
{

rect = *xrect;
objc_draw(tree, ROOT, MAX_DEPTH, ELTS(rect));
xrect = (*xcpb->GetNextRect)();

}
}

VOID
cpx_wmove(work)
GRECT *work;
{

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];

ObX(tree) = work->g_x;
ObY(tree) = work->g_y;

}

VOID
cpx_key(kstate, key, quit)
WORD kstate, key;
WORD *quit;
{

/* Substitute case values for values you’re interested
* in.
*/

switch(key)
{

case KEY_1:
case KEY_2:

}
}

CPX File Formats

File Naming
Several standard naming conventions for CPX executables and development files follow:

File Name Meaning
*.CPX Standard CPX ready for execution by the

Control Panel.
*.CP CPX missing the 512 byte header.
*_R.CPX A resident CPX.
*_S.CPX A “Set-only” CPX.
*.HDR A 512 byte CPX header file.
*.CPZ An inactive CPX.
*.RSH An “embeddable” resource file. CPX’s can’t

execute a rsrc_load() so all resource files
must be in this format.

10.12 – XCONTROL

T H E A T A R I C O M P E N D I U M

The CPX File Format
A CPX file can be represented graphically as follows:

CPX Header Record
(512 bytes)

GEMDOS Executable
Header

(28 bytes)

CPX TEXT Segment
(cpx_init() must begin at
offset 0 of this segment)

CPX DATA Segment
(any data to be saved back
into the CPX must begin at
offset 0 of this segment)

CPX Symbol Table (if any)

XCONTROL Function Calling Procedure

Calling Conventions
XCONTROL uses “right–left” stack-based parameter passing for all of its functions and
expects that user defined callback functions are similarly “right–left” stack-based. Compilers
which do not default to this method should use either the ‘cdecl’ or ‘_stdargs’ keyword
depending on your compiler.

Function entry stubs must also consider the longword return code placed on the stack by the
68x00 ‘JSR’ function. ‘C’ compilers always expect this. For example, the pointer to the XCPB
passed to the cpx_init() function can be stored through the following machine language
statement:

_cpx_init:
move.l 4(sp),xcpb

XCONTROL Function Calling Procedure – 10.13

T H E A T A R I C O M P E N D I U M

Stack Space
CPX programmers should note that all CPX operations use the default Control Panel stack space
(2048 bytes) and should therefore restrict heavy usage of automatic variables and other large
consumers of stack space.

